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Chapter 1. Introduction
OpenCL is an open, royalty-free, standard for general purpose parallel programming across CPUs,
GPUs, and other processors, giving software developers portable and efficient access to the power
of heterogeneous processing platforms.

SPIR-V is an open, royalty-free, standard intermediate language capable of representing parallel
compute kernels that are executed by implementations of the OpenCL standard.

SPIR-V is adaptable to multiple execution environments: a SPIR-V module is consumed by an
execution environment, as specified by a client API. This document describes the SPIR-V execution
environment for implementations of the OpenCL standard. The SPIR-V execution environment
describes required support for some SPIR-V capabilities, additional semantics for some SPIR-V
instructions, and additional validation rules that a SPIR-V binary module must adhere to in order to
be considered valid.

This document is written for compiler developers who are generating SPIR-V modules intended to
be consumed by the OpenCL API, for implementors of the OpenCL API who are consuming SPIR-V
modules, and for software developers who are using SPIR-V modules with the OpenCL API.



Chapter 2. Common Properties
This section describes common properties of all OpenCL environments that consume SPIR-V
modules.

A SPIR-V module passed to an OpenCL environment is interpreted as a series of 32-bit words in host
endianness, with literal strings packed as described in the SPIR-V specification. The first few words
of the SPIR-V module must be a magic number and a SPIR-V version number, as described in the
SPIR-V specification.

2.1. Supported SPIR-V Versions
An OpenCL environment describes the versions of SPIR-V modules that it supports using the
CL_DEVICE_IL_VERSION query in OpenCL 2.1 or newer, the CL_DEVICE_ILS_WITH_VERSION query in
OpenCL 3.0 or newer, or the CL_DEVICE_IL_VERSION_KHR query in the cl_khr_il_program extension.

OpenCL environments that support the cl_khr_il_program extension or OpenCL 2.1 must support
SPIR-V 1.0 modules. OpenCL environments that support OpenCL 2.2 must support SPIR-V 1.0, 1.1,
and 1.2 modules. Use the CL_DEVICE_IL_VERSION or CL_DEVICE_ILS_WITH_VERSION query to determine
the versions of SPIR-V modules that are supported by OpenCL environments that support OpenCL
3.0.

2.2. Extended Instruction Sets
OpenCL environments supporting SPIR-V must support SPIR-V modules that import the
OpenCL.std extended instruction set for OpenCL using OpExtInstImport. For example:

... = OpExtInstImport "OpenCL.std"

2.3. Source Language Encoding
If a SPIR-V module represents a program written in OpenCL C, then the Source Language operand
for the OpSource instruction should be OpenCL_C, and the 32-bit literal language Version should
describe the version of OpenCL C, encoded MSB to LSB as:

0 | Major Number | Minor Number | Revision Number (optional)

If a SPIR-V module represents a program written in OpenCL C++, then the Source Language operand
for the OpSource instruction should be OpenCL_CPP, and the 32-bit literal language Version should
describe the version of OpenCL C++, encoded similarly.

The source language version is purely informational and has no semantic meaning.



2.4. Numerical Type Formats
For all OpenCL environments, floating-point types are represented and stored using IEEE-754
semantics. All integer formats are represented and stored using 2’s-complement format.

2.5. Supported Types
The following types are supported by OpenCL environments. Note that some types may require
additional capabilities, and may not be supported by all OpenCL environments.

OpenCL environments support arrays declared using OpTypeArray, structs declared using
OpTypeStruct, functions declared using OpTypeFunction, and pointers declared using
OpTypePointer.

2.5.1. Basic Scalar and Vector Types

OpTypeVoid is supported.

The following scalar types are supported by OpenCL environments:

• OpTypeBool

• OpTypeInt, with Width equal to 8, 16, 32, or 64, and with Signedness equal to zero, indicating no
signedness semantics.

• OpTypeFloat, with Width equal to 16, 32, or 64.

OpenCL environments support vector types declared using OpTypeVector. The vector Component
Type may be any of the scalar types described above. Supported vector Component Counts are 2, 3,
4, 8, or 16.

2.5.2. Image-Related Data Types

The following table describes the OpTypeImage image types supported by OpenCL environments:

Table 1. Image Types

Dim Depth Arrayed Description

1D 0 0 A 1D image.

1D 0 1 A 1D image array.

2D 0 0 A 2D image.

2D 1 0 A 2D depth image.

2D 0 1 A 2D image array.

2D 1 1 A 2D depth image array.

3D 0 0 A 3D image.

Buffer 0 0 A 1D buffer image.



OpTypeSampler may be used to declare sampler types in OpenCL environments.

OpTypeSampledImage may be used to declare combined image and sampler types in OpenCL
environments.

2.5.3. Other Data Types

The following table describes other data types that may be used in an OpenCL environment:

Table 2. Other Data Types

Type Description

OpTypeEvent OpenCL event representing async copies from
global to local memory and vice-versa.

OpTypeDeviceEvent OpenCL device-side event representing
commands enqueued to device command-
queues.

OpTypePipe OpenCL pipe.

OpTypeReserveId OpenCL pipe reservation identifier.

OpTypeQueue OpenCL device-side command-queue.

2.6. Image Channel Order Mapping
The following table describes how the results of the SPIR-V OpImageQueryOrder instruction
correspond to the OpenCL host API image channel orders.

Table 3. Image Channel Order mapping

SPIR-V Image Channel Order OpenCL Image Channel Order

0 R CL_R

1 A CL_A

2 RG CL_RG

3 RA CL_RA

4 RGB CL_RGB

5 RGBA CL_RGBA

6 BGRA CL_BGRA

7 ARGB CL_ARGB

8 Intensity CL_INTENSITY

9 Luminance CL_LUMINANCE

10 Rx CL_Rx

11 RGx CL_RGx

12 RGBx CL_RGBx



SPIR-V Image Channel Order OpenCL Image Channel Order

13 Depth CL_DEPTH

14 DepthStencil CL_DEPTH_STENCIL

15 sRGB CL_sRGB

16 sRGBx CL_sRGBx

17 sRGBA CL_sRGBA

18 sBGRA CL_sBGRA

19 ABGR CL_ABGR


The SPIR-V Image Channel Orders are enumerated in the same order as the
OpenCL Channel Order enums to enable simple conversion between the two.

2.7. Image Channel Data Type Mapping
The following table describes how the results of the SPIR-V OpImageQueryFormat instruction
correspond to the OpenCL host API image channel data types.

Table 4. Image Channel Data Type mapping

SPIR-V Image Channel Data Type OpenCL Image Channel Data Type

0 SnormInt8 CL_SNORM_INT8

1 SnormInt16 CL_SNORM_INT16

2 UnormInt8 CL_UNORM_INT8

3 UnormInt16 CL_UNORM_INT16

4 UnormShort565 CL_UNORM_SHORT_565

5 UnormShort555 CL_UNORM_SHORT_555

6 UnormInt101010 CL_UNORM_INT_101010

7 SignedInt8 CL_SIGNED_INT8

8 SignedInt16 CL_SIGNED_INT16

9 SignedInt32 CL_SIGNED_INT32

10 UnsignedInt8 CL_UNSIGNED_INT8

11 UnsignedInt16 CL_UNSIGNED_INT16

12 UnsignedInt32 CL_UNSIGNED_INT32

13 HalfFloat CL_HALF_FLOAT

14 Float CL_FLOAT

15 UnormInt24 CL_UNORM_INT24

16 UnormInt101010_2 CL_UNORM_INT_101010_2

21 UnormInt2_101010EXT CL_UNORM_INT_2_101010_EXT




The SPIR-V Image Channel Data Types are enumerated in the same order as the
OpenCL Channel Data Type enums to enable simple conversion between the two.

2.8. Kernels
An OpFunction in a SPIR-V module that is identified with OpEntryPoint defines an OpenCL kernel
that may be invoked using the OpenCL host API enqueue kernel interfaces.

2.8.1. Kernel Return Types

The Result Type for an OpFunction identified with OpEntryPoint must be OpTypeVoid.

2.8.2. Kernel Arguments

An OpFunctionParameter for an OpFunction that is identified with OpEntryPoint defines an
OpenCL kernel argument. Allowed types for OpenCL kernel arguments are:

• OpTypeInt

• OpTypeFloat

• OpTypeStruct

• OpTypeVector

• OpTypePointer

• OpTypeSampler

• OpTypeImage

• OpTypePipe

• OpTypeQueue

For OpTypeInt parameters, supported Widths are 8, 16, 32, and 64, and must have no signedness
semantics.

For OpTypeFloat parameters, supported Width are 16, 32, and 64.

For OpTypeStruct parameters, supported structure Member Types are:

• OpTypeInt

• OpTypeFloat

• OpTypeStruct

• OpTypeVector

• OpTypePointer

For OpTypePointer parameters, supported Storage Classes are:

• CrossWorkgroup

• Workgroup



• UniformConstant

OpenCL kernel argument types must have a representation in the OpenCL host API.

Environments that support extensions or optional features may allow additional types in an entry
point’s parameter list.

2.9. Built-in Variables
An OpVariable in a SPIR-V module with the BuiltIn decoration represents a built-in variable. All
built-in variables must be in the Input storage class.

The following table describes the required SPIR-V type for built-in variables. In this table, size_t is
used as a generic type to represent:

• OpTypeInt with Width equal to 32 if the Addressing Model declared in OpMemoryModel is
Physical32.

• OpTypeInt with Width equal to 64 if the Addressing Model declared in OpMemoryModel is
Physical64.

The mapping from an OpenCL C built-in function to the SPIR-V BuiltIn is informational and non-
normative.

OpenCL C Function SPIR-V BuiltIn Required SPIR-V Type

get_work_dim WorkDim OpTypeInt with Width equal to 32

get_global_size GlobalSize OpTypeVector of 3 components of size_t

get_global_id GlobalInvocationId OpTypeVector of 3 components of size_t

get_local_size WorkgroupSize OpTypeVector of 3 components of size_t

get_enqueued_local_size EnqueuedWorkgroupSize OpTypeVector of 3 components of size_t

get_local_id LocalInvocationId OpTypeVector of 3 components of size_t

get_num_groups NumWorkgroups OpTypeVector of 3 components of size_t

get_group_id WorkgroupId OpTypeVector of 3 components of size_t

get_global_offset GlobalOffset OpTypeVector of 3 components of size_t

get_global_linear_id GlobalLinearId size_t

get_local_linear_id LocalInvocationIndex size_t

get_sub_group_size SubgroupSize OpTypeInt with Width equal to 32

get_max_sub_group_size SubgroupMaxSize OpTypeInt with Width equal to 32

get_num_sub_groups NumSubgroups OpTypeInt with Width equal to 32

get_enqueued_num_sub_group
s

NumEnqueuedSubgroups OpTypeInt with Width equal to 32

get_sub_group_id SubgroupId OpTypeInt with Width equal to 32



OpenCL C Function SPIR-V BuiltIn Required SPIR-V Type

get_sub_group_local_id SubgroupLocalInvocation
Id

OpTypeInt with Width equal to 32

2.10. Alignment of Types
Objects of type OpTypeInt, OpTypeFloat, and OpTypePointer must be aligned in memory to the
size of the type in bytes. Objects of type OpTypeVector with these component types must be aligned
in memory to the size of the vector type in bytes. For 3-component vector types, the size of the
vector type is four times the size the component type.

The compiler is responsible for aligning objects allocated by OpVariable to the appropriate
alignment as required by the Result Type.

For OpTypePointer arguments to a function, the compiler may assume that the pointer is
appropriately aligned as required by the Type that the pointer points to.

Behavior of an unaligned load or store is undefined.



Chapter 3. Required Capabilities

3.1. SPIR-V 1.0
An OpenCL environment that supports SPIR-V 1.0 must support SPIR-V 1.0 modules that declare the
following capabilities:

• Addresses

• Float16Buffer

• Int64

◦ For Full Profile devices.

• Int16

• Int8

• Kernel

• Linkage

• Vector16

• DeviceEnqueue

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Device-Side
Enqueue (where CL_DEVICE_DEVICE_ENQUEUE_CAPABILITIES is not 0).

• GenericPointer

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting the Generic
Address Space (where CL_DEVICE_GENERIC_ADDRESS_SPACE_SUPPORT is CL_TRUE).

• Groups

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Sub-groups
(where CL_DEVICE_MAX_NUM_SUB_GROUPS is not 0) or Work-group Collective Functions (where
CL_DEVICE_WORK_GROUP_COLLECTIVE_FUNCTIONS_SUPPORT is CL_TRUE).

• Pipes

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Pipes (where
CL_DEVICE_PIPE_SUPPORT is CL_TRUE).

• ImageBasic

◦ For devices supporting Images (where CL_DEVICE_IMAGE_SUPPORT is CL_TRUE)

• Float64

◦ For devices supporting Double Precision Floating-Point (where CL_DEVICE_DOUBLE_FP_CONFIG is
not 0)

If the OpenCL environment supports the ImageBasic capability, then the following capabilities
must also be supported:

• LiteralSampler



• Sampled1D

• Image1D

• SampledBuffer

• ImageBuffer

• ImageReadWrite

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Read-Write
Images (where CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS is not 0)

3.2. SPIR-V 1.1
An OpenCL environment supporting SPIR-V 1.1 must support SPIR-V 1.1 modules that declare the
capabilities required for SPIR-V 1.0 modules, above.

In addition, an OpenCL environment consuming SPIR-V 1.1 must support SPIR-V 1.1 modules that
declare the following capabilities:

• SubgroupDispatch

◦ For OpenCL 2.2 devices, or OpenCL 3.0 devices supporting Sub-groups (where CL_DEVICE_MAX_
NUM_SUB_GROUPS is not 0)

• PipeStorage

◦ For OpenCL 2.2 devices.

3.3. SPIR-V 1.2
An OpenCL environment supporting SPIR-V 1.2 must support SPIR-V 1.2 modules that declare the
capabilities required for SPIR-V 1.1 modules, above.

SPIR-V 1.2 does not add any new required capabilities.



Chapter 4. Validation Rules
The following are a list of validation rules that apply to SPIR-V modules executing in all OpenCL
environments:

The Execution Model declared in OpEntryPoint must be Kernel.

The Addressing Model declared in OpMemoryModel must be either:

• Physical32 (for OpenCL devices reporting 32 for CL_DEVICE_ADDRESS_BITS)

• Physical64 (for OpenCL devices reporting 64 for CL_DEVICE_ADDRESS_BITS)

The Memory Model declared in OpMemoryModel must be OpenCL.

For all OpTypeInt integer type-declaration instructions:

• Signedness must be 0, indicating no signedness semantics.

For all OpTypeImage type-declaration instructions:

• Sampled Type must be OpTypeVoid.

• Sampled must be 0, indicating that the image usage will be known at run time, not at compile
time.

• MS must be 0, indicating single-sampled content.

• Arrayed may only be set to 1, indicating arrayed content, when Dim is set to 1D or 2D.

• Image Format must be Unknown, indicating that the image does not have a specified format.

• The optional image Access Qualifier must be present.

The image write instruction OpImageWrite must not include any optional Image Operands.

The image read instructions OpImageRead and OpImageSampleExplicitLod must not include the
optional Image Operand ConstOffset.

For all Atomic Instructions:

• Only 32-bit integer types are supported for the Result Type and/or type of Value.

• The Pointer operand must be a pointer to the Function, Workgroup, or CrossWorkgroup
Storage Classes. Note that an Atomic Instruction on a pointer to the Function Storage Class is
valid, but does not have defined behavior.

• For OpenCL environments that support and declare the GenericPointer capability, the Pointer
operand may be a pointer to the Generic Storage Class, however behavior is still undefined if
the Generic pointer represents a pointer to the Function Storage Class.

Recursion is not supported. The static function call graph for an entry point must not contain
cycles.

Whether irreducible control flow is legal is implementation-defined.



For the instructions OpGroupAsyncCopy and OpGroupWaitEvents, Scope for Execution must be:

• Workgroup

For the Group and Subgroup Instructions, Scope for Execution must be one of:

• Workgroup

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Work-group
Collective Functions (where CL_DEVICE_WORK_GROUP_COLLECTIVE_FUNCTIONS_SUPPORT is CL_TRUE).

• Subgroup

◦ For OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Sub-groups (where
CL_DEVICE_MAX_NUM_SUB_GROUPS is not 0)

For all other instructions, Scope for Execution must be one of:

• Workgroup

• Subgroup

◦ For OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Sub-groups (where
CL_DEVICE_MAX_NUM_SUB_GROUPS is not 0)

In an OpenCL 1.2 environment, for the Barrier Instructions OpControlBarrier and
OpMemoryBarrier, the Scope for Memory must be Workgroup, and the memory-order constraint
in Memory Semantics must be SequentiallyConsistent. Otherwise, Scope for Memory must be one
of:

• CrossDevice

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_SCOPE_ALL_DEVICES in CL_DEVICE_ATOMIC_FENCE_CAPABILITIES.

• Device

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_SCOPE_DEVICE in CL_DEVICE_ATOMIC_FENCE_CAPABILITIES.

• Workgroup

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_SCOPE_WORK_GROUP in CL_DEVICE_ATOMIC_FENCE_CAPABILITIES.

• Subgroup

◦ For OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Sub-groups (where
CL_DEVICE_MAX_NUM_SUB_GROUPS is not 0).

• Invocation

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_SCOPE_WORK_ITEM in CL_DEVICE_ATOMIC_FENCE_CAPABILITIES.

And, the memory-order constraint in Memory Semantics must be one of:

• None (Relaxed)



◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_ORDER_RELAXED in CL_DEVICE_ATOMIC_FENCE_CAPABILITIES.

• Acquire, Release, or AcquireRelease

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_ORDER_ACQ_REL in CL_DEVICE_ATOMIC_FENCE_CAPABILITIES.

• SequentiallyConsistent

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_ORDER_SEQ_CST in CL_DEVICE_ATOMIC_FENCE_CAPABILITIES.

In all OpenCL environments, for the Barrier Instruction OpControlBarrier, when the Scope for
Execution is Subgroup, behavior is undefined unless all invocations in the sub-group execute the
same dynamic instance of the instruction.

In an OpenCL 1.2 environment, for the Atomic Instructions, the Scope for Memory must be Device,
and the memory-order constraint in Memory Semantics must be Relaxed. Otherwise, Scope for
Memory must be one of:

• CrossDevice

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_SCOPE_ALL_DEVICES in CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES.

• Device

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_SCOPE_DEVICE in CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES.

• Workgroup

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_SCOPE_WORK_GROUP in CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES.

• Subgroup

◦ For OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting Sub-groups (where
CL_DEVICE_MAX_NUM_SUB_GROUPS is not 0).

And, the memory-order constraint in Memory Semantics must be one of:

• None (Relaxed)

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_ORDER_RELAXED in CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES.

• Acquire, Release, or AcquireRelease

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_ORDER_ACQ_REL in CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES.

• SequentiallyConsistent

◦ For OpenCL 2.0, OpenCL 2.1, OpenCL 2.2, or OpenCL 3.0 devices supporting CL_DEVICE_
ATOMIC_ORDER_SEQ_CST in CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES.



Chapter 5. OpenCL Extensions
An OpenCL environment may be modified by OpenCL extensions. For example, some OpenCL
extensions may require support for additional SPIR-V capabilities or instructions, or relax SPIR-V
restrictions. Some OpenCL extensions may modify the OpenCL environment by requiring
consumption of a SPIR-V module that uses a SPIR-V extension. In this case, the implementation will
include the OpenCL extension in the host API CL_PLATFORM_EXTENSIONS or CL_DEVICE_EXTENSIONS
string, but not the corresponding SPIR-V extension.

This section describes how the OpenCL environment is modified by Khronos (khr) OpenCL
extensions. Other OpenCL extensions, such as multi-vendor (ext) extensions or vendor-specific
extensions, describe how they modify the OpenCL environment in their individual extension
specifications.

5.1. Declaring SPIR-V Extensions
A SPIR-V module declares use of a SPIR-V extension using OpExtension and the name of the SPIR-V
extension. For example:

OpExtension "SPV_KHR_extension_name"

Only use of SPIR-V extensions may be declared in a SPIR-V module using OpExtension; there is
never a need to declare use of an OpenCL extension in a SPIR-V module using OpExtension.

5.2. Full and Embedded Profile Extensions

5.2.1. cl_khr_3d_image_writes

If the OpenCL environment supports the extension cl_khr_3d_image_writes, then the environment
must accept Image operands to OpImageWrite that are declared with dimensionality Dim equal to
3D.

5.2.2. cl_khr_depth_images

If the OpenCL environment supports the extension cl_khr_depth_images, then the environment
must accept modules that declare 2D depth image types using OpTypeImage with dimensionality
Dim equal to 2D and Depth equal to 1, indicating a depth image. 2D depth images may optionally be
Arrayed, if supported.

Additionally, the following Image Channel Orders may be returned by OpImageQueryOrder:

• Depth

5.2.3. cl_khr_device_enqueue_local_arg_types

If the OpenCL environment supports the extension cl_khr_device_enqueue_local_arg_types, then the



environment will allow Invoke functions to be passed to OpEnqueueKernel with Workgroup
memory pointer parameters of any type.

5.2.4. cl_khr_fp16

If the OpenCL environment supports the extension cl_khr_fp16, then the environment must accept
modules that declare the following SPIR-V capabilities:

• Float16

5.2.5. cl_khr_fp64

If the OpenCL environment supports the extension cl_khr_fp64, then the environment must accept
modules that declare the following SPIR-V capabilities:

• Float64

5.2.6. cl_khr_gl_depth_images

If the OpenCL environment supports the extension cl_khr_gl_depth_images, then the following
Image Channel Orders may additionally be returned by OpImageQueryOrder:

• DepthStencil

Also, the following Image Channel Data Types may additionally be returned by
OpImageQueryFormat:

• UnormInt24

5.2.7. cl_khr_gl_msaa_sharing

If the OpenCL environment supports the extension cl_khr_gl_msaa_sharing, then the environment
must accept modules that declare 2D multi-sampled image types using OpTypeImage with
dimensionality Dim equal to 2D and MS equal to 1, indicating multi-sampled content. 2D multi-
sampled images may optionally be Arrayed or Depth images, if supported.

The 2D multi-sampled images may be used with the following instructions:

• OpImageRead

• OpImageQuerySizeLod

• OpImageQueryFormat

• OpImageQueryOrder

• OpImageQuerySamples

5.2.8. cl_khr_int64_base_atomics and cl_khr_int64_extended_atomics

If the OpenCL environment supports the extension cl_khr_int64_base_atomics or cl_khr_int64_
extended_atomics, then the environment must accept modules that declare the following SPIR-V



capabilities:

• Int64Atomics

When the Int64Atomics capability is declared, 64-bit integer types are valid for the Result Type and
type of Value for all Atomic Instructions.

Note: OpenCL environments that consume SPIR-V must support both cl_khr_int64_base_atomics and
cl_khr_int64_extended_atomics or neither of these extensions.

5.2.9. cl_khr_mipmap_image

If the OpenCL environment supports the extension cl_khr_mipmap_image, then the environment
must accept non-zero optional Lod Image Operands for the following instructions:

• OpImageSampleExplicitLod

• OpImageRead

• OpImageQuerySizeLod

Note: Implementations that support cl_khr_mipmap_image are not guaranteed to support the
ImageMipmap capability, since this extension does not require non-zero optional Lod Image
Operands for OpImageWrite.

5.2.10. cl_khr_mipmap_image_writes

If the OpenCL environment supports the extension cl_khr_mipmap_image_writes, then the
environment must accept non-zero optional Lod Image Operands for the following instructions:

• OpImageWrite

Note: An implementation that supports cl_khr_mipmap_image_writes must also support cl_khr_
mipmap_image, and support for both extensions does guarantee support for the ImageMipmap
capability.

5.2.11. cl_khr_subgroups

If the OpenCL environment supports the extension cl_khr_subgroups, then for all instructions
except OpGroupAsyncCopy and OpGroupWaitEvents the Scope for Execution may be:

• Subgroup

Additionally, for all instructions except Atomic Instructions in an OpenCL 1.2 environment, the
Scope for Memory may be:

• Subgroup

5.2.12. cl_khr_subgroup_named_barrier

If the OpenCL environment supports the extension cl_khr_subgroup_named_barrier, then the
environment must accept modules that declare the following SPIR-V capabilities:



• NamedBarrier

5.2.13. cl_khr_spirv_no_integer_wrap_decoration

If the OpenCL environment supports the extension cl_khr_spirv_no_integer_wrap_decoration, then
the environment must accept modules that declare use of the extension
SPV_KHR_no_integer_wrap_decoration via OpExtension.

If the OpenCL environment supports the extension cl_khr_spirv_no_integer_wrap_decoration and
use of the SPIR-V extension SPV_KHR_no_integer_wrap_decoration is declared in the module via
OpExtension, then the environment must accept modules that include the NoSignedWrap or
NoUnsignedWrap decorations.

5.2.14. cl_khr_subgroup_extended_types

If the OpenCL environment supports the extension cl_khr_subgroup_extended_types, then additional
types are valid for the following for Groups instructions with Scope for Execution equal to
Subgroup:

• OpGroupBroadcast

• OpGroupIAdd, OpGroupFAdd

• OpGroupSMin, OpGroupUMin, OpGroupFMin

• OpGroupSMax, OpGroupUMax, OpGroupFMax

For these instructions, valid types for Value are:

• Scalars of supported types:

◦ OpTypeInt (equivalent to char, uchar, short, ushort, int, uint, long, and ulong)

◦ OpTypeFloat (equivalent to half, float, and double)

Additionally, for OpGroupBroadcast, valid types for Value are:

• OpTypeVectors with 2, 3, 4, 8, or 16 Component Count components of supported types:

◦ OpTypeInt (equivalent to charn, ucharn, shortn, ushortn, intn, uintn, longn, and ulongn)

◦ OpTypeFloat (equivalent to halfn, floatn, and doublen)

5.2.15. cl_khr_subgroup_non_uniform_vote

If the OpenCL environment supports the extension cl_khr_subgroup_non_uniform_vote, then the
environment must accept SPIR-V modules that declare the following SPIR-V capabilities:

• GroupNonUniform

• GroupNonUniformVote

For instructions requiring these capabilities, Scope for Execution may be:

• Subgroup



For the instruction OpGroupNonUniformAllEqual, valid types for Value are:

• Scalars of supported types:

◦ OpTypeInt (equivalent to char, uchar, short, ushort, int, uint, long, and ulong)

◦ OpTypeFloat (equivalent to half, float, and double)

5.2.16. cl_khr_subgroup_ballot

If the OpenCL environment supports the extension cl_khr_subgroup_ballot, then the environment
must accept SPIR-V modules that declare the following SPIR-V capabilities:

• GroupNonUniformBallot

For instructions requiring these capabilities, Scope for Execution may be:

• Subgroup

For the non-uniform broadcast instruction OpGroupNonUniformBroadcast, valid types for Value
are:

• Scalars of supported types:

◦ OpTypeInt (equivalent to char, uchar, short, ushort, int, uint, long, and ulong)

◦ OpTypeFloat (equivalent to half, float, and double)

• OpTypeVectors with 2, 3, 4, 8, or 16 Component Count components of supported types:

◦ OpTypeInt (equivalent to charn, ucharn, shortn, ushortn, intn, uintn, longn, and ulongn)

◦ OpTypeFloat (equivalent to halfn, floatn, and doublen)

For the instruction OpGroupNonUniformBroadcastFirst, valid types for Value are:

• Scalars of supported types:

◦ OpTypeInt (equivalent to char, uchar, short, ushort, int, uint, long, and ulong)

◦ OpTypeFloat (equivalent to half, float, and double)

For the instruction OpGroupNonUniformBallot, the valid Result Type is an OpTypeVector with
four Component Count components of OpTypeInt, with Width equal to 32 and Signedness equal to 0
(equivalent to uint4).

For the instructions OpGroupNonUniformInverseBallot, OpGroupNonUniformBallotBitExtract,
OpGroupNonUniformBallotBitCount, OpGroupNonUniformBallotFindLSB, and
OpGroupNonUniformBallotFindMSB, the valid type for Value is an OpTypeVector with four
Component Count components of OpTypeInt, with Width equal to 32 and Signedness equal to 0
(equivalent to uint4).

For built-in variables decorated with SubgroupEqMask, SubgroupGeMask, SubgroupGtMask,
SubgroupLeMask, or SubgroupLtMask, the supported variable type is an OpTypeVector with
four Component Count components of OpTypeInt, with Width equal to 32 and Signedness equal to 0
(equivalent to uint4).



5.2.17. cl_khr_subgroup_non_uniform_arithmetic

If the OpenCL environment supports the extension cl_khr_subgroup_non_uniform_arithmetic, then
the environment must accept SPIR-V modules that declare the following SPIR-V capabilities:

• GroupNonUniformArithmetic

For instructions requiring these capabilities, Scope for Execution may be:

• Subgroup

For the instructions OpGroupNonUniformLogicalAnd, OpGroupNonUniformLogicalOr, and
OpGroupNonUniformLogicalXor, the valid type for Value is OpTypeBool.

Otherwise, for the GroupNonUniformArithmetic scan and reduction instructions, valid types for
Value are:

• Scalars of supported types:

◦ OpTypeInt (equivalent to char, uchar, short, ushort, int, uint, long, and ulong)

◦ OpTypeFloat (equivalent to half, float, and double)

For the GroupNonUniformArithmetic scan and reduction instructions, the optional ClusterSize
operand must not be present.

5.2.18. cl_khr_subgroup_shuffle

If the OpenCL environment supports the extension cl_khr_subgroup_shuffle, then the environment
must accept SPIR-V modules that declare the following SPIR-V capabilities:

• GroupNonUniformShuffle

For instructions requiring these capabilities, Scope for Execution may be:

• Subgroup

For the instructions OpGroupNonUniformShuffle and OpGroupNonUniformShuffleXor
requiring these capabilities, valid types for Value are:

• Scalars of supported types:

◦ OpTypeInt (equivalent to char, uchar, short, ushort, int, uint, long, and ulong)

◦ OpTypeFloat (equivalent to half, float, and double)

5.2.19. cl_khr_subgroup_shuffle_relative

If the OpenCL environment supports the extension cl_khr_subgroup_shuffle_relative, then the
environment must accept SPIR-V modules that declare the following SPIR-V capabilities:

• GroupNonUniformShuffleRelative

For instructions requiring these capabilities, Scope for Execution may be:



• Subgroup

For the GroupNonUniformShuffleRelative instructions, valid types for Value are:

• Scalars of supported types:

◦ OpTypeInt (equivalent to char, uchar, short, ushort, int, uint, long, and ulong)

◦ OpTypeFloat (equivalent to half, float, and double)

5.2.20. cl_khr_subgroup_clustered_reduce

If the OpenCL environment supports the extension cl_khr_subgroup_clustered_reduce, then the
environment must accept SPIR-V modules that declare the following SPIR-V capabilities:

• GroupNonUniformClustered

For instructions requiring these capabilities, Scope for Execution may be:

• Subgroup

When the GroupNonUniformClustered capability is declared, the GroupNonUniformArithmetic
scan and reduction instructions may include the optional ClusterSize operand.

5.2.21. cl_khr_spirv_extended_debug_info

If the OpenCL environment supports the extension cl_khr_spirv_extended_debug_info, then the
environment must accept modules that import the OpenCL.DebugInfo.100 extended instruction set
via OpExtInstImport.

5.2.22. cl_khr_spirv_linkonce_odr

If the OpenCL environment supports the extension cl_khr_spirv_linkonce_odr, then the
environment must accept modules that declare use of the extension SPV_KHR_linkonce_odr via
OpExtension.

If the OpenCL environment supports the extension cl_khr_spirv_linkonce_odr and use of the SPIR-V
extension SPV_KHR_linkonce_odr is declared in the module via OpExtension, then the environment
must accept modules that include the LinkOnceODR linkage type.

5.2.23. cl_khr_extended_bit_ops

If the OpenCL environment supports the extension cl_khr_extended_bit_ops, then the environment
must accept modules that declare use of the extension SPV_KHR_bit_instructions via OpExtension.

If the OpenCL environment supports the extension cl_khr_extended_bit_ops and use of the SPIR-V
extension SPV_KHR_bit_instructions is declared in the module via OpExtension, then the
environment must accept modules that declare the BitInstructions capability.



5.2.24. cl_khr_integer_dot_product

If the OpenCL environment supports the extension cl_khr_integer_dot_product, then the
environment must accept modules that require SPV_KHR_integer_dot_product and declare the
following SPIR-V capabilities:

• DotProductKHR

• DotProductInput4x8BitKHR if CL_DEVICE_INTEGER_DOT_PRODUCT_INPUT_4x8BIT_KHR is supported

• DotProductInput4x8BitPackedKHR

5.2.25. cl_khr_expect_assume

If the OpenCL environment supports the extension cl_khr_expect_assume, then the environment
must accept modules that declare use of the extension SPV_KHR_expect_assume via OpExtension.

If the OpenCL environment supports the extension cl_khr_expect_assume and use of the SPIR-V
extension SPV_KHR_expect_assume is declared in the module via OpExtension, then the environment
must accept modules that declare the following SPIR-V capabilities:

• ExpectAssumeKHR

5.2.26. cl_khr_subgroup_rotate

If the OpenCL environment supports the extension cl_khr_subgroup_rotate, then the environment
accept modules that require SPV_KHR_subgroup_rotate and declare the following SPIR-V capabilities:

• GroupNonUniformRotateKHR

For instructions requiring these capabilities, Scope for Execution may be:

• Subgroup

5.2.27. cl_khr_work_group_uniform_arithmetic

If the OpenCL environment supports the extension cl_khr_work_group_uniform_arithmetic, then the
environment must accept modules that declare use of the extension
SPV_KHR_uniform_group_instructions via OpExtension.

If the OpenCL environment supports the extension cl_khr_work_group_uniform_arithmetic and use
of the SPIR-V extension SPV_KHR_uniform_group_instructions is declared in the module via
OpExtension, then the environment must accept modules that declare the following SPIR-V
capabilities:

• GroupUniformArithmeticKHR

For instructions requiring these capabilities, Scope for Execution may be:

• Workgroup

For the instructions OpGroupLogicalAndKHR, OpGroupLogicalOrKHR, and



OpGroupLogicalXorKHR, the valid type for X is OpTypeBool.

Otherwise, for the GroupUniformArithmeticKHR scan and reduction instructions, valid types for
X are:

• Scalars of supported types:

◦ OpTypeInt with Width equal to 32 or 64 (equivalent to int, uint, long, and ulong)

◦ OpTypeFloat (equivalent to half, float, and double)

5.2.28. cl_khr_kernel_clock

If the OpenCL environment supports the extension cl_khr_kernel_clock, then the environment
must accept modules that declare use of the extension SPV_KHR_shader_clock via OpExtension.

If the OpenCL environment supports the extension cl_khr_kernel_clock and use of the SPIR-V
extension SPV_KHR_shader_clock is declared in the module via OpExtension, then the environment
must accept modules that declare the following SPIR-V capability:

• ShaderClockKHR

For the OpReadClockKHR instruction requiring this capability, supported values for Scope are:

• Device, if CL_DEVICE_KERNEL_CLOCK_SCOPE_DEVICE_KHR is supported

• Workgroup, if CL_DEVICE_KERNEL_CLOCK_SCOPE_WORK_GROUP_KHR is supported

• Subgroup, if CL_DEVICE_KERNEL_CLOCK_SCOPE_SUB_GROUP_KHR is supported

For unsupported Scope values, the behavior of OpReadClockKHR is undefined.

5.3. Embedded Profile Extensions

5.3.1. cles_khr_int64

If the OpenCL environment supports the extension cles_khr_int64, then the environment must
accept modules that declare the following SPIR-V capabilities:

• Int64



Chapter 6. OpenCL Numerical Compliance
This section describes features of the C++14 and IEEE-754 standards that must be supported by all
OpenCL compliant devices.

This section describes the functionality that must be supported by all OpenCL devices for single
precision floating-point numbers. Currently, only single precision floating-point is a requirement.
Half precision floating-point is an optional feature indicated by the Float16 capability. Double
precision floating-point is also an optional feature indicated by the Float64 capability.

6.1. Rounding Modes
Floating-point calculations may be carried out internally with extra precision and then rounded to
fit into the destination type. IEEE 754 defines four possible rounding modes:

• Round to nearest even

• Round toward +infinity

• Round toward -infinity

• Round toward zero

The complete set of rounding modes supported by the device are described by the CL_DEVICE_
SINGLE_FP_CONFIG, CL_DEVICE_HALF_FP_CONFIG, and CL_DEVICE_DOUBLE_FP_CONFIG device queries.

For double precision operations, Round to nearest even is a required rounding mode, and is
therefore the default rounding mode for double precision operations.

For single precision operations, devices supporting the full profile must support Round to nearest
even, therefore for full profile devices this is the default rounding mode for single precision
operations. Devices supporting the embedded profile may support either Round to nearest even or
Round toward zero as the default rounding mode for single precision operations.

For half precision operations, devices may support either Round to nearest even or Round toward
zero as the default rounding mode for half precision operations.

Only static selection of rounding mode is supported. Dynamically reconfiguring the rounding mode
as specified by the IEEE 754 spec is not supported.

6.2. Rounding Modes for Conversions
Results of the following conversion instructions may include an optional FPRoundingMode
decoration:

• OpConvertFToU

• OpConvertFToS

• OpConvertSToF

• OpConvertUToF



• OpFConvert

The FPRoundingMode decoration may not be added to results of any other instruction.

If no rounding mode is specified explicitly via an FPRoundingMode decoration, then the default
rounding mode for conversion operations is:

• Round to nearest even, for conversions to floating-point types.

• Round toward zero, for conversions from floating-point to integer types.

6.3. Out-of-Range Conversions
When a conversion operand is either greater than the greatest representable destination value or
less than the least representable destination value, it is said to be out-of-range.

Converting an out-of-range integer to an integer type without a SaturatedConversion decoration
follows C99/C++14 conversion rules.

Converting an out-of-range floating-point number to an integer type without a
SaturatedConversion decoration is implementation-defined.

6.4. INF, NaN, and Denormalized Numbers
INFs and NaNs must be supported. Support for signaling NaNs is not required.

Support for denormalized numbers with single precision and half precision floating-point is
optional. Denormalized single precision or half precision floating-point numbers passed as the
input or produced as the output of single precision or half precision floating-point operations may
be flushed to zero. Support for denormalized numbers is required for double precision floating-
point.

Support for INFs, NaNs, and denormalized numbers is described by the CL_FP_DENORM and CL_FP_INF_
NAN bits in the CL_DEVICE_SINGLE_FP_CONFIG, CL_DEVICE_HALF_FP_CONFIG, and CL_DEVICE_DOUBLE_FP_
CONFIG device queries.

6.5. Floating-Point Exceptions
Floating-point exceptions are disabled in OpenCL. The result of a floating-point exception must
match the IEEE 754 spec for the exceptions-not-enabled case. Whether and when the
implementation sets floating-point flags or raises floating-point exceptions is implementation-
defined.

This standard provides no method for querying, clearing or setting floating-point flags or trapping
raised exceptions. Due to non-performance, non-portability of trap mechanisms, and the
impracticality of servicing precise exceptions in a vector context (especially on heterogeneous
hardware), such features are discouraged.

Implementations that nevertheless support such operations through an extension to the standard



shall initialize with all exception flags cleared and the exception masks set so that exceptions raised
by arithmetic operations do not trigger a trap to be taken. If the underlying work is reused by the
implementation, the implementation is however not responsible for re-clearing the flags or
resetting exception masks to default values before entering the kernel. That is to say that kernels
that do not inspect flags or enable traps are licensed to expect that their arithmetic will not trigger a
trap. Those kernels that do examine flags or enable traps are responsible for clearing flag state and
disabling all traps before returning control to the implementation. Whether or when the
underlying work-item (and accompanying global floating-point state if any) is reused is
implementation-defined.

6.6. Relative Error as ULPs
In this section we discuss the maximum relative error defined as ulp (units in the last place).
Addition, subtraction, multiplication, fused multiply-add, and conversion between integer and a
single precision floating-point format are IEEE 754 compliant and are therefore correctly rounded.
Conversion between floating-point formats and explicit conversions must be correctly rounded.

The ULP is defined as follows:

If x is a real number that lies between two finite consecutive floating-point
numbers a and b, without being equal to one of them, then ulp(x) = |b - a|,
otherwise ulp(x) is the distance between the two non-equal finite floating-
point numbers nearest x. Moreover, ulp(NaN) is NaN.

Attribution: This definition was taken with consent from Jean-Michel Muller with slight
clarification for behavior at zero. Refer to: On the definition of ulp(x).

0 ULP is used for math functions that do not require rounding. The reference value used to
compute the ULP value is the infinitely precise result.

Result overflow within the specified ULP error is permitted. Math instructions are allowed to
return infinity for a finite reference value when the next floating-point number that would be
representable after the finite maximum, if there was sufficient range, meets ULP error tolerance.

6.6.1. ULP Values for Math Instructions - Full Profile

The ULP Values for Math Instructions - Full Profile table below describes the minimum accuracy of
floating-point math arithmetic instructions given as ULP values for the full profile.

Table 5. ULP Values for Math Instructions - Full Profile

SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpFAdd Correctly rounded Correctly rounded Correctly rounded

OpFSub Correctly rounded Correctly rounded Correctly rounded

OpFMul Correctly rounded Correctly rounded Correctly rounded



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpFDiv Correctly rounded <= 2.5 ulp Correctly rounded

OpExtInst acos <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst acosh <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst acospi <= 5 ulp <= 5 ulp <= 2 ulp

OpExtInst asin <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst asinh <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst asinpi <= 5 ulp <= 5 ulp <= 2 ulp

OpExtInst atan <= 5 ulp <= 5 ulp <= 2 ulp

OpExtInst atanh <= 5 ulp <= 5 ulp <= 2 ulp

OpExtInst atanpi <= 5 ulp <= 5 ulp <= 2 ulp

OpExtInst atan2 <= 6 ulp <= 6 ulp <= 2 ulp

OpExtInst atan2pi <= 6 ulp <= 6 ulp <= 2 ulp

OpExtInst cbrt <= 2 ulp <= 2 ulp <= 2 ulp

OpExtInst ceil Correctly rounded Correctly rounded Correctly rounded

OpExtInst copysign 0 ulp 0 ulp 0 ulp

OpExtInst cos <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst cosh <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst cospi <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst cross absolute error
tolerance of 'max *
max * (3 *
FLT_EPSILON)' per
vector component,
where max is the
maximum input
operand magnitude

absolute error
tolerance of 'max *
max * (3 *
FLT_EPSILON)' per
vector component,
where max is the
maximum input
operand magnitude

absolute error
tolerance of 'max *
max * (3 *
HALF_EPSILON)' per
vector component,
where max is the
maximum input
operand magnitude

OpExtInst degrees <= 2 ulp <= 2 ulp <= 2 ulp

OpExtInst distance <= 5.5 + 2n ulp, for
gentype with vector
width n

<= 2.5 + 2n ulp, for
gentype with vector
width n

<= 2n ulp, for gentype
with vector width n



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpDot absolute error
tolerance of 'max *
max * (2n - 1) *
FLT_EPSILON', for
vector width n and
maximum input
operand magnitude
max across all vector
components

absolute error
tolerance of 'max *
max * (2n - 1) *
FLT_EPSILON', for
vector width n and
maximum input
operand magnitude
max across all vector
components

absolute error
tolerance of 'max *
max * (2n - 1) *
HALF_EPSILON', for
vector width n and
maximum input
operand magnitude
max across all vector
components

OpExtInst erfc <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst erf <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst exp <= 3 ulp <= 3 ulp <= 2 ulp

OpExtInst exp2 <= 3 ulp <= 3 ulp <= 2 ulp

OpExtInst exp10 <= 3 ulp <= 3 ulp <= 2 ulp

OpExtInst expm1 <= 3 ulp <= 3 ulp <= 2 ulp

OpExtInst fabs 0 ulp 0 ulp 0 ulp

OpExtInst fclamp 0 ulp 0 ulp 0 ulp

OpExtInst fdim Correctly rounded Correctly rounded Correctly rounded

OpExtInst floor Correctly rounded Correctly rounded Correctly rounded

OpExtInst fma Correctly rounded Correctly rounded Correctly rounded

OpExtInst fmax 0 ulp 0 ulp 0 ulp

OpExtInst fmax_common 0 ulp 0 ulp 0 ulp

OpExtInst fmin 0 ulp 0 ulp 0 ulp

OpExtInst fmin_common 0 ulp 0 ulp 0 ulp

OpExtInst fmod 0 ulp 0 ulp 0 ulp

OpExtInst fract Correctly rounded Correctly rounded Correctly rounded

OpExtInst frexp 0 ulp 0 ulp 0 ulp

OpExtInst hypot <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst ilogb 0 ulp 0 ulp 0 ulp

OpExtInst ldexp Correctly rounded Correctly rounded Correctly rounded

OpExtInst length <= 5.5 + n ulp, for
gentype with vector
width n

<= 2.75 + 0.5n ulp, for
gentype with vector
width n

<= 0.25 + 0.5n ulp, for
gentype with vector
width n

OpExtInst lgamma Implementation-
defined

Implementation-
defined

Implementation-
defined



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpExtInst lgamma_r Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst log <= 3 ulp <= 3 ulp <= 2 ulp

OpExtInst log2 <= 3 ulp <= 3 ulp <= 2 ulp

OpExtInst log10 <= 3 ulp <= 3 ulp <= 2 ulp

OpExtInst log1p <= 2 ulp <= 2 ulp <= 2 ulp

OpExtInst logb 0 ulp 0 ulp 0 ulp

OpExtInst mad Implemented either
as a correctly
rounded fma, or as a
multiply followed by
an add, both of which
are correctly rounded

Implemented either
as a correctly
rounded fma, or as a
multiply followed by
an add, both of which
are correctly rounded

Implemented either
as a correctly
rounded fma, or as a
multiply followed by
an add, both of which
are correctly rounded

OpExtInst maxmag 0 ulp 0 ulp 0 ulp

OpExtInst minmag 0 ulp 0 ulp 0 ulp

OpExtInst mix Implementation-
defined

absolute error
tolerance of 1e-3

Implementation-
defined

OpExtInst modf 0 ulp 0 ulp 0 ulp

OpExtInst nan 0 ulp 0 ulp 0 ulp

OpExtInst nextafter 0 ulp 0 ulp 0 ulp

OpExtInst normalize <= 4.5 + n ulp, for
gentype with vector
width n

<= 2 + n ulp, for
gentype with vector
width n

<= 1 + n ulp, for
gentype with vector
width n

OpExtInst pow <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst pown <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst powr <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst radians <= 2 ulp <= 2 ulp <= 2 ulp

OpExtInst remainder 0 ulp 0 ulp 0 ulp

OpExtInst remquo 0 ulp for the
remainder, at least
the lower 7 bits of the
integral quotient

0 ulp for the
remainder, at least
the lower 7 bits of the
integral quotient

0 ulp for the
remainder, at least
the lower 7 bits of the
integral quotient

OpExtInst rint Correctly rounded Correctly rounded Correctly rounded

OpExtInst rootn <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst round Correctly rounded Correctly rounded Correctly rounded

OpExtInst rsqrt <= 2 ulp <= 2 ulp <= 1 ulp



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpExtInst sign 0 ulp 0 ulp 0 ulp

OpExtInst sin <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst sincos <= 4 ulp for sine and
cosine values

<= 4 ulp for sine and
cosine values

<= 2 ulp for sine and
cosine values

OpExtInst sinh <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst sinpi <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst smoothstep Implementation-
defined

absolute error
tolerance of 1e-5

Implementation-
defined

OpExtInst sqrt Correctly rounded <= 3 ulp Correctly rounded

OpExtInst step 0 ulp 0 ulp 0 ulp

OpExtInst tan <= 5 ulp <= 5 ulp <= 2 ulp

OpExtInst tanh <= 5 ulp <= 5 ulp <= 2 ulp

OpExtInst tanpi <= 6 ulp <= 6 ulp <= 2 ulp

OpExtInst tgamma <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst trunc Correctly rounded Correctly rounded Correctly rounded

OpExtInst half_cos <= 8192 ulp

OpExtInst half_divide <= 8192 ulp

OpExtInst half_exp <= 8192 ulp

OpExtInst half_exp2 <= 8192 ulp

OpExtInst half_exp10 <= 8192 ulp

OpExtInst half_log <= 8192 ulp

OpExtInst half_log2 <= 8192 ulp

OpExtInst half_log10 <= 8192 ulp

OpExtInst half_powr <= 8192 ulp

OpExtInst half_recip <= 8192 ulp

OpExtInst half_rsqrt <= 8192 ulp

OpExtInst half_sin <= 8192 ulp

OpExtInst half_sqrt <= 8192 ulp

OpExtInst half_tan <= 8192 ulp

OpExtInst fast_distance <= 8191.5 + 2n ulp, for
gentype with vector
width n



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpExtInst fast_length <= 8191.5 + n ulp, for
gentype with vector
width n

OpExtInst fast_normalize <= 8192 + n ulp, for
gentype with vector
width n

OpExtInst native_cos Implementation-
defined

OpExtInst native_divide Implementation-
defined

OpExtInst native_exp Implementation-
defined

OpExtInst native_exp2 Implementation-
defined

OpExtInst native_exp10 Implementation-
defined

OpExtInst native_log Implementation-
defined

OpExtInst native_log2 Implementation-
defined

OpExtInst native_log10 Implementation-
defined

OpExtInst native_powr Implementation-
defined

OpExtInst native_recip Implementation-
defined

OpExtInst native_rsqrt Implementation-
defined

OpExtInst native_sin Implementation-
defined

OpExtInst native_sqrt Implementation-
defined

OpExtInst native_tan Implementation-
defined

6.6.2. ULP Values for Math Instructions - Embedded Profile

The ULP Values for Math instructions - Embedded Profile table below describes the minimum
accuracy of floating-point math arithmetic instructions given as ULP values for the embedded



profile.

Table 6. ULP Values for Math Instructions - Embedded Profile

SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpFAdd Correctly rounded Correctly rounded Correctly rounded

OpFSub Correctly rounded Correctly rounded Correctly rounded

OpFMul Correctly rounded Correctly rounded Correctly rounded

OpFDiv <= 3 ulp <= 3 ulp <= 1 ulp

OpExtInst acos <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst acosh <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst acospi <= 5 ulp <= 5 ulp <= 3 ulp

OpExtInst asin <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst asinh <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst asinpi <= 5 ulp <= 5 ulp <= 3 ulp

OpExtInst atan <= 5 ulp <= 5 ulp <= 3 ulp

OpExtInst atanh <= 5 ulp <= 5 ulp <= 3 ulp

OpExtInst atanpi <= 5 ulp <= 5 ulp <= 3 ulp

OpExtInst atan2 <= 6 ulp <= 6 ulp <= 3 ulp

OpExtInst atan2pi <= 6 ulp <= 6 ulp <= 3 ulp

OpExtInst cbrt <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst ceil Correctly rounded Correctly rounded Correctly rounded

OpExtInst copysign 0 ulp 0 ulp 0 ulp

OpExtInst cos <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst cosh <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst cospi <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst cross Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst degrees <= 2 ulp <= 2 ulp <= 2 ulp

OpExtInst distance Implementation-
defined

Implementation-
defined

Implementation-
defined

OpDot Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst erfc <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst erf <= 16 ulp <= 16 ulp <= 4 ulp

OpExtInst exp <= 4 ulp <= 4 ulp <= 3 ulp



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpExtInst exp2 <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst exp10 <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst expm1 <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst fabs 0 ulp 0 ulp 0 ulp

OpExtInst fclamp 0 ulp 0 ulp 0 ulp

OpExtInst fdim Correctly rounded Correctly rounded Correctly rounded

OpExtInst floor Correctly rounded Correctly rounded Correctly rounded

OpExtInst fma Correctly rounded Correctly rounded Correctly rounded

OpExtInst fmax 0 ulp 0 ulp 0 ulp

OpExtInst fmax_common 0 ulp 0 ulp 0 ulp

OpExtInst fmin 0 ulp 0 ulp 0 ulp

OpExtInst fmin_common 0 ulp 0 ulp 0 ulp

OpExtInst fmod 0 ulp 0 ulp 0 ulp

OpExtInst fract Correctly rounded Correctly rounded Correctly rounded

OpExtInst frexp 0 ulp 0 ulp 0 ulp

OpExtInst hypot <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst ilogb 0 ulp 0 ulp 0 ulp

OpExtInst ldexp Correctly rounded Correctly rounded Correctly rounded

OpExtInst length Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst lgamma Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst lgamma_r Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst log <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst log2 <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst log10 <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst log1p <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst logb 0 ulp 0 ulp 0 ulp

OpExtInst mad Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst maxmag 0 ulp 0 ulp 0 ulp

OpExtInst minmag 0 ulp 0 ulp 0 ulp



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpExtInst mix Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst modf 0 ulp 0 ulp 0 ulp

OpExtInst nan 0 ulp 0 ulp 0 ulp

OpExtInst nextafter 0 ulp 0 ulp 0 ulp

OpExtInst normalize Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst pow <= 16 ulp <= 16 ulp <= 5 ulp

OpExtInst pown <= 16 ulp <= 16 ulp <= 5 ulp

OpExtInst powr <= 16 ulp <= 16 ulp <= 5 ulp

OpExtInst radians <= 2 ulp <= 2 ulp <= 2 ulp

OpExtInst remainder 0 ulp 0 ulp 0 ulp

OpExtInst remquo 0 ulp for the
remainder, at least
the lower 7 bits of the
integral quotient

0 ulp for the
remainder, at least
the lower 7 bits of the
integral quotient

0 ulp for the
remainder, at least
the lower 7 bits of the
integral quotient

OpExtInst rint Correctly rounded Correctly rounded Correctly rounded

OpExtInst rootn <= 16 ulp <= 16 ulp <= 5 ulp

OpExtInst round Correctly rounded Correctly rounded Correctly rounded

OpExtInst rsqrt <= 4 ulp <= 4 ulp <= 1 ulp

OpExtInst sign 0 ulp 0 ulp 0 ulp

OpExtInst sin <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst sincos <= 4 ulp for sine and
cosine values

<= 4 ulp for sine and
cosine values

<= 2 ulp for sine and
cosine values

OpExtInst sinh <= 4 ulp <= 4 ulp <= 3 ulp

OpExtInst sinpi <= 4 ulp <= 4 ulp <= 2 ulp

OpExtInst smoothstep Implementation-
defined

Implementation-
defined

Implementation-
defined

OpExtInst sqrt <= 4 ulp <= 4 ulp <= 1 ulp

OpExtInst step 0 ulp 0 ulp 0 ulp

OpExtInst tan <= 5 ulp <= 5 ulp <= 3 ulp

OpExtInst tanh <= 5 ulp <= 5 ulp <= 3 ulp

OpExtInst tanpi <= 6 ulp <= 6 ulp <= 3 ulp

OpExtInst tgamma <= 16 ulp <= 16 ulp <= 4 ulp



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpExtInst trunc Correctly rounded Correctly rounded Correctly rounded

OpExtInst half_cos <= 8192 ulp

OpExtInst half_divide <= 8192 ulp

OpExtInst half_exp <= 8192 ulp

OpExtInst half_exp2 <= 8192 ulp

OpExtInst half_exp10 <= 8192 ulp

OpExtInst half_log <= 8192 ulp

OpExtInst half_log2 <= 8192 ulp

OpExtInst half_log10 <= 8192 ulp

OpExtInst half_powr <= 8192 ulp

OpExtInst half_recip <= 8192 ulp

OpExtInst half_rsqrt <= 8192 ulp

OpExtInst half_sin <= 8192 ulp

OpExtInst half_sqrt <= 8192 ulp

OpExtInst half_tan <= 8192 ulp

OpExtInst fast_distance Implementation-
defined

OpExtInst fast_length Implementation-
defined

OpExtInst fast_normalize Implementation-
defined

OpExtInst native_cos Implementation-
defined

OpExtInst native_divide Implementation-
defined

OpExtInst native_exp Implementation-
defined

OpExtInst native_exp2 Implementation-
defined

OpExtInst native_exp10 Implementation-
defined

OpExtInst native_log Implementation-
defined

OpExtInst native_log2 Implementation-
defined



SPIR-V Instruction Minimum Accuracy -
Float64

Minimum Accuracy -
Float32

Minimum Accuracy -
Float16

OpExtInst native_log10 Implementation-
defined

OpExtInst native_powr Implementation-
defined

OpExtInst native_recip Implementation-
defined

OpExtInst native_rsqrt Implementation-
defined

OpExtInst native_sin Implementation-
defined

OpExtInst native_sqrt Implementation-
defined

OpExtInst native_tan Implementation-
defined

6.6.3. ULP Values for Math Instructions - Unsafe Math Optimizations
Enabled

The ULP Values for Math Instructions with Unsafe Math Optimizations table below describes the
minimum accuracy of commonly used single precision floating-point math arithmetic instructions
given as ULP values if the -cl-unsafe-math-optimizations compiler option is specified when
compiling or building the OpenCL program.

For derived implementations, the operations used in the derivation may themselves be relaxed
according to the ULP Values for Math Instructions with Unsafe Math Optimizations table.

The minimum accuracy of math functions not defined in the ULP Values for Math Instructions with
Unsafe Math Optimizations table when the -cl-unsafe-math-optimizations compiler option is
specified is as defined in the ULP Values for Math Instructions for Full Profile table when operating
in the full profile, and as defined in the ULP Values for Math instructions for Embedded Profile
table when operating in the embedded profile.

Table 7. ULP Values for Single Precision Math Instructions with -cl-unsafe-math-optimizations

Function Minimum Accuracy

OpFDiv for 1.0 / x ≤ 2.5 ulp for x in the domain of 2-126 to 2126 for the full profile, and ≤ 3
ulp for the embedded profile.

OpFDiv for x / y ≤ 2.5 ulp for x in the domain of 2-62 to 262 and y in the domain of 2-62 to
262 for the full profile, and ≤ 3 ulp for the embedded profile.

OpExtInst acos ≤ 4096 ulp

OpExtInst acosh Derived implementations may implement as log(x + sqrt(x * x - 1)).
For non-derived implementations, the error is ≤ 8192 ulp.



Function Minimum Accuracy

OpExtInst acospi Derived implementations may implement as acos(x) * M_PI_F. For
non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst asin ≤ 4096 ulp

OpExtInst asinh Derived implementations may implement as log(x + sqrt(x * x + 1)).
For non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst asinpi Derived implementations may implement as asin(x) * M_PI_F. For
non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst atan ≤ 4096 ulp

OpExtInst atanh Defined for x in the domain (-1, 1). For x in [-2-10, 2-10], derived
implementations may implement as x. For x outside of [-2-10, 2-10],
derived implementations may implement as 0.5f * log((1.0f + x) /
(1.0f - x)). For non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst atanpi Derived implementations may implement as atan(x) * M_1_PI_F. For
non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst atan2 Derived implementations may implement as atan(y / x) for x > 0,
atan(y / x) + M_PI_F for x < 0 and y > 0, and atan(y / x) - M_PI_F for x <
0 and y < 0.

OpExtInst atan2pi Derived implementations may implement as atan2(y, x) * M_1_PI_F.
For non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst cbrt Derived implementations may implement as rootn(x, 3). For non-
derived implementations, the error is ≤ 8192 ulp.

OpExtInst cos For x in the domain [-π, π], the maximum absolute error is ≤ 2-11 and
larger otherwise.

OpExtInst cosh Defined for x in the domain [-88, 88]. Derived implementations may
implement as 0.5f * (exp(x) + exp(-x)). For non-derived
implementations, the error is ≤ 8192 ulp.

OpExtInst cospi For x in the domain [-1, 1], the maximum absolute error is ≤ 2-11 and
larger otherwise.

OpExtInst exp ≤ 3 + floor(fabs(2 * x)) ulp for the full profile, and ≤ 4 ulp for the
embedded profile.

OpExtInst exp2 ≤ 3 + floor(fabs(2 * x)) ulp for the full profile, and ≤ 4 ulp for the
embedded profile.

OpExtInst exp10 Derived implementations may implement as exp2(x * log2(10)). For
non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst expm1 Derived implementations may implement as exp(x) - 1. For non-
derived implementations, the error is ≤ 8192 ulp.

OpExtInst log For x in the domain [0.5, 2] the maximum absolute error is ≤ 2-21;
otherwise the maximum error is ≤ 3 ulp for the full profile and ≤ 4
ulp for the embedded profile.



Function Minimum Accuracy

OpExtInst log2 For x in the domain [0.5, 2] the maximum absolute error is ≤ 2-21;
otherwise the maximum error is ≤ 3 ulp for the full profile and ≤ 4
ulp for the embedded profile.

OpExtInst log10 For x in the domain [0.5, 2] the maximum absolute error is ≤ 2-21;
otherwise the maximum error is ≤ 3 ulp for the full profile and ≤ 4
ulp for the embedded profile.

OpExtInst log1p Derived implementations may implement as log(x + 1). For non-
derived implementations, the error is ≤ 8192 ulp.

OpExtInst pow Undefined for x = 0 and y = 0. Undefined for x < 0 and non-integer y.
Undefined for x < 0 and y outside the domain [-224, 224]. For x > 0 or x
< 0 and even y, derived implementations may implement as exp2(y *
log2(fabs(x))). For x < 0 and odd y, derived implementations may
implement as -exp2(y * log2(fabs(x)). For x == 0 and non-zero y, for
derived implementations may return zero. For non-derived
implementations, the error is ≤ 8192 ulp.

On some implementations, powr() or pown() may perform faster
than pow(). If x is known to be >= 0, consider using powr() in place
of pow(), or if y is known to be an integer, consider using pown() in
place of pow().

OpExtInst pown Defined only for integer values of y. Undefined for x = 0 and y = 0.
For x >= 0 or x < 0 and even y, derived implementations may
implement as exp2(y * log2(fabs(x))). For x < 0 and odd y, derived
implementations may implement as -exp2(y * log2(fabs(x))). For
non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst powr Defined only for x >= 0. Undefined for x = 0 and y = 0. Derived
implementations may implement as exp2(y * log2(x)). For non-
derived implementations, the error is ≤ 8192 ulp.

OpExtInst rootn Defined for x > 0 when y is non-zero, derived implementations may
implement this case as exp2(log2(x) / y). Defined for x < 0 when y is
odd, derived implementations may implement this case as -exp2
(log2(-x) / y). Defined for x = +/-0 when y > 0, derived
implementations may return +0 in this case. For non-derived
implementations, the error is ≤ 8192 ulp.

OpExtInst sin For x in the domain [-π, π], the maximum absolute error is ≤ 2-11 and
larger otherwise.

OpExtInst sincos ulp values as defined for sin(x) and cos(x).

OpExtInst sinh Defined for x in the domain [-88, 88]. For x in [-2-10, 2-10], derived
implementations may implement as x. For x outside of [-2-10, 2-10],
derived implementations may implement as 0.5f * (exp(x) - exp(-x)).
For non-derived implementations, the error is ≤ 8192 ulp.



Function Minimum Accuracy

OpExtInst sinpi For x in the domain [-1, 1], the maximum absolute error is ≤ 2-11 and
larger otherwise.

OpExtInst tan Derived implementations may implement as sin(x) * (1.0f / cos(x)).
For non-derived implementations, the error is ≤ 8192 ulp.

OpExtInst tanh Defined for x in the domain [-∞, ∞]. For x in [-2-10, 2-10], derived
implementations may implement as x. For x outside of [-2-10, 2-10],
derived implementations may implement as (exp(x) - exp(-x)) / (exp
(x) + exp(-x)). For non-derived implementations, the error is ≤ 8192
ULP.

OpExtInst tanpi Derived implementations may implement as tan(x * M_PI_F). For
non-derived implementations, the error is ≤ 8192 ulp for x in the
domain [-1, 1].

OpFMul and OpFAdd,
for x * y + z

Implemented either as a correctly rounded fma or as a multiply and
an add both of which are correctly rounded.

6.7. Edge Case Behavior
The edge case behavior of the math functions shall conform to sections F.9 and G.6 of ISO/IEC
9899:TC 2, except where noted below in the Additional Requirements Beyond ISO/IEC 9899:TC2
section.

6.7.1. Additional Requirements Beyond ISO/IEC 9899:TC2

All functions that return a NaN should return a quiet NaN.

The usual allowances for rounding error (Relative Error as ULPs section) or flushing behavior (Edge
Case Behavior in Flush To Zero Mode section) shall not apply for those values for which section F.9
of ISO/IEC 9899:,TC2, or Additional Requirements Beyond ISO/IEC 9899:TC2 and Edge Case Behavior
in Flush To Zero Mode sections below (and similar sections for other floating-point precisions)
prescribe a result (e.g. ceil( -1 < x < 0 ) returns -0). Those values shall produce exactly the prescribed
answers, and no other. Where the ± symbol is used, the sign shall be preserved. For example,
sin(±0) = ±0 shall be interpreted to mean sin(+0) is +0 and sin(-0) is -0.

• OpExtInst acospi:

◦ acospi( 1 ) = +0.

◦ acospi( x ) returns a NaN for | x | > 1.

• OpExtInst asinpi:

◦ asinpi( ±0 ) = ±0.

◦ asinpi( x ) returns a NaN for | x | > 1.

• OpExtInst atanpi:

◦ atanpi( ±0 ) = ±0.

◦ atanpi ( ±∞ ) = ±0.5.



• OpExtInst atan2pi:

◦ atan2pi ( ±0, -0 ) = ±1.

◦ atan2pi ( ±0, +0 ) = ± 0.

◦ atan2pi ( ±0, x ) returns ± 1 for x < 0.

◦ atan2pi ( ±0, x) returns ± 0 for x > 0.

◦ atan2pi ( y, ±0 ) returns -0.5 for y < 0.

◦ atan2pi ( y, ±0 ) returns 0.5 for y > 0.

◦ atan2pi ( ±y, -∞ ) returns ± 1 for finite y > 0.

◦ atan2pi ( ±y, +∞ ) returns ± 0 for finite y > 0.

◦ atan2pi ( ±∞, x ) returns ± 0.5 for finite x.

◦ atan2pi (±∞, -∞ ) returns ±0.75.

◦ atan2pi (±∞, +∞ ) returns ±0.25.

• OpExtInst ceil:

◦ ceil( -1 < x < 0 ) returns -0.

• OpExtInst cospi:

◦ cospi( ±0 ) returns 1

◦ cospi( n + 0.5 ) is +0 for any integer n where n + 0.5 is representable.

◦ cospi( ±∞ ) returns a NaN.

• OpExtInst exp10:

◦ exp10( ±0 ) returns 1.

◦ exp10( -∞ ) returns +0.

◦ exp10( +∞ ) returns +∞.

• OpExtInst distance:

◦ distance(x, y) calculates the distance from x to y without overflow or extraordinary
precision loss due to underflow.

• OpExtInst fdim:

◦ fdim( any, NaN ) returns NaN.

◦ fdim( NaN, any ) returns NaN.

• OpExtInst fmod:

◦ fmod( ±0, NaN ) returns NaN.

• OpExtInst fract:

◦ fract( x, iptr) shall not return a value greater than or equal to 1.0, and shall not return a
value less than 0.

◦ fract( +0, iptr ) returns +0 and +0 in iptr.

◦ fract( -0, iptr ) returns -0 and -0 in iptr.



◦ fract( +inf, iptr ) returns +0 and +inf in iptr.

◦ fract( -inf, iptr ) returns -0 and -inf in iptr.

◦ fract( NaN, iptr ) returns the NaN and NaN in iptr.

• OpExtInst frexp:

◦ frexp( ±∞, exp ) returns ±∞ and stores 0 in exp.

◦ frexp( NaN, exp ) returns the NaN and stores 0 in exp.

• OpExtInst length:

◦ length calculates the length of a vector without overflow or extraordinary precision loss due
to underflow.

• OpExtInst lgamma_r:

◦ lgamma_r( x, signp ) returns 0 in signp if x is zero or a negative integer.

• OpExtInst nextafter:

◦ nextafter( -0, y > 0 ) returns smallest positive denormal value.

◦ nextafter( +0, y < 0 ) returns smallest negative denormal value.

• OpExtInst normalize:

◦ normalize shall reduce the vector to unit length, pointing in the same direction without
overflow or extraordinary precision loss due to underflow.

◦ normalize( v ) returns v if all elements of v are zero.

◦ normalize( v ) returns a vector full of NaNs if any element is a NaN.

◦ normalize( v ) for which any element in v is infinite shall proceed as if the elements in v
were replaced as follows:

for( i = 0; i < sizeof(v) / sizeof(v[0] ); i++ )
    v[i] = isinf(v[i] )  ?  copysign(1.0, v[i]) : 0.0 * v [i];

• OpExtInst pow:

◦ pow( ±0, -∞ ) returns +∞

• OpExtInst pown:

◦ pown( x, 0 ) is 1 for any x, even zero, NaN or infinity.

◦ pown( ±0, n ) is ±∞ for odd n < 0.

◦ pown( ±0, n ) is +∞ for even n < 0.

◦ pown( ±0, n ) is +0 for even n > 0.

◦ pown( ±0, n ) is ±0 for odd n > 0.

• OpExtInst powr:

◦ powr( x, ±0 ) is 1 for finite x > 0.

◦ powr( ±0, y ) is +∞ for finite y < 0.



◦ powr( ±0, -∞) is +∞.

◦ powr( ±0, y ) is +0 for y > 0.

◦ powr( +1, y ) is 1 for finite y.

◦ powr( x, y ) returns NaN for x < 0.

◦ powr( ±0, ±0 ) returns NaN.

◦ powr( +∞, ±0 ) returns NaN.

◦ powr( +1, ±∞ ) returns NaN.

◦ powr( x, NaN ) returns the NaN for x >= 0.

◦ powr( NaN, y ) returns the NaN.

• OpExtInst rint:

◦ rint( -0.5 <= x < 0 ) returns -0.

• OpExtInst remquo:

◦ remquo(x, y, &quo) returns a NaN and 0 in quo if x is ±∞, or if y is 0 and the other argument
is non-NaN or if either argument is a NaN.

• OpExtInst rootn:

◦ rootn( ±0, n ) is ±∞ for odd n < 0.

◦ rootn( ±0, n ) is +∞ for even n < 0.

◦ rootn( ±0, n ) is +0 for even n > 0.

◦ rootn( ±0, n ) is ±0 for odd n > 0.

◦ rootn( x, n ) returns a NaN for x < 0 and n is even.

◦ rootn( x, 0 ) returns a NaN.

• OpExtInst round:

◦ round( -0.5 < x < 0 ) returns -0.

• OpExtInst sinpi:

◦ sinpi( ±0 ) returns ±0.

◦ sinpi( +n) returns +0 for positive integers n.

◦ sinpi( -n ) returns -0 for negative integers n.

◦ sinpi( ±∞ ) returns a NaN.

• OpExtInst tanpi:

◦ tanpi( ±0 ) returns ±0.

◦ tanpi( ±∞ ) returns a NaN.

◦ tanpi( n ) is copysign( 0.0, n ) for even integers n.

◦ tanpi( n ) is copysign( 0.0, - n) for odd integers n.

◦ tanpi( n + 0.5 ) for even integer n is +∞ where n + 0.5 is representable.

◦ tanpi( n + 0.5 ) for odd integer n is -∞ where n + 0.5 is representable.



• OpExtInst trunc:

◦ trunc( -1 < x < 0 ) returns -0.

6.7.2. Changes to ISO/IEC 9899: TC2 Behavior

OpExtInst modf behaves as though implemented by:

gentype modf( gentype value, gentype *iptr )
{
    *iptr = trunc( value );
    return copysign( isinf( value ) ? 0.0 : value - *iptr, value );
}

OpExtInst rint always rounds according to round to nearest even rounding mode even if the caller
is in some other rounding mode.

6.7.3. Edge Case Behavior in Flush To Zero Mode

If denormals are flushed to zero, then a function may return one of four results:

1. Any conforming result for non-flush-to-zero mode.

2. If the result given by 1 is a sub-normal before rounding, it may be flushed to zero.

3. Any non-flushed conforming result for the function if one or more of its sub-normal operands
are flushed to zero.

4. If the result of 3 is a sub-normal before rounding, the result may be flushed to zero.

In each of the above cases, if an operand or result is flushed to zero, the sign of the zero is
undefined.

If subnormals are flushed to zero, a device may choose to conform to the following edge cases for
OpExtInst nextafter instead of those listed in Additional Requirements Beyond ISO/IEC 9899:TC2
section:

• nextafter ( +smallest normal, y < +smallest normal ) = +0.

• nextafter ( -smallest normal, y > -smallest normal ) = -0.

• nextafter ( -0, y > 0 ) returns smallest positive normal value.

• nextafter ( +0, y < 0 ) returns smallest negative normal value.

For clarity, subnormals or denormals are defined to be the set of representable numbers in the
range 0 < x < TYPE_MIN and -TYPE_MIN < x < -0. They do not include ±0. A non-zero number is said
to be sub-normal before rounding if, after normalization, its radix-2 exponent is less than
(TYPE_MIN_EXP - 1). [1]

[1] Here TYPE_MIN and TYPE_MIN_EXP should be substituted by constants appropriate to the floating-point type under consideration,
such as FLT_MIN and FLT_MIN_EXP for float.



Chapter 7. Image Addressing and Filtering
This section describes how image operations behave in an OpenCL environment.

7.1. Image Coordinates
Let wt, ht and dt be the width, height (or image array size for a 1D image array) and depth (or image
array size for a 2D image array) of the image in pixels. Let coord.xy (also referred to as (s,t)) or
coord.xyz (also referred to as (s,t,r)) be the coordinates specified to an image read instruction
(such as OpImageRead) or an image write instruction (such as OpImageWrite).

If image coordinates specified to an image read instruction are normalized (as specified in the
sampler), the s, t, and r coordinate values are multiplied by wt, ht and dt respectively to generate the
unnormalized coordinate values. For image arrays, the image array coordinate (i.e. t if it is a 1D
image array or r if it is a 2D image array) specified to the image read instruction must always be the
unnormalized image coordinate value.

Image coordinates specified to an image write instruction are always unnormalized image
coordinate values.

Let (u,v,w) represent the unnormalized image coordinate values.

If values in (s,t,r) or (u,v,w) are INF or NaN, the behavior of the image read instruction or image
write instruction is undefined.

7.2. Addressing and Filter Modes
After generating the image coordinate (u,v,w) we apply the appropriate addressing and filter mode
to generate the appropriate sample locations to read from the image.

7.2.1. Clamp and None Addressing Modes

We first describe how the addressing and filter modes are applied to generate the appropriate
sample locations to read from the image if the addressing mode is CL_ADDRESS_CLAMP, CL_ADDRESS_
CLAMP_TO_EDGE, or CL_ADDRESS_NONE.

7.2.1.1. Nearest Filtering

When the filter mode is CL_FILTER_NEAREST, the result of the image read instruction is the image
element that is nearest (in Manhattan distance) to the image element location (i,j,k). The image
element location (i,j,k) is computed as:

For a 3D image, the image element at location (i,j,k) becomes the color value. For a 2D image, the
image element at location (i,j) becomes the color value.



The below table describes the address_mode function.

Table 8. Addressing Modes to Generate Texel Location

Addressing Mode Result of address_mode(coord)

CL_ADDRESS_CLAMP clamp (coord, -1, size)

CL_ADDRESS_CLAMP_TO_EDGE clamp (coord, 0, size - 1)

CL_ADDRESS_NONE coord

The size term in the table above is wt for u, ht for v and dt for w.

The clamp function used in the table above is defined as:

If the addressing mode is CL_ADDRESS_CLAMP or CL_ADDRESS_CLAMP_TO_EDGE, and the selected texel
location (i,j,k) refers to a location outside the image, the border color is used as the color value
for the texel.

Otherwise, if the addressing mode is CL_ADDRESS_NONE and the selected texel location (i,j,k) refers
to a location outside the image, the color value for the texel is undefined.

7.2.1.2. Linear Filtering

When the filter mode is CL_FILTER_LINEAR, a 2 x 2 square of image elements (for a 2D image) or a 2 x
2 x 2 cube of image elements (for a 3D image is selected). This 2 x 2 square or 2 x 2 x 2 cube is
obtained as follows.

Let:

The frac function determines the fractional part of x and is computed as:

For a 3D image, the color value is computed as:



where Tijk is the image element at location (i,j,k) in the 3D image.

For a 2D image, the color value is computed as:

where Tij is the image element at location (i,j) in the 2D image.

If the addressing mode is CL_ADDRESS_CLAMP or CL_ADDRESS_CLAMP_TO_EDGE, and any of the selected Tijk

or Tij refers to a location outside the image, the border color is used as the image element.

Otherwise, if the addressing mode is CL_ADDRESS_NONE, and any of the selected Tijk or Tij refers to a
location outside the image, the color value is undefined.

If the image channel type is CL_FLOAT or CL_HALF_FLOAT, and any of the image elements Tijk or Tij is
INF or NaN, the color value is undefined.

7.2.2. Repeat Addressing Mode

We now discuss how the addressing and filter modes are applied to generate the appropriate
sample locations to read from the image if the addressing mode is CL_ADDRESS_REPEAT.

7.2.2.1. Nearest Filtering

When filter mode is CL_FILTER_NEAREST, the result of the image read instruction is the image element
that is nearest (in Manhattan distance) to the image element location (i,j,k). The image element
location (i,j,k) is computed as:



For a 3D image, the image element at location (i, j, k) becomes the color value. For a 2D image, the
image element at location (i, j) becomes the color value.

7.2.2.2. Linear Filtering

When filter mode is CL_FILTER_LINEAR, a 2 x 2 square of image elements for a 2D image or a 2 x 2 x 2
cube of image elements for a 3D image is selected. This 2 x 2 square or 2 x 2 x 2 cube is obtained as
follows.

Let



For a 3D image, the color value is computed as:

where Tijk is the image element at location (i,j,k) in the 3D image.

For a 2D image, the color value is computed as:

where Tij is the image element at location (i,j) in the 2D image.

If the image channel type is CL_FLOAT or CL_HALF_FLOAT, and any of the image elements Tijk or Tij is
INF or NaN, the color value is undefined.

7.2.3. Mirrored Repeat Addressing Mode

We now discuss how the addressing and filter modes are applied to generate the appropriate
sample locations to read from the image if the addressing mode is CL_ADDRESS_MIRRORED_REPEAT. The
CL_ADDRESS_MIRRORED_REPEAT addressing mode causes the image to be read as if it is tiled at every
integer seam, with the interpretation of the image data flipped at each integer crossing.

7.2.3.1. Nearest Filtering

When filter mode is CL_FILTER_NEAREST, the result of the image read instruction is the image element
that is nearest (in Manhattan distance) to the image element location (i,j,k). The image element
location (i,j,k) is computed as:



For a 3D image, the image element at location (i, j, k) becomes the color value. For a 2D image, the
image element at location (i, j) becomes the color value.

7.2.3.2. Linear Filtering

When filter mode is CL_FILTER_LINEAR, a 2 x 2 square of image elements for a 2D image or a 2 x 2 x 2
cube of image elements for a 3D image is selected. This 2 x 2 square or 2 x 2 x 2 cube is obtained as
follows.

Let



For a 3D image, the color value is computed as:

where Tijk is the image element at location (i,j,k) in the 3D image.

For a 2D image, the color value is computed as:

where Tij is the image element at location (i,j) in the 2D image.



For a 1D image, the color value is computed as:

where Ti is the image element at location (i) in the 1D image.

If the image channel type is CL_FLOAT or CL_HALF_FLOAT and any of the image elements Tijk or Tij is
INF or NaN, the color value is undefined.

7.3. Precision of Addressing and Filter Modes
If the sampler is specified as using unnormalized coordinates (floating-point or integer
coordinates), filter mode set to CL_FILTER_NEAREST and addressing mode set to one of the following
modes - CL_ADDRESS_CLAMP, CL_ADDRESS_CLAMP_TO_EDGE or CL_ADDRESS_NONE - the location of the image
element in the image given by (i,j,k) will be computed without any loss of precision.

For all other sampler combinations of normalized or unnormalized coordinates, filter modes, and
addressing modes, the relative error or precision of the addressing mode calculations and the
image filter operation are not defined. To ensure precision of image addressing and filter
calculations across any OpenCL device for these sampler combinations, developers may
unnormalize the image coordinate in the kernel, and then implement the linear filter in the kernel
with appropriate read image instructions with a sampler that uses unnormalized coordinates, filter
mode set to CL_FILTER_NEAREST, addressing mode set to CL_ADDRESS_CLAMP, CL_ADDRESS_CLAMP_TO_EDGE
or CL_ADDRESS_NONE, and finally performing the interpolation of color values read from the image to
generate the filtered color value.

7.4. Conversion Rules
In this section we discuss conversion rules that are applied when reading and writing images in a
kernel.

7.4.1. Conversion Rules for Normalized Integer Channel Data Types

In this section we discuss converting normalized integer channel data types to half-precision and
single-precision floating-point values and vice-versa.

7.4.1.1. Converting Normalized Integer Channel Data Types to Half Precision Floating-point
Values

For images created with image channel data type of CL_UNORM_INT8 and CL_UNORM_INT16, image read
instructions will convert the channel values from an 8-bit or 16-bit unsigned integer to normalized
half precision floating-point values in the range [0.0h … 1.0h].

For images created with image channel data type of CL_SNORM_INT8 and CL_SNORM_INT16, image read
instructions will convert the channel values from an 8-bit or 16-bit signed integer to normalized
half precision floating-point values in the range [-1.0h … 1.0h].

These conversions are performed as follows:



• CL_UNORM_INT8 (8-bit unsigned integer) → half

• CL_UNORM_INT_101010 (10-bit unsigned integer) → half

• CL_UNORM_INT16 (16-bit unsigned integer) → half

• CL_SNORM_INT8 (8-bit signed integer) → half

• CL_SNORM_INT16 (16-bit signed integer) → half

The precision of the above conversions is <= 1.5 ulp except for the following cases:

For CL_UNORM_INT8:

• 0 must convert to 0.0h, and

• 255 must convert to 1.0h

For CL_UNORM_INT_101010:

• 0 must convert to 0.0h, and

• 1023 must convert to 1.0h

For CL_UNORM_INT16:

• 0 must convert to 0.0h, and

• 65535 must convert to 1.0h

For CL_SNORM_INT8:

• -128 and -127 must convert to -1.0h,

• 0 must convert to 0.0h, and

• 127 must convert to 1.0h

For CL_SNORM_INT16:

• -32768 and -32767 must convert to -1.0h,

• 0 must convert to 0.0h, and



• 32767 must convert to 1.0h

7.4.1.2. Converting Half Precision Floating-point Values to Normalized Integer Channel Data
Types

For images created with image channel data type of CL_UNORM_INT8 and CL_UNORM_INT16, image write
instructions will convert the half precision floating-point color value to an 8-bit or 16-bit unsigned
integer.

For images created with image channel data type of CL_SNORM_INT8 and CL_SNORM_INT16, image write
instructions will convert the half precision floating-point color value to an 8-bit or 16-bit signed
integer.

OpenCL implementations may choose to approximate the rounding mode used in the conversions
described below. When approximate rounding is used instead of the preferred rounding, the result
of the conversion must satisfy the bound given below.

The conversions from half precision floating-point values to normalized integer values are
performed is as follows:

• half → CL_UNORM_INT8 (8-bit unsigned integer)

• half → CL_UNORM_INT16 (16-bit unsigned integer)

• half → CL_SNORM_INT8 (8-bit signed integer)



• half → CL_SNORM_INT16 (16-bit signed integer)

7.4.1.3. Converting Normalized Integer Channel Data Types to Floating-point Values

For images created with image channel data type of CL_UNORM_INT8 and CL_UNORM_INT16, image read
instructions will convert the channel values from an 8-bit or 16-bit unsigned integer to normalized
floating-point values in the range [0.0f … 1.0f].

For images created with image channel data type of CL_SNORM_INT8 and CL_SNORM_INT16, image read
instructions will convert the channel values from an 8-bit or 16-bit signed integer to normalized
floating-point values in the range [-1.0f … 1.0f].

These conversions are performed as follows:

• CL_UNORM_INT8 (8-bit unsigned integer) → float

• CL_UNORM_INT_101010 (10-bit unsigned integer) → float

• CL_UNORM_INT16 (16-bit unsigned integer) → float

• CL_SNORM_INT8 (8-bit signed integer) → float

• CL_SNORM_INT16 (16-bit signed integer) → float

The precision of the above conversions is <= 1.5 ulp except for the following cases.

For CL_UNORM_INT8:

• 0 must convert to 0.0f, and

• 255 must convert to 1.0f



For CL_UNORM_INT_101010:

• 0 must convert to 0.0f, and

• 1023 must convert to 1.0f

For CL_UNORM_INT16:

• 0 must convert to 0.0f, and

• 65535 must convert to 1.0f

For CL_SNORM_INT8:

• -128 and -127 must convert to -1.0f,

• 0 must convert to 0.0f, and

• 127 must convert to 1.0f

For CL_SNORM_INT16:

• -32768 and -32767 must convert to -1.0f,

• 0 must convert to 0.0f, and

• 32767 must convert to 1.0f

7.4.1.4. Converting Floating-point Values to Normalized Integer Channel Data Types

For images created with image channel data type of CL_UNORM_INT8 and CL_UNORM_INT16, image write
instructions will convert the floating-point color value to an 8-bit or 16-bit unsigned integer.

For images created with image channel data type of CL_SNORM_INT8 and CL_SNORM_INT16, image write
instructions will convert the floating-point color value to an 8-bit or 16-bit signed integer.

OpenCL implementations may choose to approximate the rounding mode used in the conversions
described below. When approximate rounding is used instead of the preferred rounding, the result
of the conversion must satisfy the bound given below.

The conversions from half precision floating-point values to normalized integer values are
performed is as follows:

• float → CL_UNORM_INT8 (8-bit unsigned integer)

• float → CL_UNORM_INT_101010 (10-bit unsigned integer)



• float → CL_UNORM_INT16 (16-bit unsigned integer)

• float → CL_SNORM_INT8 (8-bit signed integer)

• float → CL_SNORM_INT16 (16-bit signed integer)

7.4.2. Conversion Rules for Half Precision Floating-point Channel Data Type

For images created with a channel data type of CL_HALF_FLOAT, the conversions of half to float and
half to half are lossless. Conversions from float to half round the mantissa using the round to
nearest even or round to zero rounding mode. Denormalized numbers for the half data type which
may be generated when converting a float to a half may be flushed to zero. A float NaN must be
converted to an appropriate NaN in the half type. A float INF must be converted to an appropriate
INF in the half type.



7.4.3. Conversion Rules for Floating-point Channel Data Type

The following rules apply for reading and writing images created with channel data type of
CL_FLOAT.

• NaNs may be converted to a NaN value(s) supported by the device.

• Denorms can be flushed to zero.

• All other values must be preserved.

7.4.4. Conversion Rules for Signed and Unsigned 8-bit, 16-bit and 32-bit
Integer Channel Data Types

For images created with image channel data type of CL_SIGNED_INT8, CL_SIGNED_INT16 and CL_SIGNED_
INT32, image read instructions will return the unmodified integer values stored in the image at
specified location.

Likewise, for images created with image channel data type of CL_UNSIGNED_INT8, CL_UNSIGNED_INT16
and CL_UNSIGNED_INT32, image read instructions will return the unmodified unsigned integer values
stored in the image at specified location.

Image write instructions will perform one of the following conversions:

• 32 bit signed integer → CL_SIGNED_INT8 (8-bit signed integer):

• 32 bit signed integer → CL_SIGNED_INT16 (16-bit signed integer):

• 32 bit signed integer → CL_SIGNED_INT32 (32-bit signed integer):

• 32 bit unsigned integer → CL_UNSIGNED_INT8 (8-bit unsigned integer):

• 32 bit unsigned integer → CL_UNSIGNED_INT16 (16-bit unsigned integer):

• 32 bit unsigned integer → CL_UNSIGNED_INT32 (32-bit unsigned integer):

The conversions described in this section must be correctly saturated.

7.4.5. Conversion Rules for sRGBA and sBGRA Images

Standard RGB data, which roughly displays colors in a linear ramp of luminosity levels such that an
average observer, under average viewing conditions, can view them as perceptually equal steps on



an average display. All 0s maps to 0.0f, and all 1s maps to 1.0f. The sequence of unsigned integer
encodings between all 0s and all 1s represent a nonlinear progression in the floating-point
interpretation of the numbers between 0.0f to 1.0f. For more detail, see the SRGB color standard.

Conversion from sRGB space is automatically done the image read instruction if the image channel
order is one of the sRGB values described above. When reading from an sRGB image, the
conversion from sRGB to linear RGB is performed before filtering is applied. If the format has an
alpha channel, the alpha data is stored in linear color space. Conversion to sRGB space is
automatically done by the image write instruction if the image channel order is one of the sRGB
values described above and the device supports writing to sRGB images.

If the format has an alpha channel, the alpha data is stored in linear color space.

1. The following process is used by image read instructions to convert a normalized 8-bit unsigned
integer sRGB color value x to a floating-point linear RGB color value y:

1. Convert a normalized 8-bit unsigned integer sRGB value x to a floating-point sRGB value r as
per rules described in Converting Normalized Integer Channel Data Types to Floating-point
Values section.

2. Convert a floating-point sRGB value r to a floating-point linear RGB color value y:

2. The following process is used by image write instructions to convert a linear RGB floating-point
color value y to a normalized 8-bit unsigned integer sRGB value x:

1. Convert a floating-point linear RGB value y to a normalized floating-point sRGB value r:

2. Convert a normalized floating-point sRGB value r to a normalized 8-bit unsigned integer
sRGB value x as per rules described in Converting Floating-point Values to Normalized
Integer Channel Data Types section.



The accuracy required when converting a normalized 8-bit unsigned integer sRGB color value x to a
floating-point linear RGB color value y is given by:

The accuracy required when converting a linear RGB floating-point color value y to a normalized 8-
bit unsigned integer sRGB value x is given by:

7.5. Selecting an Image from an Image Array
Let (u,v,w) represent the unnormalized image coordinate values for reading from and/or writing to
a 2D image in a 2D image array.

When read using a sampler, the 2D image layer selected is computed as:

otherwise the layer selected is computed as:

(since w is already an integer) and the result is undefined if w is not one of the integers 0, 1, … dt - 1.

Let (u,v) represent the unnormalized image coordinate values for reading from and/or writing to a
1D image in a 1D image array.

When read using a sampler, the 1D image layer selected is computed as:

otherwise the layer selected is computed as:

(since v is already an integer) and the result is undefined if v is not one of the integers 0, 1, … ht - 1.

7.6. Data Format for Reading and Writing Images
This section describes how image element data is returned by an image read instruction or passed
as the Texel data that is written by an image write instruction:

For the following image channel orders, the data is a four component vector type:

Table 9. Mapping Image Data to Vector Components



Image Channel Order Components

R, Rx (R, 0, 0, 1)

A (0, 0, 0, A)

RG, RGx (R, G, 0, 1)

RGB, RGBx, sRGB, sRGBx (R, G, B, 1)

RGBA, BGRA, ARGB, ABGR, sRGBA, sBGRA (R, G, B, A)

Intensity (I, I, I, I)

Luminance (L, L, L, 1)

For the following image channel orders, the data is a scalar type:

Table 10. Scalar Image Data

Image Channel Order Scalar Value

Depth D

DepthStencil D

The following table describes the mapping from image channel data type to the data vector
component type or scalar type:

Table 11. Image Data Types

Image Channel Order Data Type

SnormInt8, SnormInt16,
UnormInt8, UnormInt16,
UnormShort565, UnormShort555,
UnormInt101010, UnormInt101010_2,
UnormInt24,
HalfFloat,
Float 
Additionally if the cl_ext_image_unorm_int_2_
101010 extension is supported:
UnormInt2_101010EXT

OpTypeFloat, with Width equal to 16 or 32.

SignedInt8, SignedInt16, SignedInt32,
UnsignedInt8, UnsignedInt16, UnsignedInt32

OpTypeInt, with Width equal to 32.

7.7. Sampled and Sampler-less Reads
SPIR-V instructions that read from an image without a sampler (such as OpImageRead) behave
exactly the same as the corresponding image read instruction with a sampler that has Sampler
Filter Mode set to Nearest, Non-Normalized coordinates, and Sampler Addressing Mode set to
None.

There is one exception for cases where the image being read has Image Format equal to a floating-
point type (such as R32f). In this exceptional case, when channel data values are denormalized, the



non-sampler image read instruction may return the denormalized data, while the sampler image
read instruction may flush denormalized channel data values to zero. The coordinates must be
between 0 and image size in that dimension, non inclusive.
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Appendix A: Changes to OpenCL
Changes to the OpenCL SPIR-V Environment specifications between successive versions are
summarized below.

Summary of changes from OpenCL 3.0
The first non-provisional version of the OpenCL 3.0 specifications was v3.0.5.

Changes from v3.0.5:

• Clarified sub-group barrier behavior in non-uniform control flow.

• Added required alignment of types.

• Added new extensions:

◦ cl_khr_subgroup_extended_types

◦ cl_khr_subgroup_non_uniform_vote

◦ cl_khr_subgroup_ballot

◦ cl_khr_subgroup_non_uniform_arithmetic

◦ cl_khr_subgroup_shuffle

◦ cl_khr_subgroup_shuffle_relative

◦ cl_khr_subgroup_clustered_reduce

Changes from v3.0.6:

• Explicitly say that OpTypeSampledImage may be used in an OpenCL environment.

• Added the required type for SPIR-V built-in variables.

• Fixed several bugs and formatting in the fast math ULP tables.

• Added new extensions:

◦ cl_khr_extended_bit_ops

◦ cl_khr_spirv_extended_debug_info

◦ cl_khr_spirv_linkonce_odr

Changes from v3.0.8:

• Clarified that some OpenCL khr extensions also require SPIR-V extensions.

Changes from v3.0.14:

• Fixed several numerical compliance bugs, see #937.

Changes from v3.0.15:

• Clarified that 16-bit and 64-bit floats can be passed as kernel arguments to SPIR-V kernels, see

https://github.com/KhronosGroup/OpenCL-Docs/pull/937


#1049.

• Adds the numerical value of the image channel order and image channel data type to several
tables, see #1050.

• Added new extension:

◦ cl_khr_kernel_clock (provisional)

https://github.com/KhronosGroup/OpenCL-Docs/pull/1049
https://github.com/KhronosGroup/OpenCL-Docs/pull/1050
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