
The OpenCL™ Specification
Khronos® OpenCL Working Group

Version v3.0.16-1-g604edb7, Fri, 05 Apr 2024 17:17:58 +0000: from git branch: deploy commit:
604edb7776a463e2846ba9d3975363885243786d



Table of Contents
1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

1.1. Normative References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.2. Version Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

1.3. Unified Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

2. Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

3. The OpenCL Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

3.1. Platform Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

3.2. Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

3.2.1. Mapping Work-items Onto an Nd-range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

3.2.2. Execution of Kernel-instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

3.2.3. Device-Side Enqueue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

3.2.4. Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

3.2.5. Categories of Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

3.3. Memory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

3.3.1. Fundamental Memory Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

3.3.2. Memory Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

3.3.3. Lifetime of Shared Direct3D Memory Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

3.3.4. Lifetime of Shared OpenCL/OpenGL Memory Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

3.3.5. Shared Virtual Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

3.3.6. Memory Consistency Model for OpenCL 1.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36

3.3.7. Memory Consistency Model for OpenCL 2.x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

3.3.8. Overview of Atomic and Fence Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39

3.3.9. Memory Ordering Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41

3.4. The OpenCL Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51

3.4.1. Mixed Version Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

3.4.2. Backwards Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

3.4.3. Versioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53

3.4.4. Valid Usage and Undefined Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55

4. The OpenCL Platform Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

4.1. Querying Platform Info . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56

4.2. Querying Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  61

4.2.1. Sharing DirectX9 Media Surfaces With OpenCL Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

4.2.2. Sharing Direct3D 10 Resources With OpenCL Memory Objects . . . . . . . . . . . . . . . . . . . . . .  105

4.2.3. Sharing Direct3D 11 Resources With OpenCL Memory Objects . . . . . . . . . . . . . . . . . . . . . .  106

4.3. Partitioning a Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108

4.4. Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113

5. The OpenCL Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126

5.1. Command-Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126



5.2. Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

5.2.1. Creating Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135

5.2.2. Reading, Writing and Copying Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143

5.2.3. Filling Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

5.2.4. Mapping Buffer Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155

5.2.5. Creating OpenCL Buffer Objects From Direct3D 10 Buffer Resources. . . . . . . . . . . . . . . . .  158

5.2.6. Creating OpenCL Buffer Objects From Direct3D 11 Buffer Resources. . . . . . . . . . . . . . . . .  159

5.2.7. Creating OpenCL Buffer Objects From OpenGL Buffer Objects . . . . . . . . . . . . . . . . . . . . . .  160

5.3. Image Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162

5.3.1. Creating Image Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162

5.3.2. Querying List of Supported Image Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  176

5.3.3. Mapping to External Image Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  180

5.3.4. Reading, Writing and Copying Image Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  184

5.3.5. Filling Image Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  190

5.3.6. Copying Between Image and Buffer Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  192

5.3.7. Mapping Image Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  197

5.3.8. Specifying Mipmap Levels to Image Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199

5.3.9. Image Object Queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200

5.3.10. Creating OpenCL Image Objects From DirectX 9 Media Resources . . . . . . . . . . . . . . . . . .  203

5.3.11. Creating OpenCL Image Objects From Direct3D 10 Textures and Resources . . . . . . . . .  204

5.3.12. Creating OpenCL Image Objects From Direct3D 11 Textures and Resources . . . . . . . . .  207

5.3.13. Creating OpenCL Image Objects From EGL Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209

5.3.14. Creating OpenCL Image Objects From OpenGL Textures and Renderbuffers. . . . . . . . .  211

5.4. Pipes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

5.4.1. Creating Pipe Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215

5.4.2. Pipe Object Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  216

5.5. Querying, Unmapping, Migrating, Retaining and Releasing Memory Objects . . . . . . . . . . . . .  218

5.5.1. Retaining and Releasing Memory Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218

5.5.2. Descriptions of External Memory Handle Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  223

5.5.3. Unmapping Mapped Memory Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  225

5.5.4. Accessing Mapped Regions of a Memory Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  226

5.5.5. Migrating Memory Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227

5.5.6. Memory Object Queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  229

5.5.7. Querying Media Surface Properties of Memory Objects Created From DirectX 9 Media

Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234

5.5.8. Querying Direct3D Properties of Memory Objects Created From Direct3D 10

Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234

5.5.9. Querying Direct3D Properties of Memory Objects Created From Direct3D 11

Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234

5.5.10. Querying OpenGL Object Information From an OpenCL Memory Object . . . . . . . . . . . .  234

5.5.11. Sharing Memory Objects Created From Media Surfaces Between a Media Adapter



and OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236

5.5.12. Sharing Memory Objects Created From Direct3D 10 Resources Between Direct3D 10

and OpenCL Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239

5.5.13. Sharing Memory Objects Created From Direct3D 11 Resources Between Direct3D 11

and OpenCL Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  242

5.5.14. Sharing Memory Objects Created From EGL Resources Between EGL and OpenCL

Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  245

5.5.15. Acquiring, Releasing, and Synchronizing Access to Shared OpenCL/OpenGL Memory

Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  248

5.6. Shared Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252

5.6.1. SVM Sharing Granularity: Coarse- and Fine- Grained Sharing . . . . . . . . . . . . . . . . . . . . . . .  252

5.6.2. Memory Consistency for SVM Allocations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265

5.7. Sampler Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265

5.7.1. Creating Sampler Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  266

5.7.2. Sampler Object Queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  270

5.8. Program Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272

5.8.1. Creating Program Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272

5.8.2. Retaining and Releasing Program Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276

5.8.3. Setting SPIR-V Specialization Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  278

5.8.4. Building Program Executables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279

5.8.5. Separate Compilation and Linking of Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  281

5.8.6. Compiler Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  287

5.8.7. Linker Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  291

5.8.8. Unloading the OpenCL Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  292

5.8.9. Program Object Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  293

5.9. Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301

5.9.1. Creating Kernel Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  301

5.9.2. Setting Kernel Arguments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  304

5.9.3. Copying Kernel Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  310

5.9.4. Kernel Object Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  311

5.10. Executing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  324

5.11. Event Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332

5.11.1. Creating, Waiting for, and Releasing Event Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332

5.12. Markers, Barriers and Waiting for Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  345

5.13. Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349

5.13.1. Semaphore Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  350

5.13.2. Creating Semaphores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  350

5.13.3. Exporting Semaphore External Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  352

5.13.4. Importing Semaphore External Handles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353

5.13.5. Descriptions of External Semaphore Handle Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353

5.13.6. Waiting On and Signaling Semaphores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  356



5.13.7. Retaining and Releasing Semaphores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  360

5.13.8. Semaphore Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  361

5.14. Out-of-Order Execution of Kernels and Memory Object Commands . . . . . . . . . . . . . . . . . . . .  363

5.15. Profiling Operations on Memory Objects and Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  364

5.16. Flush and Finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  367

5.17. Command-Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  368

5.17.1. Command-Buffers and Multiple Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369

5.17.2. Command-Buffer Lifecycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369

5.17.3. Creating Command-Buffer Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  370

5.17.4. Enqueuing a Command-Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  375

5.17.5. Recording Commands to a Command-Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377

5.17.6. Remapping Command-Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  397

5.17.7. Mutable Commands: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  399

5.17.8. Command-Buffer Queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  404

5.18. Querying Devices That Support Sharing With OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  411

6. Associated OpenCL specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414

6.1. SPIR-V Intermediate Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414

6.2. Extensions to OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414

6.3. The OpenCL C Kernel Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  414

7. OpenCL Embedded Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  415

Appendix A: Host environment and thread safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  422

Shared OpenCL Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  422

Multiple Host Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  422

Global Constructors and Destructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  423

Appendix B: Portability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  424

Appendix C: Application Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429

Supported Application Scalar Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429

Supported Application Vector Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429

Alignment of Application Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  430

Vector Literals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  430

Vector Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  430

Named Vector Components Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431

High/Low Vector Component Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  431

Native Vector Type Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

Implicit Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

Explicit Casts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

Other Operators and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  432

Application Constant Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433

Appendix D: Checking for Memory Copy Overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  436

Appendix E: Changes to OpenCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  438

Summary of Changes from OpenCL 1.0 to OpenCL 1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  438



Summary of Changes from OpenCL 1.1 to OpenCL 1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  439

Summary of Changes from OpenCL 1.2 to OpenCL 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  441

Summary of Changes from OpenCL 2.0 to OpenCL 2.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  443

Summary of Changes from OpenCL 2.1 to OpenCL 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  443

Summary of Changes from OpenCL 2.2 to OpenCL 3.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  444

Summary of Changes from OpenCL 3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  446

Appendix F: Error Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  451

Appendix G: Other Miscellaneous Enums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  458

Appendix H: OpenCL 3.0 Backwards Compatibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  459

Shared Virtual Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  459

Memory Consistency Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  459

Device-Side Enqueue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  461

Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  462

Program Scope Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  462

Non-Uniform Work-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  463

Read-Write Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  463

Creating 2D Images From Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  463

sRGB Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  464

Depth Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  464

Device and Host Timer Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  464

Intermediate Language Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  464

Sub-groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  465

Program Initialization and Clean-Up Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  465

3D Image Writes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  466

Work-group Collective Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  466

Generic Address Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  466

Language Features That Were Already Optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  467

Appendix I: OpenCL Extensions (Informative) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  468

Provisional Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  468

Extension Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  468

List of Current Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  468

cl_khr_3d_image_writes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  471

cl_khr_async_work_group_copy_fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  471

cl_khr_byte_addressable_store . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  472

cl_khr_create_command_queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  473

cl_khr_d3d10_sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  474

cl_khr_d3d11_sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  476

cl_khr_depth_images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  478

cl_khr_device_enqueue_local_arg_types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  479

cl_khr_device_uuid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  479

cl_khr_dx9_media_sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  480



cl_khr_egl_event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  482

cl_khr_egl_image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  483

cl_khr_expect_assume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  485

cl_khr_extended_async_copies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  487

cl_khr_extended_bit_ops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  488

cl_khr_extended_versioning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  489

cl_khr_external_memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  491

cl_khr_external_memory_dma_buf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  497

cl_khr_external_memory_opaque_fd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  499

cl_khr_external_memory_win32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  501

cl_khr_external_semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  502

cl_khr_external_semaphore_opaque_fd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  508

cl_khr_external_semaphore_sync_fd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  510

cl_khr_fp16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  511

cl_khr_fp64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  512

cl_khr_gl_depth_images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  513

cl_khr_gl_event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  514

cl_khr_gl_msaa_sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  515

cl_khr_gl_sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  516

cl_khr_global_int32_base_atomics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  520

cl_khr_global_int32_extended_atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  521

cl_khr_icd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  522

cl_khr_il_program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  527

cl_khr_image2d_from_buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  528

cl_khr_initialize_memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  528

cl_khr_int64_base_atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  529

cl_khr_int64_extended_atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  530

cl_khr_integer_dot_product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  531

cl_khr_local_int32_base_atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  532

cl_khr_local_int32_extended_atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  533

cl_khr_mipmap_image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  534

cl_khr_mipmap_image_writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  534

cl_khr_pci_bus_info. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  535

cl_khr_priority_hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  536

cl_khr_select_fprounding_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  537

cl_khr_semaphore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  538

cl_khr_spirv_extended_debug_info. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  543

cl_khr_spirv_linkonce_odr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  544

cl_khr_spirv_no_integer_wrap_decoration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  545

cl_khr_srgb_image_writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  545

cl_khr_subgroup_ballot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  546



cl_khr_subgroup_clustered_reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  547

cl_khr_subgroup_extended_types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  548

cl_khr_subgroup_named_barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  549

cl_khr_subgroup_non_uniform_arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  550

cl_khr_subgroup_non_uniform_vote . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  551

cl_khr_subgroup_rotate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  552

cl_khr_subgroup_shuffle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  553

cl_khr_subgroup_shuffle_relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  554

cl_khr_subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  555

cl_khr_suggested_local_work_size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  556

cl_khr_terminate_context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  557

cl_khr_throttle_hints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  558

cl_khr_work_group_uniform_arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  559

List of Provisional Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  560

cl_khr_command_buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  561

cl_khr_command_buffer_multi_device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  569

cl_khr_command_buffer_mutable_dispatch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  576

cl_khr_external_memory_dx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  583

cl_khr_external_semaphore_dx_fence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  585

cl_khr_external_semaphore_win32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  586

cl_khr_kernel_clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  588

List of Deprecated Extensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  589

cl_khr_spir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  590

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  591



THIS IS A PREVIEW SPECIFICATION BUILD TO REVIEW IN-FLIGHT CHANGES!

Published specifications may be found on the Khronos OpenCL Registry; see
https://registry.khronos.org/OpenCL/.

Copyright 2008-2024 The Khronos Group Inc.

This Specification is protected by copyright laws and contains material proprietary to Khronos.
Except as described by these terms, it or any components may not be reproduced, republished,
distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the
express prior written permission of Khronos.

This Specification has been created under the Khronos Intellectual Property Rights Policy, which is
Attachment A of the Khronos Group Membership Agreement available at
www.khronos.org/files/member_agreement.pdf and defines the terms 'Scope', 'Compliant Portion',
and 'Necessary Patent Claims'.

Khronos grants a conditional copyright license to use and reproduce the unmodified Specification
for any purpose, without fee or royalty, EXCEPT no licenses to any patent, trademark or other
intellectual property rights are granted under these terms. Parties desiring to implement the
Specification and make use of Khronos trademarks in relation to that implementation, and receive
reciprocal patent license protection under the Khronos Intellectual Property Rights Policy must
become Adopters and confirm the implementation as conformant under the process defined by
Khronos for this Specification; see https://www.khronos.org/adopters.

Khronos makes no, and expressly disclaims any, representations or warranties, express or implied,
regarding this Specification, including, without limitation: merchantability, fitness for a particular
purpose, non-infringement of any intellectual property, correctness, accuracy, completeness,
timeliness, and reliability. Under no circumstances will Khronos, or any of its Promoters,
Contributors or Members, or their respective partners, officers, directors, employees, agents or
representatives be liable for any damages, whether direct, indirect, special or consequential
damages for lost revenues, lost profits, or otherwise, arising from or in connection with these
materials.

Where this Specification identifies specific sections of external references, only those specifically
identified sections define normative functionality. The Khronos Intellectual Property Rights Policy
excludes external references to materials and associated enabling technology not created by
Khronos from the Scope of this specification, and any licenses that may be required to implement
such referenced materials and associated technologies must be obtained separately and may
involve royalty payments.

Khronos® and Vulkan® are registered trademarks, and SPIR™, SPIR-V™, and SYCL™ are
trademarks of The Khronos Group Inc. OpenCL™ is a trademark of Apple Inc. used under license by
Khronos. OpenGL® is a registered trademark and the OpenGL ES™ and OpenGL SC™ logos are
trademarks of Hewlett Packard Enterprise used under license by Khronos. All other product names,
trademarks, and/or company names are used solely for identification and belong to their respective
owners.

1

https://registry.khronos.org/OpenCL/
https://www.khronos.org/adopters


Chapter 1. Introduction
Modern processor architectures have embraced parallelism as an important pathway to increased
performance. Facing technical challenges with higher clock speeds in a fixed power envelope,
Central Processing Units (CPUs) now improve performance by adding multiple cores. Graphics
Processing Units (GPUs) have also evolved from fixed function rendering devices into
programmable parallel processors. As todays computer systems often include highly parallel CPUs,
GPUs and other types of processors, it is important to enable software developers to take full
advantage of these heterogeneous processing platforms.

Creating applications for heterogeneous parallel processing platforms is challenging as traditional
programming approaches for multi-core CPUs and GPUs are very different. CPU-based parallel
programming models are typically based on standards but usually assume a shared address space
and do not encompass vector operations. General purpose GPU programming models address
complex memory hierarchies and vector operations but are traditionally platform-, vendor- or
hardware-specific. These limitations make it difficult for a developer to access the compute power
of heterogeneous CPUs, GPUs and other types of processors from a single, multi-platform source
code base. More than ever, there is a need to enable software developers to effectively take full
advantage of heterogeneous processing platforms from high performance compute servers,
through desktop computer systems to handheld devices - that include a diverse mix of parallel
CPUs, GPUs and other processors such as DSPs and the Cell/B.E. processor.

OpenCL (Open Computing Language) is an open royalty-free standard for general purpose parallel
programming across CPUs, GPUs and other processors, giving software developers portable and
efficient access to the power of these heterogeneous processing platforms.

OpenCL supports a wide range of applications, ranging from embedded and consumer software to
HPC solutions, through a low-level, high-performance, portable abstraction. By creating an efficient,
close-to-the-metal programming interface, OpenCL will form the foundation layer of a parallel
computing ecosystem of platform-independent tools, middleware and applications. OpenCL is
particularly suited to play an increasingly significant role in emerging interactive graphics
applications that combine general parallel compute algorithms with graphics rendering pipelines.

OpenCL consists of an API for coordinating parallel computation across heterogeneous processors,
a cross-platform programming language, and a cross-platform intermediate language with a well-
specified computation environment. The OpenCL standard:

• Supports both data- and task-based parallel programming models

• Supports kernels written using a subset of ISO C99 with extensions for parallel execution

• Supports kernels represented by a portable and self-contained intermediate language (e.g. SPIR-
V) with support for parallel execution

• Defines consistent numerical requirements based on IEEE 754

• Defines a configuration profile for handheld and embedded devices

• Supports efficient interop with OpenGL, OpenGL ES and other APIs

This document begins with an overview of basic concepts and the architecture of OpenCL, followed
by a detailed description of its execution model, memory model and synchronization support. It

2



then discusses the OpenCL platform and runtime API. Some examples are given that describe
sample compute use-cases and how they would be written in OpenCL. The specification is divided
into a core specification that any OpenCL compliant implementation must support; a
handheld/embedded profile which relaxes the OpenCL compliance requirements for handheld and
embedded devices; and a set of optional extensions that are likely to move into the core
specification in later revisions of the OpenCL specification.

1.1. Normative References
Normative references are references to external documents or resources to which implementers of
OpenCL must comply with all, or specified portions of, as described in this specification.

ISO/IEC 9899:2011 - Information technology - Programming languages - C, https://www.iso.org/
standard/57853.html (final specification), http://www.open-std.org/jtc1/sc22/WG14/www/docs/
n1570.pdf (last public draft).

1.2. Version Numbers
The OpenCL version number follows a major.minor-revision scheme. When this version number is
used within the API it generally only includes the major.minor components of the version number.

A difference in the major or minor version number indicates that some amount of new
functionality has been added to the specification, and may also include behavior changes and bug
fixes. Functionality may also be deprecated or removed when the major or minor version changes.

A difference in the revision number indicates small changes to the specification, typically to fix a
bug or to clarify language. When the revision number changes there may be an impact on the
behavior of existing functionality, but this should not affect backwards compatibility. Functionality
should not be added or removed when the revision number changes.

1.3. Unified Specification
This document specifies all versions of the OpenCL API.

There are three ways that an OpenCL feature may be described in terms of what versions of
OpenCL support that feature.

• Missing before major.minor: Features that were introduced in version major.minor.
Implementations of an earlier version of OpenCL will not provide these features.

• Deprecated by major.minor: Features that were deprecated in version major.minor, see the
definition of deprecation in the glossary.

• Universal: Features that have no mention of what version they are missing before or deprecated
by are available in all versions of OpenCL.

3

https://www.iso.org/standard/57853.html
https://www.iso.org/standard/57853.html
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf


Chapter 2. Glossary
Application

The combination of the program running on the host and OpenCL devices.

Acquire semantics

One of the memory order semantics defined for synchronization operations. Acquire semantics
apply to atomic operations that load from memory. Given two units of execution, A and B, acting
on a shared atomic object M, if A uses an atomic load of M with acquire semantics to
synchronize-with an atomic store to M by B that used release semantics, then A's atomic load
will occur before any subsequent operations by A. Note that the memory orders release,
sequentially consistent, and acquire_release all include release semantics and effectively pair with
a load using acquire semantics.

Acquire release semantics

A memory order semantics for synchronization operations (such as atomic operations) that has
the properties of both acquire and release memory orders. It is used with read-modify-write
operations.

Atomic operations

Operations that at any point, and from any perspective, have either occurred completely, or not
at all. Memory orders associated with atomic operations may constrain the visibility of loads and
stores with respect to the atomic operations (see relaxed semantics, acquire semantics, release
semantics or acquire release semantics).

Blocking and Non-Blocking Enqueue API calls

A non-blocking enqueue API call places a command on a command-queue and returns
immediately to the host. The blocking-mode enqueue API calls do not return to the host until the
command has completed.

Barrier

There are three types of barriers a command-queue barrier, a work-group barrier, and a sub-
group barrier.

• The OpenCL API provides a function to enqueue a command-queue barrier command. This
barrier command ensures that all previously enqueued commands to a command-queue
have finished execution before any following commands enqueued in the command-queue
can begin execution.

• The OpenCL kernel execution model provides built-in work-group barrier functionality. This
barrier built-in function can be used by a kernel executing on a device to perform
synchronization between work-items in a work-group executing the kernel. All the work-
items of a work-group must execute the barrier construct before any are allowed to continue
execution beyond the barrier.

• The OpenCL kernel execution model provides built-in sub-group barrier functionality. This
barrier built-in function can be used by a kernel executing on a device to perform
synchronization between work-items in a sub-group executing the kernel. All the work-items
of a sub-group must execute the barrier construct before any are allowed to continue

4



execution beyond the barrier.

Buffer Object

A memory object that stores a linear collection of bytes. Buffer objects are accessible using a
pointer in a kernel executing on a device. Buffer objects can be manipulated by the host using
OpenCL API calls. A buffer object encapsulates the following information:

• Size in bytes.

• Properties that describe usage information and which region to allocate from.

• Buffer data.

Built-in Kernel

A built-in kernel is a kernel that is executed on an OpenCL device or custom device by fixed-
function hardware or in firmware. Applications can query the built-in kernels supported by a
device or custom device. A program object can only contain kernels written in OpenCL C or built-
in kernels but not both. See also Kernel and Program.

Child kernel

See Device-side enqueue.

Command

The OpenCL operations that are submitted to a command-queue for execution. For example,
OpenCL commands issue kernels for execution on a compute device, manipulate memory
objects, etc.

Command-queue

An object that holds commands that will be executed on a specific device. The command-queue is
created on a specific device in a context. Commands to a command-queue are queued in-order but
may be executed in-order or out-of-order. Refer to In-order Execution and Out-of-order Execution.

Command-queue Barrier

See Barrier.

Command synchronization

Constraints on the order that commands are launched for execution on a device defined in
terms of the synchronization points that occur between commands in host command-queues
and between commands in device-side command-queues. See synchronization points.

Complete

The final state in the six state model for the execution of a command. The transition into this
state occurs is signaled through event objects or callback functions associated with a command.

Compute Device Memory

This refers to one or more memories attached to the compute device.

Compute Unit

An OpenCL device has one or more compute units. A work-group executes on a single compute
unit. A compute unit is composed of one or more processing elements and local memory. A

5



compute unit may also include dedicated texture filter units that can be accessed by its
processing elements.

Concurrency

A property of a system in which a set of tasks in a system can remain active and make progress
at the same time. To utilize concurrent execution when running a program, a programmer must
identify the concurrency in their problem, expose it within the source code, and then exploit it
using a notation that supports concurrency.

Constant Memory

A region of global memory that remains constant during the execution of a kernel. The host
allocates and initializes memory objects placed into constant memory.

Context

The environment within which the kernels execute and the domain in which synchronization
and memory management is defined. The context includes a set of devices, the memory
accessible to those devices, the corresponding memory properties and one or more command-
queues used to schedule execution of a kernel(s) or operations on memory objects.

Control flow

The flow of instructions executed by a work-item. Multiple logically related work-items may or
may not execute the same control flow. The control flow is said to be converged if all the work-
items in the set execution the same stream of instructions. In a diverged control flow, the work-
items in the set execute different instructions. At a later point, if a diverged control flow
becomes converged, it is said to be a re-converged control flow.

Converged control flow

See Control flow.

Custom Device

An OpenCL device that fully implements the OpenCL Runtime but does not support programs
written in OpenCL C. A custom device may be specialized non-programmable hardware that is
very power efficient and performant for directed tasks or hardware with limited programmable
capabilities such as specialized DSPs. Custom devices are not OpenCL conformant. Custom
devices may support an online compiler. Programs for custom devices can be created using the
OpenCL runtime APIs that allow OpenCL programs to be created from source (if an online
compiler is supported) and/or binary, or from built-in kernels supported by the device. See also
Device.

Data Parallel Programming Model

Traditionally, this term refers to a programming model where concurrency is expressed as
instructions from a single program applied to multiple elements within a set of data structures.
The term has been generalized in OpenCL to refer to a model wherein a set of instructions from
a single program are applied concurrently to each point within an abstract domain of indices.

Data race

The execution of a program contains a data race if it contains two actions in different work-
items or host threads where (1) one action modifies a memory location and the other action

6



reads or modifies the same memory location, and (2) at least one of these actions is not atomic,
or the corresponding memory scopes are not inclusive, and (3) the actions are global actions
unordered by the global-happens-before relation or are local actions unordered by the local-
happens-before relation.

Deprecation

Existing features are marked as deprecated if their usage is not recommended as that feature is
being de-emphasized, superseded and may be removed from a future version of the
specification.

Device

A device is a collection of compute units. A command-queue is used to queue commands to a
device. Examples of commands include executing kernels, or reading and writing memory objects.
OpenCL devices typically correspond to a GPU, a multi-core CPU, and other processors such as
DSPs and the Cell/B.E. processor.

Device-side enqueue

A mechanism whereby a kernel-instance is enqueued by a kernel-instance running on a device
without direct involvement by the host program. This produces nested parallelism; i.e. additional
levels of concurrency are nested inside a running kernel-instance. The kernel-instance executing
on a device (the parent kernel) enqueues a kernel-instance (the child kernel) to a device-side
command-queue. Child and parent kernels execute asynchronously though a parent kernel does
not complete until all of its child-kernels have completed.

Diverged control flow

See Control flow.

Ended

The fifth state in the six state model for the execution of a command. The transition into this
state occurs when execution of a command has ended. When a Kernel-enqueue command ends,
all of the work-groups associated with that command have finished their execution.

Event Object

An event object encapsulates the status of an operation such as a command. It can be used to
synchronize operations in a context.

Event Wait List

An event wait list is a list of event objects that can be used to control when a particular command
begins execution.

Fence

A memory ordering operation without an associated atomic object. A fence can use the acquire
semantics, release semantics, or acquire release semantics.

Framework

A software system that contains the set of components to support software development and
execution. A framework typically includes libraries, APIs, runtime systems, compilers, etc.

7



Generic address space

An address space that include the private, local, and global address spaces available to a device.
The generic address space supports conversion of pointers to and from private, local and global
address spaces, and hence lets a programmer write a single function that at compile time can
take arguments from any of the three named address spaces.

Global-happens-before

See Happens-before.

Global ID

A global ID is used to uniquely identify a work-item and is derived from the number of global
work-items specified when executing a kernel. The global ID is a N-dimensional value that starts
at (0, 0, … 0). See also Local ID.

Global Memory

A memory region accessible to all work-items executing in a context. It is accessible to the host
using commands such as read, write and map. Global memory is included within the generic
address space that includes the private and local address spaces.

GL share group

A GL share group object manages shared OpenGL or OpenGL ES resources such as textures,
buffers, framebuffers, and renderbuffers and is associated with one or more GL context objects.
The GL share group is typically an opaque object and not directly accessible.

Handle

An opaque type that references an object allocated by OpenCL. Any operation on an object
occurs by reference to that object’s handle. Each object must have a unique handle value during
the course of its lifetime. Handle values may be, but are not required to be, re-used by an
implementation.

Happens-before

An ordering relationship between operations that execute on multiple units of execution. If an
operation A happens-before operation B then A must occur before B; in particular, any value
written by A will be visible to B. We define two separate happens-before relations: global-
happens-before and local-happens-before. These are defined in Memory Ordering Rules.

Host

The host interacts with the context using the OpenCL API.

Host-thread

The unit of execution that executes the statements in the host program.

Host pointer

A pointer to memory that is in the virtual address space on the host.

Illegal

Behavior of a system that is explicitly not allowed and will be reported as an error when
encountered by OpenCL.

8



Image Object

A memory object that stores a two- or three-dimensional structured array. Image data can only
be accessed with read and write functions. The read functions use a sampler.

The image object encapsulates the following information:

• Dimensions of the image.

• Description of each element in the image.

• Properties that describe usage information and which region to allocate from.

• Image data.

The elements of an image are selected from a list of predefined image formats.

Implementation-Defined

Behavior that is explicitly allowed to vary between conforming implementations of OpenCL. An
OpenCL implementor is required to document the implementation-defined behavior.

Independent Forward Progress

If an entity supports independent forward progress, then if it is otherwise not dependent on any
actions due to be performed by any other entity (for example it does not wait on a lock held by,
and thus that must be released by, any other entity), then its execution cannot be blocked by the
execution of any other entity in the system (it will not be starved). Work-items in a sub-group,
for example, typically do not support independent forward progress, so one work-item in a sub-
group may be completely blocked (starved) if a different work-item in the same sub-group enters
a spin loop.

In-order Execution

A model of execution in OpenCL where the commands in a command-queue are executed in
order of submission with each command running to completion before the next one begins. See
Out-of-order Execution.

Intermediate Language

A lower-level language that may be used to create programs. SPIR-V is a required intermediate
language (IL) for OpenCL 2.1 and 2.2 devices. Other OpenCL devices may optionally support
SPIR-V or other ILs.

Kernel

A kernel is a function declared in a program and executed on an OpenCL device. A kernel is
identified by the __kernel or kernel qualifier applied to any function defined in a program.

Kernel-instance

The work carried out by an OpenCL program occurs through the execution of kernel-instances
on devices. The kernel instance is the kernel object, the values associated with the arguments to
the kernel, and the parameters that define the ND-range index space.

Kernel Object

A kernel object encapsulates a specific kernel function declared in a program and the argument

9



values to be used when executing this kernel function.

Kernel Language

A language that is used to represent source code for kernel. Kernels may be directly created
from OpenCL C kernel language source strings. Other kernel languages may be supported by
compiling to SPIR-V, another supported Intermediate Language, or to a device-specific program
binary format.

Launch

The transition of a command from the submitted state to the ready state. See Ready.

Local ID

A local ID specifies a unique work-item ID within a given work-group that is executing a kernel.
The local ID is a N-dimensional value that starts at (0, 0, … 0). See also Global ID.

Local Memory

A memory region associated with a work-group and accessible only by work-items in that work-
group. Local memory is included within the generic address space that includes the private and
global address spaces.

Marker

A command queued in a command-queue that can be used to tag all commands queued before the
marker in the command-queue. The marker command returns an event which can be used by the
application to queue a wait on the marker event i.e. wait for all commands queued before the
marker command to complete.

Memory Consistency Model

Rules that define which values are observed when multiple units of execution load data from
any shared memory plus the synchronization operations that constrain the order of memory
operations and define synchronization relationships. The memory consistency model in OpenCL
is based on the memory model from the ISO C11 programming language.

Memory Objects

A memory object is a handle to a reference counted region of Global Memory. Also see Buffer
Object and Image Object.

Memory Regions (or Pools)

A distinct address space in OpenCL. Memory regions may overlap in physical memory though
OpenCL will treat them as logically distinct. The memory regions are denoted as private, local,
constant, and global.

Memory Scopes

These memory scopes define a hierarchy of visibilities when analyzing the ordering constraints
of memory operations. They are defined by the values of the memory_scope enumeration
constant. Current values are memory_scope_work_item (memory constraints only apply to a
single work-item and in practice apply only to image operations), memory_scope_sub_group
(memory-ordering constraints only apply to work-items executing in a sub-group),
memory_scope_work_group (memory-ordering constraints only apply to work-items executing

10



in a work-group), memory_scope_device (memory-ordering constraints only apply to work-
items executing on a single device) and memory_scope_all_svm_devices or equivalently
memory_scope_all_devices (memory-ordering constraints only apply to work-items executing
across multiple devices and when using shared virtual memory).

Modification Order

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens-
before B, then A shall precede B in the modification order of M. Note that the modification order
of an atomic object M is independent of whether M is in local or global memory.

Nested Parallelism

See device-side enqueue.

Object

Objects are abstract representation of the resources that can be manipulated by the OpenCL API.
Examples include program objects, kernel objects, and memory objects.

Out-of-order Execution

A model of execution in which commands placed in the work queue may begin and complete
execution in any order consistent with constraints imposed by event wait lists_and_command-
queue barrier. See In-order Execution.

Parent device

The OpenCL device which is partitioned to create sub-devices. Not all parent devices are root
devices. A root device might be partitioned and the sub-devices partitioned again. In this case, the
first set of sub-devices would be parent devices of the second set, but not the root devices. Also see
Device, parent device and root device.

Parent kernel

see Device-side enqueue.

Pipe

The pipe memory object conceptually is an ordered sequence of data items. A pipe has two
endpoints: a write endpoint into which data items are inserted, and a read endpoint from which
data items are removed. At any one time, only one kernel instance may write into a pipe, and
only one kernel instance may read from a pipe. To support the producer consumer design
pattern, one kernel instance connects to the write endpoint (the producer) while another kernel
instance connects to the reading endpoint (the consumer).

Platform

The host plus a collection of devices managed by the OpenCL framework that allow an
application to share resources and execute kernels on devices in the platform.

Private Memory

A region of memory private to a work-item. Variables defined in one work-items private memory
are not visible to another work-item.

11



Processing Element

A virtual scalar processor. A work-item may execute on one or more processing elements.

Program

An OpenCL program consists of a set of kernels. Programs may also contain auxiliary functions
called by the kernel functions and constant data.

Program Object

A program object encapsulates the following information:

• A reference to an associated context.

• A program source or binary.

• The latest successfully built program executable, the list of devices for which the program
executable is built, the build options used and a build log.

• The number of kernel objects currently attached.

Queued

The first state in the six state model for the execution of a command. The transition into this
state occurs when the command is enqueued into a command-queue.

Ready

The third state in the six state model for the execution of a command. The transition into this
state occurs when pre-requisites constraining execution of a command have been met; i.e. the
command has been launched. When a kernel-enqueue command is launched, work-groups
associated with the command are placed in a devices work-pool from which they are scheduled
for execution.

Re-converged Control Flow

see Control flow.

Reference Count

The life span of an OpenCL object is determined by its reference count, an internal count of the
number of references to the object. When you create an object in OpenCL, its reference count is
set to one. Subsequent calls to the appropriate retain API (such as clRetainContext,
clRetainCommandQueue) increment the reference count. Calls to the appropriate release API
(such as clReleaseContext, clReleaseCommandQueue) decrement the reference count.
Implementations may also modify the reference count, e.g. to track attached objects or to ensure
correct operation of in-progress or scheduled activities. The object becomes inaccessible to host
code when the number of release operations performed matches the number of retain
operations plus the allocation of the object. At this point the reference count may be zero but
this is not guaranteed.

Relaxed Consistency

A memory consistency model in which the contents of memory visible to different work-items or
commands may be different except at a barrier or other explicit synchronization points.

12



Relaxed Semantics

A memory order semantics for atomic operations that implies no order constraints. The
operation is atomic but it has no impact on the order of memory operations.

Release Semantics

One of the memory order semantics defined for synchronization operations. Release semantics
apply to atomic operations that store to memory. Given two units of execution, A and B, acting
on a shared atomic object M, if A uses an atomic store of M with release semantics to
synchronize-with an atomic load to M by B that used acquire semantics, then A's atomic store
will occur after any prior operations by A. Note that the memory orders acquire, sequentially
consistent, and acquire_release all include acquire semantics and effectively pair with a store
using release semantics.

Remainder work-groups

When the work-groups associated with a kernel-instance are defined, the sizes of a work-group
in each dimension may not evenly divide the size of the ND-range in the corresponding
dimensions. The result is a collection of work-groups on the boundaries of the ND-range that are
smaller than the base work-group size. These are known as remainder work-groups.

Running

The fourth state in the six state model for the execution of a command. The transition into this
state occurs when the execution of the command starts. When a Kernel-enqueue command
starts, one or more work-groups associated with the command start to execute.

Root device

A root device is an OpenCL device that has not been partitioned. Also see Device, Parent device
and Root device.

Resource

A class of objects defined by OpenCL. An instance of a resource is an object. The most common
resources are the context, command-queue, program objects, kernel objects, and memory objects.
Computational resources are hardware elements that participate in the action of advancing a
program counter. Examples include the host, devices, compute units and processing elements.

Retain, Release

The action of incrementing (retain) and decrementing (release) the reference count using an
OpenCL object. This is a book keeping functionality to make sure the system doesn’t remove an
object before all instances that use this object have finished. Refer to Reference Count.

Sampler

An object that describes how to sample an image when the image is read in the kernel. The image
read functions take a sampler as an argument. The sampler specifies the image addressing-mode
i.e. how out-of-range image coordinates are handled, the filter mode, and whether the input
image coordinate is a normalized or unnormalized value.

Scope inclusion

Two actions A and B are defined to have an inclusive scope if they have the same scope P such
that: (1) if P is memory_scope_sub_group, and A and B are executed by work-items within the

13



same sub-group, or (2) if P is memory_scope_work_group, and A and B are executed by work-
items within the same work-group, or (3) if P is memory_scope_device, and A and B are
executed by work-items on the same device, or (4) if P is memory_scope_all_svm_devices or
memory_scope_all_devices, if A and B are executed by host threads or by work-items on one or
more devices that can share SVM memory with each other and the host process.

Sequenced before

A relation between evaluations executed by a single unit of execution. Sequenced-before is an
asymmetric, transitive, pair-wise relation that induces a partial order between evaluations.
Given any two evaluations A and B, if A is sequenced-before B, then the execution of A shall
precede the execution of B.

Sequential consistency

Sequential consistency interleaves the steps executed by each unit of execution. Each access to a
memory location sees the last assignment to that location in that interleaving.

Sequentially consistent semantics

One of the memory order semantics defined for synchronization operations. When using
sequentially-consistent synchronization operations, the loads and stores within one unit of
execution appear to execute in program order (i.e., the sequenced-before order), and loads and
stores from different units of execution appear to be simply interleaved.

Shared Virtual Memory (SVM)

An address space exposed to both the host and the devices within a context. SVM causes
addresses to be meaningful between the host and all of the devices within a context and
therefore supports the use of pointer based data structures in OpenCL kernels. It logically
extends a portion of the global memory into the host address space therefore giving work-items
access to the host address space. There are three types of SVM in OpenCL:

Coarse-Grained buffer SVM

Sharing occurs at the granularity of regions of OpenCL buffer memory objects.

Fine-Grained buffer SVM

Sharing occurs at the granularity of individual loads/stores into bytes within OpenCL buffer
memory objects.

Fine-Grained system SVM

Sharing occurs at the granularity of individual loads/stores into bytes occurring anywhere
within the host memory.

SIMD

Single Instruction Multiple Data. A programming model where a kernel is executed concurrently
on multiple processing elements each with its own data and a shared program counter. All
processing elements execute a strictly identical set of instructions.

Specialization constants

Specialization constants are special constant objects that do not have known constant values in
an intermediate language (e.g. SPIR-V). Applications may provide updated values for the

14



specialization constants before a program is built. Specialization constants that do not receive a
value from an application shall use the default specialization constant value.

SPMD

Single Program Multiple Data. A programming model where a kernel is executed concurrently
on multiple processing elements each with its own data and its own program counter. Hence,
while all computational resources run the same kernel they maintain their own instruction
counter and due to branches in a kernel, the actual sequence of instructions can be quite
different across the set of processing elements.

Sub-device

An OpenCL device can be partitioned into multiple sub-devices. The new sub-devices alias specific
collections of compute units within the parent device, according to a partition scheme. The sub-
devices may be used in any situation that their parent device may be used. Partitioning a device
does not destroy the parent device, which may continue to be used along side and intermingled
with its child sub-devices. Also see Device, Parent device and Root device.

Sub-group

Sub-groups are an implementation-dependent grouping of work-items within a work-group. The
size and number of sub-groups is implementation-defined.

Sub-group Barrier

See Barrier.

Submitted

The second state in the six state model for the execution of a command. The transition into this
state occurs when the command is flushed from the command-queue and submitted for
execution on the device. Once submitted, a programmer can assume a command will execute
once its prerequisites have been met.

SVM Buffer

A memory allocation enabled to work with Shared Virtual Memory (SVM). Depending on how the
SVM buffer is created, it can be a coarse-grained or fine-grained SVM buffer. Optionally it may
be wrapped by a Buffer Object. See Shared Virtual Memory (SVM).

Synchronization

Synchronization refers to mechanisms that constrain the order of execution and the visibility of
memory operations between two or more units of execution.

Synchronization operations

Operations that define memory order constraints in a program. They play a special role in
controlling how memory operations in one unit of execution (such as work-items or, when using
SVM a host thread) are made visible to another. Synchronization operations in OpenCL include
atomic operations and fences.

Synchronization point

A synchronization point between a pair of commands (A and B) assures that results of command
A happens-before command B is launched (i.e. enters the ready state) .

15



Synchronizes with

A relation between operations in two different units of execution that defines a memory order
constraint in global memory (global-synchronizes-with) or local memory (local-synchronizes-
with).

Task Parallel Programming Model

A programming model in which computations are expressed in terms of multiple concurrent
tasks executing in one or more command-queues. The concurrent tasks can be running different
kernels.

Thread-safe

An OpenCL API call is considered to be thread-safe if the internal state as managed by OpenCL
remains consistent when called simultaneously by multiple host threads. OpenCL API calls that
are thread-safe allow an application to call these functions in multiple host threads without
having to implement mutual exclusion across these host threads i.e. they are also re-entrant-
safe.

Undefined

The behavior of an OpenCL API call, built-in function used inside a kernel or execution of a
kernel that is explicitly not defined by OpenCL. A conforming implementation is not required to
specify what occurs when an undefined construct is encountered in OpenCL.

Unit of execution

A generic term for a process, OS managed thread running on the host (a host-thread), kernel-
instance, host program, work-item or any other executable agent that advances the work
associated with a program.

Valid Object

An OpenCL object is considered valid if it meets all of the following criteria:

• The object was created by a successful call to an OpenCL API function.

• The object has a strictly positive application-owned reference count.

• The object has not had its backing memory changed outside of normal usage by the OpenCL
implementation (e.g. corrupted by the application, a library it uses, the implementation itself,
or any other agent that can access the object’s backing memory).

An object is only valid in the platform where it was created.

An OpenCL implementation must check for a NULL object to determine if an object is valid. The
behavior for all other invalid objects is implementation-defined.

Work-group

A collection of related work-items that execute on a single compute unit. The work-items in the
group execute the same kernel-instance and share local memory and work-group functions.

Work-group Barrier

See Barrier.

16



Work-group Function

A function that carries out collective operations across all the work-items in a work-group.
Available collective operations are a barrier, reduction, broadcast, prefix sum, and evaluation of
a predicate. A work-group function must occur within a converged control flow; i.e. all work-
items in the work-group must encounter precisely the same work-group function.

Work-group Synchronization

Constraints on the order of execution for work-items in a single work-group.

Work-pool

A logical pool associated with a device that holds commands and work-groups from kernel-
instances that are ready to execute. OpenCL does not constrain the order that commands and
work-groups are scheduled for execution from the work-pool; i.e. a programmer must assume
that they could be interleaved. There is one work-pool per device used by all command-queues
associated with that device. The work-pool may be implemented in any manner as long as it
assures that work-groups placed in the pool will eventually execute.

Work-item

One of a collection of parallel executions of a kernel invoked on a device by a command. A work-
item is executed by one or more processing elements as part of a work-group executing on a
compute unit. A work-item is distinguished from other work-items by its global ID or the
combination of its work-group ID and its local ID within a work-group.

17



Chapter 3. The OpenCL Architecture
OpenCL is an open industry standard for programming a heterogeneous collection of CPUs, GPUs
and other discrete computing devices organized into a single platform. It is more than a language.
OpenCL is a framework for parallel programming and includes a language, API, libraries and a
runtime system to support software development. Using OpenCL, for example, a programmer can
write general purpose programs that execute on GPUs without the need to map their algorithms
onto a 3D graphics API such as OpenGL or DirectX.

The target of OpenCL is expert programmers wanting to write portable yet efficient code. This
includes library writers, middleware vendors, and performance oriented application programmers.
Therefore OpenCL provides a low-level hardware abstraction plus a framework to support
programming and many details of the underlying hardware are exposed.

To describe the core ideas behind OpenCL, we will use a hierarchy of models:

• Platform Model

• Memory Model

• Execution Model

• Programming Model

3.1. Platform Model
The Platform model for OpenCL is defined below. The model consists of a host connected to one or
more OpenCL devices. An OpenCL device is divided into one or more compute units (CUs) which
are further divided into one or more processing elements (PEs). Computations on a device occur
within the processing elements.

An OpenCL application is implemented as both host code and device kernel code. The host code
portion of an OpenCL application runs on a host processor according to the models native to the
host platform. The OpenCL application host code submits the kernel code as commands from the
host to OpenCL devices. An OpenCL device executes the commands computation on the processing
elements within the device.

An OpenCL device has considerable latitude on how computations are mapped onto the devices
processing elements. When processing elements within a compute unit execute the same sequence
of statements across the processing elements, the control flow is said to be converged. Hardware
optimized for executing a single stream of instructions over multiple processing elements is well
suited to converged control flows. When the control flow varies from one processing element to
another, it is said to be diverged. While a kernel always begins execution with a converged control
flow, due to branching statements within a kernel, converged and diverged control flows may occur
within a single kernel. This provides a great deal of flexibility in the algorithms that can be
implemented with OpenCL.

18



Figure 1. Platform Model … one host plus one or more compute devices each with one or more compute
units composed of one or more processing elements.

Programmers may provide programs in the form of OpenCL C source strings, the SPIR-V
intermediate language, or as implementation-defined binary objects. An OpenCL platform provides
a compiler to translate programs of these forms into executable program objects. The device code
compiler may be online or offline. An online compiler is available during host program execution
using standard APIs. An offline compiler is invoked outside of host program control, using platform-
specific methods. The OpenCL runtime allows developers to get a previously compiled device
program executable and be able to load and execute a previously compiled device program
executable.

OpenCL defines two kinds of platform profiles: a full profile and a reduced-functionality embedded
profile. A full profile platform must provide an online compiler for all its devices. An embedded
platform may provide an online compiler, but is not required to do so.

A device may expose special purpose functionality as a built-in kernel. The platform provides APIs
for enumerating and invoking the built-in kernels offered by a device, but otherwise does not
define their construction or semantics. A custom device supports only built-in kernels, and cannot
be programmed via a kernel language.

 Built-in kernels and custom devices are missing before version 1.2.

All device types support the OpenCL execution model, the OpenCL memory model, and the APIs
used in OpenCL to manage devices.

The platform model is an abstraction describing how OpenCL views the hardware. The relationship
between the elements of the platform model and the hardware in a system may be a fixed property
of a device or it may be a dynamic feature of a program dependent on how a compiler optimizes
code to best utilize physical hardware.

3.2. Execution Model
The OpenCL execution model is defined in terms of two distinct units of execution: kernels that
execute on one or more OpenCL devices and a host program that executes on the host. With regard
to OpenCL, the kernels are where the "work" associated with a computation occurs. This work
occurs through work-items that execute in groups (work-groups).

A kernel executes within a well-defined context managed by the host. The context defines the

19



environment within which kernels execute. It includes the following resources:

• Devices: One or more devices exposed by the OpenCL platform.

• Kernel Objects: The OpenCL functions with their associated argument values that run on
OpenCL devices.

• Program Objects: The program source and executable that implement the kernels.

• Memory Objects: Variables visible to the host and the OpenCL devices. Instances of kernels
operate on these objects as they execute.

The host program uses the OpenCL API to create and manage the context. Functions from the
OpenCL API enable the host to interact with a device through a command-queue. Each command-
queue is associated with a single device. The commands placed into the command-queue fall into
one of three types:

• Kernel-enqueue commands: Enqueue a kernel for execution on a device.

• Memory commands: Transfer data between the host and device memory, between memory
objects, or map and unmap memory objects from the host address space.

• Synchronization commands: Explicit synchronization points that define order constraints
between commands.

In addition to commands submitted from the host command-queue, a kernel running on a device
can enqueue commands to a device-side command-queue. This results in child kernels enqueued by
a kernel executing on a device (the parent kernel). Regardless of whether the command-queue
resides on the host or a device, each command passes through six states.

1. Queued: The command is enqueued to a command-queue. A command may reside in the queue
until it is flushed either explicitly (a call to clFlush) or implicitly by some other command.

2. Submitted: The command is flushed from the command-queue and submitted for execution on
the device. Once flushed from the command-queue, a command will execute after any
prerequisites for execution are met.

3. Ready: All prerequisites constraining execution of a command have been met. The command,
or for a kernel-enqueue command the collection of work-groups associated with a command, is
placed in a device work-pool from which it is scheduled for execution.

4. Running: Execution of the command starts. For the case of a kernel-enqueue command, one or
more work-groups associated with the command start to execute.

5. Ended: Execution of a command ends. When a Kernel-enqueue command ends, all of the work-
groups associated with that command have finished their execution. Immediate side effects, i.e.
those associated with the kernel but not necessarily with its child kernels, are visible to other
units of execution. These side effects include updates to values in global memory.

6. Complete: The command and its child commands have finished execution and the status of the
event object, if any, associated with the command is set to CL_COMPLETE.

The execution states and the transitions between them are summarized below. These states and the
concept of a device work-pool are conceptual elements of the execution model. An implementation
of OpenCL has considerable freedom in how these are exposed to a program. Five of the transitions,

20



however, are directly observable through a profiling interface. These profiled states are shown
below.

Figure 2. The states and transitions between states defined in the OpenCL execution model. A subset of these
transitions is exposed through the profiling interface.

Commands communicate their status through Event objects. Successful completion is indicated by
setting the event status associated with a command to CL_COMPLETE. Unsuccessful completion results
in abnormal termination of the command which is indicated by setting the event status to a
negative value. In this case, the command-queue associated with the abnormally terminated
command and all other command-queues in the same context may no longer be available and their
behavior is implementation-defined.

A command submitted to a device will not launch until prerequisites that constrain the order of
commands have been resolved. These prerequisites have three sources:

• They may arise from commands submitted to a command-queue that constrain the order in
which commands are launched. For example, commands that follow a command-queue barrier
will not launch until all commands prior to the barrier are complete.

• The second source of prerequisites is dependencies between commands expressed through
events. A command may include an optional list of events. The command will wait and not
launch until all the events in the list are in the state CL_COMPLETE. By this mechanism, event
objects define order constraints between commands and coordinate execution between the host
and one or more devices.

• The third source of prerequisites can be the presence of non-trivial C initializers or C++
constructors for program scope global variables. In this case, OpenCL C/C++ compiler shall

21



generate program initialization kernels that perform C initialization or C++ construction. These
kernels must be executed by OpenCL runtime on a device before any kernel from the same
program can be executed on the same device. The ND-range for any program initialization
kernel is (1,1,1). When multiple programs are linked together, the order of execution of program
initialization kernels that belong to different programs is undefined.

Program clean up may result in the execution of one or more program clean up kernels by the
OpenCL runtime. This is due to the presence of non-trivial C++ destructors for program scope
variables. The ND-range for executing any program clean up kernel is (1,1,1). The order of
execution of clean up kernels from different programs (that are linked together) is undefined.

 Program initialization and clean-up kernels are missing before version 2.2.

Note that C initializers, C++ constructors, or C++ destructors for program scope variables cannot use
pointers to coarse grain and fine grain SVM allocations.

A command may be submitted to a device and yet have no visible side effects outside of waiting on
and satisfying event dependences. Examples include markers, kernels executed over ranges of no
work-items or copy operations with zero sizes. Such commands may pass directly from the ready
state to the ended state.

Command execution can be blocking or non-blocking. Consider a sequence of OpenCL commands.
For blocking commands, the OpenCL API functions that enqueue commands don’t return until the
command has completed. Alternatively, OpenCL functions that enqueue non-blocking commands
return immediately and require that a programmer defines dependencies between enqueued
commands to ensure that enqueued commands are not launched before needed resources are
available. In both cases, the actual execution of the command may occur asynchronously with
execution of the host program.

Commands within a single command-queue execute relative to each other in one of two modes:

• In-order Execution: Commands and any side effects associated with commands appear to the
OpenCL application as if they execute in the same order they are enqueued to a command-
queue.

• Out-of-order Execution: Commands execute in any order constrained only by explicit
synchronization points (e.g. through command-queue barriers) or explicit dependencies on
events.

Multiple command-queues can be present within a single context. Multiple command-queues
execute commands independently. Event objects visible to the host program can be used to define
synchronization points between commands in multiple command-queues. If such synchronization
points are established between commands in multiple command-queues, an implementation must
assure that the command-queues progress concurrently and correctly account for the dependencies
established by the synchronization points. For a detailed explanation of synchronization points, see
the execution model Synchronization section.

The core of the OpenCL execution model is defined by how the kernels execute. When a kernel-
enqueue command submits a kernel for execution, an index space is defined. The kernel, the
argument values associated with the arguments to the kernel, and the parameters that define the

22



index space define a kernel-instance. When a kernel-instance executes on a device, the kernel
function executes for each point in the defined index space. Each of these executing kernel
functions is called a work-item. The work-items associated with a given kernel-instance are
managed by the device in groups called work-groups. These work-groups define a coarse grained
decomposition of the Index space. Work-groups are further divided into sub-groups, which provide
an additional level of control over execution.

 Sub-groups are missing before version 2.1.

Work-items have a global ID based on their coordinates within the Index space. They can also be
defined in terms of their work-group and the local ID within a work-group. The details of this
mapping are described in the following section.

3.2.1. Mapping Work-items Onto an Nd-range

The index space supported by OpenCL is called an ND-range. An ND-range is an N-dimensional
index space, where N is one, two or three. The ND-range is decomposed into work-groups forming
blocks that cover the Index space. An ND-range is defined by three integer arrays of length N:

• The extent of the index space (or global size) in each dimension.

• An offset index F indicating the initial value of the indices in each dimension (zero by default).

• The size of a work-group (local size) in each dimension.

Each work-items global ID is an N-dimensional tuple. The global ID components are values in the
range from F, to F plus the number of elements in that dimension minus one.

Unless a kernel comes from a source that disallows it, e.g. OpenCL C 1.x or using -cl-uniform-work
-group-size, the size of work-groups in an ND-range (the local size) need not be the same for all
work-groups. In this case, any single dimension for which the global size is not divisible by the local
size will be partitioned into two regions. One region will have work-groups that have the same
number of work-items as was specified for that dimension by the programmer (the local size). The
other region will have work-groups with less than the number of work items specified by the local
size parameter in that dimension (the remainder work-groups). Work-group sizes could be non-
uniform in multiple dimensions, potentially producing work-groups of up to 4 different sizes in a
2D range and 8 different sizes in a 3D range.

 Non-uniform work-group sizes are missing before version 2.0.

Each work-item is assigned to a work-group and given a local ID to represent its position within the
work-group. A work-item’s local ID is an N-dimensional tuple with components in the range from
zero to the size of the work-group in that dimension minus one.

Work-groups are assigned IDs similarly. The number of work-groups in each dimension is not
directly defined but is inferred from the local and global ND-ranges provided when a kernel-
instance is enqueued. A work-group’s ID is an N-dimensional tuple with components in the range 0
to the ceiling of the global size in that dimension divided by the local size in the same dimension. As
a result, the combination of a work-group ID and the local-ID within a work-group uniquely defines
a work-item. Each work-item is identifiable in two ways; in terms of a global index, and in terms of

23



a work-group index plus a local index within a work-group.

For example, consider the 2-dimensional index space shown below. We input the index space for
the work-items (Gx, Gy), the size of each work-group (Sx, Sy) and the global ID offset (Fx, Fy). The
global indices define an Gxby Gy index space where the total number of work-items is the product of
Gx and Gy. The local indices define an Sx by Sy index space where the number of work-items in a
single work-group is the product of Sx and Sy. Given the size of each work-group and the total
number of work-items we can compute the number of work-groups. A 2-dimensional index space is
used to uniquely identify a work-group. Each work-item is identified by its global ID (gx, gy) or by
the combination of the work-group ID (wx, wy), the size of each work-group (Sx,Sy) and the local ID
(sx, sy) inside the work-group such that

(gx, gy) = (wx × Sx + sx + Fx, wy × Sy + sy + Fy)

The number of work-groups can be computed as:

(Wx, Wy) = (ceil(Gx / Sx), ceil(Gy / Sy))

Given a global ID and the work-group size, the work-group ID for a work-item is computed as:

(wx, wy) = ( (gx - sx - Fx) / Sx, (gy - sy - Fy) / Sy )

Figure 3. An example of an ND-range index space showing work-items, their global IDs and their mapping
onto the pair of work-group and local IDs. In this case, we assume that in each dimension, the size of the
work-group evenly divides the global ND-range size (i.e. all work-groups have the same size) and that the
offset is equal to zero.

Within a work-group work-items may be divided into sub-groups. The mapping of work-items to
sub-groups is implementation-defined and may be queried at runtime. While sub-groups may be
used in multi-dimensional work-groups, each sub-group is 1-dimensional and any given work-item
may query which sub-group it is a member of.

24



 Sub-groups are missing before version 2.1.

Work-items are mapped into sub-groups through a combination of compile-time decisions and the
parameters of the dispatch. The mapping to sub-groups is invariant for the duration of a kernels
execution, across dispatches of a given kernel with the same work-group dimensions, between
dispatches and query operations consistent with the dispatch parameterization, and from one
work-group to another within the dispatch (excluding the trailing edge work-groups in the presence
of non-uniform work-group sizes). In addition, all sub-groups within a work-group will be the same
size, apart from the sub-group with the maximum index which may be smaller if the size of the
work-group is not evenly divisible by the size of the sub-groups.

In the degenerate case, a single sub-group must be supported for each work-group. In this situation
all sub-group scope functions are equivalent to their work-group level equivalents.

3.2.2. Execution of Kernel-instances

The work carried out by an OpenCL program occurs through the execution of kernel-instances on
compute devices. To understand the details of OpenCL’s execution model, we need to consider how
a kernel object moves from the kernel-enqueue command, into a command-queue, executes on a
device, and completes.

A kernel object is defined as a function within the program object and a collection of arguments
connecting the kernel to a set of argument values. The host program enqueues a kernel object to the
command-queue along with the ND-range and the work-group decomposition. These define a
kernel-instance. In addition, an optional set of events may be defined when the kernel is enqueued.
The events associated with a particular kernel-instance are used to constrain when the kernel-
instance is launched with respect to other commands in the queue or to commands in other queues
within the same context.

A kernel-instance is submitted to a device. For an in-order command-queue, the kernel instances
appear to launch and then execute in that same order; where we use the term appear to emphasize
that when there are no dependencies between commands and hence differences in the order that
commands execute cannot be observed in a program, an implementation can reorder commands
even in an in-order command-queue. For an out-of-order command-queue, kernel-instances wait to
be launched until:

• Synchronization commands enqueued prior to the kernel-instance are satisfied.

• Each of the events in an optional event list defined when the kernel-instance was enqueued are
set to CL_COMPLETE.

Once these conditions are met, the kernel-instance is launched and the work-groups associated
with the kernel-instance are placed into a pool of ready to execute work-groups. This pool is called
a work-pool. The work-pool may be implemented in any manner as long as it assures that work-
groups placed in the pool will eventually execute. The device schedules work-groups from the
work-pool for execution on the compute units of the device. The kernel-enqueue command is
complete when all work-groups associated with the kernel-instance end their execution, updates to
global memory associated with a command are visible globally, and the device signals successful
completion by setting the event associated with the kernel-enqueue command to CL_COMPLETE.

25



While a command-queue is associated with only one device, a single device may be associated with
multiple command-queues all feeding into the single work-pool. A device may also be associated
with command-queues associated with different contexts within the same platform, again all
feeding into the single work-pool. The device will pull work-groups from the work-pool and execute
them on one or several compute units in any order; possibly interleaving execution of work-groups
from multiple commands. A conforming implementation may choose to serialize the work-groups
so a correct algorithm cannot assume that work-groups will execute in parallel. There is no safe
and portable way to synchronize across the independent execution of work-groups since once in
the work-pool, they can execute in any order.

The work-items within a single sub-group execute concurrently but not necessarily in parallel (i.e.
they are not guaranteed to make independent forward progress). Therefore, only high-level
synchronization constructs (e.g. sub-group functions such as barriers) that apply to all the work-
items in a sub-group are well defined and included in OpenCL.

 Sub-groups are missing before version 2.1.

Sub-groups execute concurrently within a given work-group and with appropriate device support
(see Querying Devices), may make independent forward progress with respect to each other, with
respect to host threads and with respect to any entities external to the OpenCL system but running
on an OpenCL device, even in the absence of work-group barrier operations. In this situation, sub-
groups are able to internally synchronize using barrier operations without synchronizing with
each other and may perform operations that rely on runtime dependencies on operations other
sub-groups perform.

The work-items within a single work-group execute concurrently but are only guaranteed to make
independent progress in the presence of sub-groups and device support. In the absence of this
capability, only high-level synchronization constructs (e.g. work-group functions such as barriers)
that apply to all the work-items in a work-group are well defined and included in OpenCL for
synchronization within the work-group.

In the absence of synchronization functions (e.g. a barrier), work-items within a sub-group may be
serialized. In the presence of sub-group functions, work-items within a sub-group may be serialized
before any given sub-group function, between dynamically encountered pairs of sub-group
functions and between a work-group function and the end of the kernel.

In the absence of independent forward progress of constituent sub-groups, work-items within a
work-group may be serialized before, after or between work-group synchronization functions.

3.2.3. Device-Side Enqueue

 Device-side enqueue is missing before version 2.0.

Algorithms may need to generate additional work as they execute. In many cases, this additional
work cannot be determined statically; so the work associated with a kernel only emerges at
runtime as the kernel-instance executes. This capability could be implemented in logic running
within the host program, but involvement of the host may add significant overhead and/or
complexity to the application control flow. A more efficient approach would be to nest kernel-

26



enqueue commands from inside other kernels. This nested parallelism can be realized by
supporting the enqueuing of kernels on a device without direct involvement by the host program;
so-called device-side enqueue.

Device-side kernel-enqueue commands are similar to host-side kernel-enqueue commands. The
kernel executing on a device (the parent kernel) enqueues a kernel-instance (the child kernel) to a
device-side command-queue. This is an out-of-order command-queue and follows the same
behavior as the out-of-order command-queues exposed to the host program. Commands enqueued
to a device-side command-queue generate and use events to enforce order constraints just as for
the command-queue on the host. These events, however, are only visible to the parent kernel
running on the device. When these prerequisite events take on the value CL_COMPLETE, the work-
groups associated with the child kernel are launched into the devices work pool. The device then
schedules them for execution on the compute units of the device. Child and parent kernels execute
asynchronously. However, a parent will not indicate that it is complete by setting its event to
CL_COMPLETE until all child kernels have ended execution and have signaled completion by setting
any associated events to the value CL_COMPLETE. Should any child kernel complete with an event
status set to a negative value (i.e. abnormally terminate), the parent kernel will abnormally
terminate and propagate the childs negative event value as the value of the parents event. If there
are multiple children that have an event status set to a negative value, the selection of which childs
negative event value is propagated is implementation-defined.

3.2.4. Synchronization

Synchronization refers to mechanisms that constrain the order of execution between two or more
units of execution. Consider the following three domains of synchronization in OpenCL:

• Work-group synchronization: Constraints on the order of execution for work-items in a single
work-group

• Sub-group synchronization: Constraints on the order of execution for work-items in a single
sub-group. Note: Sub-groups are missing before version 2.1

• Command synchronization: Constraints on the order of commands launched for execution

Synchronization across all work-items within a single work-group is carried out using a work-group
function. These functions carry out collective operations across all the work-items in a work-group.
Available collective operations are: barrier, reduction, broadcast, prefix sum, and evaluation of a
predicate. A work-group function must occur within a converged control flow; i.e. all work-items in
the work-group must encounter precisely the same work-group function. For example, if a work-
group function occurs within a loop, the work-items must encounter the same work-group function
in the same loop iterations. All the work-items of a work-group must execute the work-group
function and complete reads and writes to memory before any are allowed to continue execution
beyond the work-group function. Work-group functions that apply between work-groups are not
provided in OpenCL since OpenCL does not define forward-progress or ordering relations between
work-groups, hence collective synchronization operations are not well defined.

Synchronization across all work-items within a single sub-group is carried out using a sub-group
function. These functions carry out collective operations across all the work-items in a sub-group.
Available collective operations are: barrier, reduction, broadcast, prefix sum, and evaluation of a
predicate. A sub-group function must occur within a converged control flow; i.e. all work-items in

27



the sub-group must encounter precisely the same sub-group function. For example, if a work-group
function occurs within a loop, the work-items must encounter the same sub-group function in the
same loop iterations. All the work-items of a sub-group must execute the sub-group function and
complete reads and writes to memory before any are allowed to continue execution beyond the
sub-group function. Synchronization between sub-groups must either be performed using work-
group functions, or through memory operations. Using memory operations for sub-group
synchronization should be used carefully as forward progress of sub-groups relative to each other
is only supported optionally by OpenCL implementations.

Command synchronization is defined in terms of distinct synchronization points. The
synchronization points occur between commands in host command-queues and between
commands in device-side command-queues. The synchronization points defined in OpenCL
include:

• Launching a command: A kernel-instance is launched onto a device after all events that kernel
is waiting-on have been set to CL_COMPLETE.

• Ending a command: Child kernels may be enqueued such that they wait for the parent kernel
to reach the end state before they can be launched. In this case, the ending of the parent
command defines a synchronization point.

• Completion of a command: A kernel-instance is complete after all of the work-groups in the
kernel and all of its child kernels have completed. This is signaled to the host, a parent kernel or
other kernels within command-queues by setting the value of the event associated with a kernel
to CL_COMPLETE.

• Blocking Commands: A blocking command defines a synchronization point between the unit of
execution that calls the blocking API function and the enqueued command reaching the
complete state.

• Command-queue barrier: The command-queue barrier ensures that all previously enqueued
commands have completed before subsequently enqueued commands can be launched.

• clFinish: This function blocks until all previously enqueued commands in the command-queue
have completed after which clFinish defines a synchronization point and the clFinish function
returns.

A synchronization point between a pair of commands (A and B) assures that results of command A
happens-before command B is launched. This requires that any updates to memory from command
A complete and are made available to other commands before the synchronization point completes.
Likewise, this requires that command B waits until after the synchronization point before loading
values from global memory. The concept of a synchronization point works in a similar fashion for
commands such as a barrier that apply to two sets of commands. All the commands prior to the
barrier must complete and make their results available to following commands. Furthermore, any
commands following the barrier must wait for the commands prior to the barrier before loading
values and continuing their execution.

These happens-before relationships are a fundamental part of the OpenCL 2.x memory model.
When applied at the level of commands, they are straightforward to define at a language level in
terms of ordering relationships between different commands. Ordering memory operations inside
different commands, however, requires rules more complex than can be captured by the high level
concept of a synchronization point. These rules are described in detail in Memory Ordering Rules.

28



3.2.5. Categories of Kernels

The OpenCL execution model supports three types of kernels:

• OpenCL kernels are managed by the OpenCL API as kernel objects associated with kernel
functions within program objects. OpenCL program objects are created and built using OpenCL
APIs. The OpenCL API includes functions to query the kernel languages and and intermediate
languages that may be used to create OpenCL program objects for a device.

• Native kernels are accessed through a host function pointer. Native kernels are queued for
execution along with OpenCL kernels on a device and share memory objects with OpenCL
kernels. For example, these native kernels could be functions defined in application code or
exported from a library. The ability to execute native kernels is optional within OpenCL and the
semantics of native kernels are implementation-defined. The OpenCL API includes functions to
query capabilities of a device to determine if this capability is supported.

• Built-in kernels are tied to particular device and are not built at runtime from source code in a
program object. The common use of built in kernels is to expose fixed-function hardware or
firmware associated with a particular OpenCL device or custom device. The semantics of a
built-in kernel may be defined outside of OpenCL and hence are implementation-defined. Note:
Built-in kernels are missing before version 1.2.

All three types of kernels are manipulated through the OpenCL command-queues and must
conform to the synchronization points defined in the OpenCL execution model.

3.3. Memory Model
The OpenCL memory model describes the structure, contents, and behavior of the memory exposed
by an OpenCL platform as an OpenCL program runs. The model allows a programmer to reason
about values in memory as the host program and multiple kernel-instances execute.

An OpenCL program defines a context that includes a host, one or more devices, command-queues,
and memory exposed within the context. Consider the units of execution involved with such a
program. The host program runs as one or more host threads managed by the operating system
running on the host (the details of which are defined outside of OpenCL). There may be multiple
devices in a single context which all have access to memory objects defined by OpenCL. On a single
device, multiple work-groups may execute in parallel with potentially overlapping updates to
memory. Finally, within a single work-group, multiple work-items concurrently execute, once again
with potentially overlapping updates to memory.

The memory model must precisely define how the values in memory as seen from each of these
units of execution interact so a programmer can reason about the correctness of OpenCL programs.
We define the memory model in four parts.

• Memory regions: The distinct memories visible to the host and the devices that share a context.

• Memory objects: The objects defined by the OpenCL API and their management by the host and
devices.

• Shared Virtual Memory: A virtual address space exposed to both the host and the devices within
a context. Note: SVM is missing before version 2.0.

29



• Consistency Model: Rules that define which values are observed when multiple units of
execution load data from memory plus the atomic/fence operations that constrain the order of
memory operations and define synchronization relationships.

3.3.1. Fundamental Memory Regions

Memory in OpenCL is divided into two parts.

• Host Memory: The memory directly available to the host. The detailed behavior of host
memory is defined outside of OpenCL. Memory objects move between the Host and the devices
through functions within the OpenCL API or through a shared virtual memory interface.

• Device Memory: Memory directly available to kernels executing on OpenCL devices.

Device memory consists of four named address spaces or memory regions:

• Global Memory: This memory region permits read/write access to all work-items in all work-
groups running on any device within a context. Work-items can read from or write to any
element of a memory object. Reads and writes to global memory may be cached depending on
the capabilities of the device.

• Constant Memory: A region of global memory that remains constant during the execution of a
kernel-instance. The host allocates and initializes memory objects placed into constant memory.

• Local Memory: A memory region local to a work-group. This memory region can be used to
allocate variables that are shared by all work-items in that work-group.

• Private Memory: A region of memory private to a work-item. Variables defined in one work-
items private memory are not visible to another work-item.

The memory regions and their relationship to the OpenCL Platform model are summarized below.
Local and private memories are always associated with a particular device. The global and constant
memories, however, are shared between all devices within a given context. An OpenCL device may
include a cache to support efficient access to these shared memories.

To understand memory in OpenCL, it is important to appreciate the relationships between these
named address spaces. The four named address spaces available to a device are disjoint meaning
they do not overlap. This is a logical relationship, however, and an implementation may choose to
let these disjoint named address spaces share physical memory.

Programmers often need functions callable from kernels where the pointers manipulated by those
functions can point to multiple named address spaces. This saves a programmer from the error-
prone and wasteful practice of creating multiple copies of functions; one for each named address
space. Therefore the global, local and private address spaces belong to a single generic address
space. This is closely modeled after the concept of a generic address space used in the embedded C
standard (ISO/IEC 9899:1999). Since they all belong to a single generic address space, the following
properties are supported for pointers to named address spaces in device memory:

• A pointer to the generic address space can be cast to a pointer to a global, local or private
address space

• A pointer to a global, local or private address space can be cast to a pointer to the generic

30



address space.

• A pointer to a global, local or private address space can be implicitly converted to a pointer to
the generic address space, but the converse is not allowed.

The constant address space is disjoint from the generic address space.

 The generic address space is missing before version 2.0.

The addresses of memory associated with memory objects in Global memory are not preserved
between kernel instances, between a device and the host, and between devices. In this regard
global memory acts as a global pool of memory objects rather than an address space. This
restriction is relaxed when shared virtual memory (SVM) is used.

 Shared virtual memory is missing before version 2.0.

SVM causes addresses to be meaningful between the host and all of the devices within a context
hence supporting the use of pointer based data structures in OpenCL kernels. It logically extends a
portion of the global memory into the host address space giving work-items access to the host
address space. On platforms with hardware support for a shared address space between the host
and one or more devices, SVM may also provide a more efficient way to share data between devices
and the host. Details about SVM are presented in Shared Virtual Memory.

31



Figure 4. The named address spaces exposed in an OpenCL Platform. Global and Constant memories are
shared between the one or more devices within a context, while local and private memories are associated
with a single device. Each device may include an optional cache to support efficient access to their view of
the global and constant address spaces.

A programmer may use the features of the memory consistency model to manage safe access to
global memory from multiple work-items potentially running on one or more devices. In addition,
when using shared virtual memory (SVM), the memory consistency model may also be used to
ensure that host threads safely access memory locations in the shared memory region.

3.3.2. Memory Objects

The contents of global memory are memory objects. A memory object is a handle to a reference
counted region of global memory. Memory objects use the OpenCL type cl_mem and fall into three
distinct classes.

• Buffer: A memory object stored as a block of contiguous memory and used as a general purpose
object to hold data used in an OpenCL program. The types of the values within a buffer may be
any of the built in types (such as int, float), vector types, or user-defined structures. The buffer
can be manipulated through pointers much as one would with any block of memory in C.

• Image: An image memory object holds one, two or three dimensional images. The formats are
based on the standard image formats used in graphics applications. An image is an opaque data
structure managed by functions defined in the OpenCL API. To optimize the manipulation of
images stored in the texture memories found in many GPUs, OpenCL kernels have traditionally
been disallowed from both reading and writing a single image. In OpenCL 2.0, however, we
have relaxed this restriction by providing synchronization and fence operations that let

32



programmers properly synchronize their code to safely allow a kernel to read and write a single
image.

• Pipe: The pipe memory object conceptually is an ordered sequence of data items. A pipe has two
endpoints: a write endpoint into which data items are inserted, and a read endpoint from which
data items are removed. At any one time, only one kernel instance may write into a pipe, and
only one kernel instance may read from a pipe. To support the producer consumer design
pattern, one kernel instance connects to the write endpoint (the producer) while another kernel
instance connects to the reading endpoint (the consumer). Note: The pipe memory object is
missing before version 2.0.

Memory objects are allocated by host APIs. The host program can provide the runtime with a
pointer to a block of continuous memory to hold the memory object when the object is created
(CL_MEM_USE_HOST_PTR). Alternatively, the physical memory can be managed by the OpenCL runtime
and not be directly accessible to the host program.

Allocation and access to memory objects within the different memory regions varies between the
host and work-items running on a device. This is summarized in the Memory Regions table, which
describes whether the kernel or the host can allocate from a memory region, the type of allocation
(static at compile time vs. dynamic at runtime) and the type of access allowed (i.e. whether the
kernel or the host can read and/or write to a memory region).

Table 1. Memory Regions

Global Constant Local Private

Host Allocation Dynamic Dynamic Dynamic None

Access Read/Write to
Buffers and
Images, but not
Pipes

Read/Write None None

Kernel Allocation Static (program
scope variables)

Static (program
scope variables)

Static for parent
kernel, Dynamic
for child kernels

Static

Access Read/Write Read-only Read/Write, No
access to child
kernel memory

Read/Write

The Memory Regions table shows the different memory regions in OpenCL and how memory
objects are allocated and accessed by the host and by an executing instance of a kernel. For kernels,
we distinguish between the behavior of local memory for a parent kernel and its child kernels.

Once allocated, a memory object is made available to kernel-instances running on one or more
devices. In addition to Shared Virtual Memory, there are three basic ways to manage the contents
of buffers between the host and devices.

• Read/Write/Fill commands: The data associated with a memory object is explicitly read and
written between the host and global memory regions using commands enqueued to an OpenCL
command-queue. Note: Fill commands are missing before version 1.2.

33



• Map/Unmap commands: Data from the memory object is mapped into a contiguous block of
memory accessed through a host accessible pointer. The host program enqueues a map
command on block of a memory object before it can be safely manipulated by the host program.
When the host program is finished working with the block of memory, the host program
enqueues an unmap command to allow a kernel-instance to safely read and/or write the buffer.

• Copy commands: The data associated with a memory object is copied between two buffers,
each of which may reside either on the host or on the device.

With Read/Write/Map, the commands can be blocking or non-blocking operations. The OpenCL
function call for a blocking memory transfer returns once the command (memory transfer) has
completed. At this point the associated memory resources on the host can be safely reused, and
following operations on the host are guaranteed that the transfer has already completed. For a non-
blocking memory transfer, the OpenCL function call returns as soon as the command is enqueued.

Memory objects are bound to a context and hence can appear in multiple kernel-instances running
on more than one physical device. The OpenCL platform must support a large range of hardware
platforms including systems that do not support a single shared address space in hardware; hence
the ways memory objects can be shared between kernel-instances is restricted. The basic principle
is that multiple read operations on memory objects from multiple kernel-instances that overlap in
time are allowed, but mixing overlapping reads and writes into the same memory objects from
different kernel instances is only allowed when fine grained synchronization is used with Shared
Virtual Memory.

When global memory is manipulated by multiple kernel-instances running on multiple devices, the
OpenCL runtime system must manage the association of memory objects with a given device. In
most cases the OpenCL runtime will implicitly associate a memory object with a device. A kernel
instance is naturally associated with the command-queue to which the kernel was submitted. Since
a command-queue can only access a single device, the queue uniquely defines which device is
involved with any given kernel-instance; hence defining a clear association between memory
objects, kernel-instances and devices. Programmers may anticipate these associations in their
programs and explicitly manage association of memory objects with devices in order to improve
performance.

3.3.3. Lifetime of Shared Direct3D Memory Objects

This section refers to similar Direct3D 10 and Direct3D 11 objects and concepts such as resources,
reference counts, and devices.

Sharing is accomplished by creating an OpenCL context via the context create parameters
CL_CONTEXT_D3D10_DEVICE_KHR (for Direct3D 10, if the cl_khr_d3d10_sharing extension is supported) or
CL_CONTEXT_D3D11_DEVICE_KHR (for Direct3D 11, if the cl_khr_d3d11_sharing extension is supported.

An OpenCL memory object created from a Direct3D resource remains valid as long as the
corresponding Direct3D resource has not been deleted. If the Direct3D resource is deleted through
the Direct3D API, subsequent use of the OpenCL memory object will result in undefined behavior,
including but not limited to possible OpenCL errors, data corruption, and program termination.

The successful creation of a cl_context against a Direct3D device will increment the internal
Direct3D reference count on the specified device. The internal Direct3D reference count on that

34



Direct3D device will be decremented when the OpenCL reference count on the returned OpenCL
context drops to zero.

The OpenCL context and corresponding command-queues are dependent on the existence of the
Direct3D device from which the OpenCL context was created. If the Direct3D device is deleted
through the Direct3D API, subsequent use of the OpenCL context will result in undefined behavior,
including but not limited to possible OpenCL errors, data corruption, and program termination.

3.3.3.1. Lifetime of Shared EGLImage Objects

An OpenCL memory object created from an EGL EGLImage object remains valid according to the
lifetime behavior as described in the EGL_KHR_image_base extension.

Any EGLImage siblings exist in any client API context

For OpenCL this means that while the application retains a reference on the cl_mem (the EGL
sibling), the image remains valid.

3.3.4. Lifetime of Shared OpenCL/OpenGL Memory Objects

An OpenCL memory object created from an OpenGL object (hereinafter referred to as a “shared
OpenCL/OpenGL object”) remains valid as long as the corresponding OpenGL object has not been
deleted. If the OpenGL object is deleted through the OpenGL API (e.g. glDeleteBuffers,
glDeleteTextures, or glDeleteRenderbuffers), subsequent use of the OpenCL buffer or image object
will result in undefined behavior, including but not limited to possible OpenCL errors and data
corruption, but may not result in program termination.

The OpenCL context and corresponding command-queues are dependent on the existence of the
OpenGL share group object, or the share group associated with the OpenGL context from which the
OpenCL context is created. If the OpenGL share group object or all OpenGL contexts in the share
group are destroyed, any use of the OpenCL context or command-queue(s) will result in undefined
behavior, which may include program termination. Applications should destroy the OpenCL
command-queue(s) and OpenCL context before destroying the corresponding OpenGL share group
or contexts

3.3.5. Shared Virtual Memory

 Shared virtual memory is missing before version 2.0.

OpenCL extends the global memory region into the host memory region through a shared virtual
memory (SVM) mechanism. There are three types of SVM in OpenCL

• Coarse-Grained buffer SVM: Sharing occurs at the granularity of regions of OpenCL buffer
memory objects. Consistency is enforced at synchronization points and with map/unmap
commands to drive updates between the host and the device. This form of SVM is similar to
non-SVM use of memory; however, it lets kernel-instances share pointer-based data structures
(such as linked-lists) with the host program. Program scope global variables are treated as per-
device coarse-grained SVM for addressing and sharing purposes.

• Fine-Grained buffer SVM: Sharing occurs at the granularity of individual loads/stores into

35



bytes within OpenCL buffer memory objects. Loads and stores may be cached. This means
consistency is guaranteed at synchronization points. If the optional OpenCL atomics are
supported, they can be used to provide fine-grained control of memory consistency.

• Fine-Grained system SVM: Sharing occurs at the granularity of individual loads/stores into
bytes occurring anywhere within the host memory. Loads and stores may be cached so
consistency is guaranteed at synchronization points. If the optional OpenCL atomics are
supported, they can be used to provide fine-grained control of memory consistency.

Table 2. A summary of shared virtual memory (SVM) options in OpenCL

Granularity of
sharing

Memory
Allocation

Mechanisms to
enforce

Consistency

Explicit updates
between host and

device

Non-SVM buffers OpenCL Memory
objects(buffer)

clCreateBuffer
clCreateBufferWi

thProperties

Host
synchronization

points on the same
or between

devices.

yes, through Map
and Unmap
commands.

Coarse-Grained
buffer SVM

OpenCL Memory
objects (buffer)

clSVMAlloc Host
synchronization
points between

devices

yes, through Map
and Unmap
commands.

Fine-Grained
buffer SVM

Bytes within
OpenCL Memory
objects (buffer)

clSVMAlloc Synchronization
points plus
atomics (if
supported)

No

Fine-Grained
system SVM

Bytes within Host
memory (system)

Host memory
allocation

mechanisms (e.g.
malloc)

Synchronization
points plus
atomics (if
supported)

No

Coarse-Grained buffer SVM is a required feature for OpenCL 2.0, 2.1, or 2.2 devices and an optional
feature for OpenCL 3.0 or newer devices. Fine-Grained SVM is an optional feature for all OpenCL
devices. The various SVM mechanisms to access host memory from the work-items associated with
a kernel instance are summarized above.

3.3.6. Memory Consistency Model for OpenCL 1.x

 This memory consistency model is deprecated by version 2.0.

OpenCL 1.x uses a relaxed consistency memory model; i.e. the state of memory visible to a work-
item is not guaranteed to be consistent across the collection of work-items at all times.

Within a work-item memory has load / store consistency. Local memory is consistent across work-
items in a single work-group at a work-group barrier. Global memory is consistent across work-
items in a single work-group at a work-group barrier, but there are no guarantees of memory
consistency between different work-groups executing a kernel.

36



Memory consistency for memory objects shared between enqueued commands is enforced at a
synchronization point.

3.3.7. Memory Consistency Model for OpenCL 2.x

 This memory consistency model is missing before version 2.0.

The OpenCL 2.x memory model tells programmers what they can expect from an OpenCL 2.x
implementation; which memory operations are guaranteed to happen in which order and which
memory values each read operation will return. The memory model tells compiler writers which
restrictions they must follow when implementing compiler optimizations; which variables they can
cache in registers and when they can move reads or writes around a barrier or atomic operation.
The memory model also tells hardware designers about limitations on hardware optimizations; for
example, when they must flush or invalidate hardware caches.

The memory consistency model in OpenCL 2.x is based on the memory model from the ISO C11
programming language. To help make the presentation more precise and self-contained, we include
modified paragraphs taken verbatim from the ISO C11 international standard. When a paragraph is
taken or modified from the C11 standard, it is identified as such along with its original location in
the C11 standard.

For programmers, the most intuitive model is the sequential consistency memory model. Sequential
consistency interleaves the steps executed by each of the units of execution. Each access to a
memory location sees the last assignment to that location in that interleaving. While sequential
consistency is relatively straightforward for a programmer to reason about, implementing
sequential consistency is expensive. Therefore, OpenCL 2.x implements a relaxed memory
consistency model; i.e. it is possible to write programs where the loads from memory violate
sequential consistency. Fortunately, if a program does not contain any races and if the program
only uses atomic operations that utilize the sequentially consistent memory order (the default
memory ordering for OpenCL 2.x), OpenCL programs appear to execute with sequential
consistency.

Programmers can to some degree control how the memory model is relaxed by choosing the
memory order for synchronization operations. The precise semantics of synchronization and the
memory orders are formally defined in Memory Ordering Rules. Here, we give a high level
description of how these memory orders apply to atomic operations on atomic objects shared
between units of execution. OpenCL 2.x memory_order choices are based on those from the ISO C11
standard memory model. They are specified in certain OpenCL functions through the following
enumeration constants:

• memory_order_relaxed: implies no order constraints. This memory order can be used safely to
increment counters that are concurrently incremented, but it doesn’t guarantee anything about
the ordering with respect to operations to other memory locations. It can also be used, for
example, to do ticket allocation and by expert programmers implementing lock-free algorithms.

• memory_order_acquire: A synchronization operation (fence or atomic) that has acquire
semantics "acquires" side-effects from a release operation that synchronises with it: if an
acquire synchronises with a release, the acquiring unit of execution will see all side-effects
preceding that release (and possibly subsequent side-effects.) As part of carefully-designed

37



protocols, programmers can use an "acquire" to safely observe the work of another unit of
execution.

• memory_order_release: A synchronization operation (fence or atomic operation) that has
release semantics "releases" side effects to an acquire operation that synchronises with it. All
side effects that precede the release are included in the release. As part of carefully-designed
protocols, programmers can use a "release" to make changes made in one unit of execution
visible to other units of execution.


In general, no acquire must always synchronise with any particular release.
However, synchronisation can be forced by certain executions. See the description
of Fence Operations for detailed rules for when synchronisation must occur.

• memory_order_acq_rel: A synchronization operation with acquire-release semantics has the
properties of both the acquire and release memory orders. It is typically used to order read-
modify-write operations.

• memory_order_seq_cst: The loads and stores of each unit of execution appear to execute in
program (i.e., sequenced-before) order, and the loads and stores from different units of
execution appear to be simply interleaved.

Regardless of which memory_order is specified, resolving constraints on memory operations across
a heterogeneous platform adds considerable overhead to the execution of a program. An OpenCL
platform may be able to optimize certain operations that depend on the features of the memory
consistency model by restricting the scope of the memory operations. Distinct memory scopes are
defined by the values of the memory_scope enumeration constant:

• memory_scope_work_item: memory-ordering constraints only apply within the work-item [1].

• memory_scope_sub_group: memory-ordering constraints only apply within the sub-group.

• memory_scope_work_group: memory-ordering constraints only apply to work-items executing
within a single work-group.

• memory_scope_device: memory-ordering constraints only apply to work-items executing on a
single device

• memory_scope_all_svm_devices: memory-ordering constraints apply to work-items executing
across multiple devices and (when using SVM) the host. A release performed with
memory_scope_all_svm_devices to a buffer that does not have the CL_MEM_SVM_ATOMICS flag set
will commit to at least memory_scope_device visibility, with full synchronization of the buffer
at a queue synchronization point (e.g. an OpenCL event).

• memory_scope_all_devices: an alias for memory_scope_all_svm_devices.

These memory scopes define a hierarchy of visibilities when analyzing the ordering constraints of
memory operations. For example if a programmer knows that a sequence of memory operations
will only be associated with a collection of work-items from a single work-group (and hence will
run on a single device), the implementation is spared the overhead of managing the memory orders
across other devices within the same context. This can substantially reduce overhead in a program.
All memory scopes are valid when used on global memory or local memory. For local memory, all
visibility is constrained to within a given work-group and scopes wider than
memory_scope_work_group carry no additional meaning.

38



In the following subsections (leading up to OpenCL Framework), we will explain the
synchronization constructs and detailed rules needed to use OpenCL’s 2.x relaxed memory models.
It is important to appreciate, however, that many programs do not benefit from relaxed memory
models. Even expert programmers have a difficult time using atomics and fences to write correct
programs with relaxed memory models. A large number of OpenCL programs can be written using
a simplified memory model. This is accomplished by following these guidelines.

• Write programs that manage safe sharing of global memory objects through the
synchronization points defined by the command-queues.

• Restrict low level synchronization inside work-groups to the work-group functions such as
barrier.

• If you want sequential consistency behavior with system allocations or fine-grain SVM buffers
with atomics support, use only memory_order_seq_cst operations with the scope
memory_scope_all_svm_devices.

• If you want sequential consistency behavior when not using system allocations or fine-grain
SVM buffers with atomics support, use only memory_order_seq_cst operations with the scope
memory_scope_device or memory_scope_all_svm_devices.

• Ensure your program has no races.

If these guidelines are followed in your OpenCL programs, you can skip the detailed rules behind
the relaxed memory models and go directly to OpenCL Framework.

3.3.8. Overview of Atomic and Fence Operations

OpenCL 2.x has a number of synchronization operations that are used to define memory order
constraints in a program. They play a special role in controlling how memory operations in one
unit of execution (such as work-items or, when using SVM a host thread) are made visible to
another. There are two types of synchronization operations in OpenCL; atomic operations and
fences.

Atomic operations are indivisible. They either occur completely or not at all. These operations are
used to order memory operations between units of execution and hence they are parameterized
with the memory_order and memory_scope parameters defined by the OpenCL memory
consistency model. The atomic operations for OpenCL kernel languages are similar to the
corresponding operations defined by the C11 standard.

The OpenCL 2.x atomic operations apply to variables of an atomic type (a subset of those in the C11
standard) including atomic versions of the int, uint, long, ulong, float, double, half, intptr_t,
uintptr_t, size_t, and ptrdiff_t types. However, support for some of these atomic types depends on
support for the corresponding regular types.

An atomic operation on one or more memory locations is either an acquire operation, a release
operation, or both an acquire and release operation. An atomic operation without an associated
memory location is a fence and can be either an acquire fence, a release fence, or both an acquire
and release fence. In addition, there are relaxed atomic operations, which do not have
synchronization properties, and atomic read-modify-write operations, which have special
characteristics. [C11 standard, Section 5.1.2.4, paragraph 5, modified.]

39



The orders memory_order_acquire (used for reads), memory_order_release (used for writes),
and memory_order_acq_rel (used for read-modify-write operations) are used for simple
communication between units of execution using shared variables. Informally, executing a
memory_order_release on an atomic object A makes all previous side effects visible to any unit of
execution that later executes a memory_order_acquire on A. The orders memory_order_acquire,
memory_order_release, and memory_order_acq_rel do not provide sequential consistency for
race-free programs because they will not ensure that atomic stores followed by atomic loads
become visible to other threads in that order.

The fence operation is atomic_work_item_fence, which includes a memory_order argument as well
as the memory_scope and cl_mem_fence_flags arguments. Depending on the memory_order
argument, this operation:

• has no effects, if memory_order_relaxed;

• is an acquire fence, if memory_order_acquire;

• is a release fence, if memory_order_release;

• is both an acquire fence and a release fence, if memory_order_acq_rel;

• is a sequentially-consistent fence with both acquire and release semantics, if
memory_order_seq_cst.

If specified, the cl_mem_fence_flags argument must be CLK_IMAGE_MEM_FENCE, CLK_GLOBAL_MEM_FENCE,
CLK_LOCAL_MEM_FENCE, or CLK_GLOBAL_MEM_FENCE | CLK_LOCAL_MEM_FENCE.

The atomic_work_item_fence(CLK_IMAGE_MEM_FENCE, …) built-in function must be used to make sure
that sampler-less writes are visible to later reads by the same work-item. Without use of the
atomic_work_item_fence function, write-read coherence on image objects is not guaranteed: if a
work-item reads from an image to which it has previously written without an intervening
atomic_work_item_fence, it is not guaranteed that those previous writes are visible to the work-
item.

The synchronization operations in OpenCL 2.x can be parameterized by a memory_scope. Memory
scopes control the extent that an atomic operation or fence is visible with respect to the memory
model. These memory scopes may be used when performing atomic operations and fences on
global memory and local memory. When used on global memory visibility is bounded by the
capabilities of that memory. When used on a fine-grained non-atomic SVM buffer, a coarse-grained
SVM buffer, or a non-SVM buffer, operations parameterized with memory_scope_all_svm_devices
will behave as if they were parameterized with memory_scope_device. When used on local
memory, visibility is bounded by the work-group and, as a result, memory_scope with wider
visibility than memory_scope_work_group will be reduced to memory_scope_work_group.

Two actions A and B are defined to have an inclusive scope if they have the same scope P such that:

• P is memory_scope_sub_group and A and B are executed by work-items within the same sub-
group.

• P is memory_scope_work_group and A and B are executed by work-items within the same
work-group.

• P is memory_scope_device and A and B are executed by work-items on the same device when

40



A and B apply to an SVM allocation or A and B are executed by work-items in the same kernel
or one of its children when A and B apply to a cl_mem buffer.

• P is memory_scope_all_svm_devices if A and B are executed by host threads or by work-items
on one or more devices that can share SVM memory with each other and the host process.

3.3.9. Memory Ordering Rules

Fundamentally, the issue in a memory model is to understand the orderings in time of
modifications to objects in memory. Modifying an object or calling a function that modifies an
object are side effects, i.e. changes in the state of the execution environment. Evaluation of an
expression in general includes both value computations and initiation of side effects. Value
computation for an lvalue expression includes determining the identity of the designated object.
[C11 standard, Section 5.1.2.3, paragraph 2, modified.]

We assume that the OpenCL kernel language and host programming languages have a sequenced-
before relation between the evaluations executed by a single unit of execution. This sequenced-
before relation is an asymmetric, transitive, pair-wise relation between those evaluations, which
induces a partial order among them. Given any two evaluations A and B, if A is sequenced-before B,
then the execution of A shall precede the execution of B. (Conversely, if A is sequenced-before B,
then B is sequenced-after A.) If A is not sequenced-before or sequenced-after B, then A and B are
unsequenced. Evaluations A and B are indeterminately sequenced when A is either sequenced-
before or sequenced-after B, but it is unspecified which. [C11 standard, Section 5.1.2.3, paragraph 3,
modified.]



Sequenced-before is a partial order of the operations executed by a single unit of
execution (e.g. a host thread or work-item). It generally corresponds to the source
program order of those operations, and is partial because of the undefined
argument evaluation order of the OpenCL C kernel language.

In an OpenCL kernel language, the value of an object visible to a work-item W at a particular point
is the initial value of the object, a value stored in the object by W, or a value stored in the object by
another work-item or host thread, according to the rules below. Depending on details of the host
programming language, the value of an object visible to a host thread may also be the value stored
in that object by another work-item or host thread. [C11 standard, Section 5.1.2.4, paragraph 2,
modified.]

Two expression evaluations conflict if one of them modifies a memory location and the other one
reads or modifies the same memory location. [C11 standard, Section 5.1.2.4, paragraph 4.]

All modifications to a particular atomic object M occur in some particular total order, called the
modification order of M. If A and B are modifications of an atomic object M, and A happens-before
B, then A shall precede B in the modification order of M, which is defined below. Note that the
modification order of an atomic object M is independent of whether M is in local or global memory.
[C11 standard, Section 5.1.2.4, paragraph 7, modified.]

A release sequence begins with a release operation A on an atomic object M and is the maximal
contiguous sub-sequence of side effects in the modification order of M, where the first operation is
A and every subsequent operation either is performed by the same work-item or host thread that

41



performed the release or is an atomic read-modify-write operation. [C11 standard, Section 5.1.2.4,
paragraph 10, modified.]

OpenCL’s local and global memories are disjoint. Kernels may access both kinds of memory while
host threads may only access global memory. Furthermore, the flags argument of OpenCL’s
work_group_barrier function specifies which memory operations the function will make visible:
these memory operations can be, for example, just the ones to local memory, or the ones to global
memory, or both. Since the visibility of memory operations can be specified for local memory
separately from global memory, we define two related but independent relations, global-
synchronizes-with and local-synchronizes-with. Certain operations on global memory may global-
synchronize-with other operations performed by another work-item or host thread. An example is
a release atomic operation in one work- item that global-synchronizes-with an acquire atomic
operation in a second work-item. Similarly, certain atomic operations on local objects in kernels can
local-synchronize- with other atomic operations on those local objects. [C11 standard, Section
5.1.2.4, paragraph 11, modified.]

We define two separate happens-before relations: global-happens-before and local-happens-before.

A global memory action A global-happens-before a global memory action B if

• A is sequenced before B, or

• A global-synchronizes-with B, or

• For some global memory action C, A global-happens-before C and C global-happens-before B.

A local memory action A local-happens-before a local memory action B if

• A is sequenced before B, or

• A local-synchronizes-with B, or

• For some local memory action C, A local-happens-before C and C local-happens-before B.

An OpenCL 2.x implementation shall ensure that no program execution demonstrates a cycle in
either the local-happens-before relation or the global-happens-before relation.



The global- and local-happens-before relations are critical to defining what values
are read and when data races occur. The global-happens-before relation, for
example, defines what global memory operations definitely happen before what
other global memory operations. If an operation A global-happens-before
operation B then A must occur before B; in particular, any write done by A will be
visible to B. The local-happens-before relation has similar properties for local
memory. Programmers can use the local- and global-happens-before relations to
reason about the order of program actions.

A visible side effect A on a global object M with respect to a value computation B of M satisfies the
conditions:

• A global-happens-before B, and

• there is no other side effect X to M such that A global-happens-before X and X global-happens-
before B.

42



We define visible side effects for local objects M similarly. The value of a non-atomic scalar object
M, as determined by evaluation B, shall be the value stored by the visible side effect A. [C11
standard, Section 5.1.2.4, paragraph 19, modified.]

The execution of a program contains a data race if it contains two conflicting actions A and B in
different units of execution, and

• (1) at least one of A or B is not atomic, or A and B do not have inclusive memory scope, and

• (2) the actions are global actions unordered by the global-happens-before relation or are local
actions unordered by the local-happens-before relation.

Any such data race results in undefined behavior. [C11 standard, Section 5.1.2.4, paragraph 25,
modified.]

We also define the visible sequence of side effects on local and global atomic objects. The remaining
paragraphs of this subsection define this sequence for a global atomic object M; the visible
sequence of side effects for a local atomic object is defined similarly by using the local-happens-
before relation.

The visible sequence of side effects on a global atomic object M, with respect to a value
computation B of M, is a maximal contiguous sub-sequence of side effects in the modification order
of M, where the first side effect is visible with respect to B, and for every side effect, it is not the
case that B global-happens-before it. The value of M, as determined by evaluation B, shall be the
value stored by some operation in the visible sequence of M with respect to B. [C11 standard,
Section 5.1.2.4, paragraph 22, modified.]

If an operation A that modifies an atomic object M global-happens-before an operation B that
modifies M, then A shall be earlier than B in the modification order of M. This requirement is
known as write-write coherence.

If a value computation A of an atomic object M global-happens-before a value computation B of M,
and A takes its value from a side effect X on M, then the value computed by B shall either equal the
value stored by X, or be the value stored by a side effect Y on M, where Y follows X in the
modification order of M. This requirement is known as read-read coherence. [C11 standard, Section
5.1.2.4, paragraph 22, modified.]

If a value computation A of an atomic object M global-happens-before an operation B on M, then A
shall take its value from a side effect X on M, where X precedes B in the modification order of M.
This requirement is known as read-write coherence.

If a side effect X on an atomic object M global-happens-before a value computation B of M, then the
evaluation B shall take its value from X or from a side effect Y that follows X in the modification
order of M. This requirement is known as write-read coherence.

3.3.9.1. Atomic Operations

This and following sections describe how different program actions in kernel C code and the host
program contribute to the local- and global-happens-before relations. This section discusses
ordering rules for OpenCL 2.x atomic operations.

43



Device-side enqueue defines the enumerated type memory_order.

• For memory_order_relaxed, no operation orders memory.

• For memory_order_release, memory_order_acq_rel, and memory_order_seq_cst, a store
operation performs a release operation on the affected memory location.

• For memory_order_acquire, memory_order_acq_rel, and memory_order_seq_cst, a load
operation performs an acquire operation on the affected memory location. [C11 standard,
Section 7.17.3, paragraphs 2-4, modified.]

Certain built-in functions synchronize with other built-in functions performed by another unit of
execution. This is true for pairs of release and acquire operations under specific circumstances. An
atomic operation A that performs a release operation on a global object M global-synchronizes-with
an atomic operation B that performs an acquire operation on M and reads a value written by any
side effect in the release sequence headed by A. A similar rule holds for atomic operations on
objects in local memory: an atomic operation A that performs a release operation on a local object
M local-synchronizes-with an atomic operation B that performs an acquire operation on M and
reads a value written by any side effect in the release sequence headed by A. [C11 standard, Section
5.1.2.4, paragraph 11, modified.]



Atomic operations specifying memory_order_relaxed are relaxed only with
respect to memory ordering. Implementations must still guarantee that any given
atomic access to a particular atomic object be indivisible with respect to all other
atomic accesses to that object.

There shall exist a single total order S for all memory_order_seq_cst operations that is consistent
with the modification orders for all affected locations, as well as the appropriate global-happens-
before and local-happens-before orders for those locations, such that each memory_order_seq_cst
operation B that loads a value from an atomic object M in global or local memory observes one of
the following values:

• the result of the last modification A of M that precedes B in S, if it exists, or

• if A exists, the result of some modification of M in the visible sequence of side effects with
respect to B that is not memory_order_seq_cst and that does not happen before A, or

• if A does not exist, the result of some modification of M in the visible sequence of side effects
with respect to B that is not memory_order_seq_cst. [C11 standard, Section 7.17.3, paragraph 6,
modified.]

Let X and Y be two memory_order_seq_cst operations. If X local-synchronizes-with or global-
synchronizes-with Y then X both local-synchronizes-with Y and global-synchronizes-with Y.

If the total order S exists, the following rules hold:

• For an atomic operation B that reads the value of an atomic object M, if there is a
memory_order_seq_cst fence X sequenced-before B, then B observes either the last
memory_order_seq_cst modification of M preceding X in the total order S or a later
modification of M in its modification order. [C11 standard, Section 7.17.3, paragraph 9.]

• For atomic operations A and B on an atomic object M, where A modifies M and B takes its value,

44



if there is a memory_order_seq_cst fence X such that A is sequenced-before X and B follows X
in S, then B observes either the effects of A or a later modification of M in its modification
order. [C11 standard, Section 7.17.3, paragraph 10.]

• For atomic operations A and B on an atomic object M, where A modifies M and B takes its value,
if there are memory_order_seq_cst fences X and Y such that A is sequenced-before X, Y is
sequenced-before B, and X precedes Y in S, then B observes either the effects of A or a later
modification of M in its modification order. [C11 standard, Section 7.17.3, paragraph 11.]

• For atomic operations A and B on an atomic object M, if there are memory_order_seq_cst
fences X and Y such that A is sequenced-before X, Y is sequenced-before B, and X precedes Y in
S, then B occurs later than A in the modification order of M.



memory_order_seq_cst ensures sequential consistency only for a program that is
(1) free of data races, and (2) exclusively uses memory_order_seq_cst
synchronization operations. Any use of weaker ordering will invalidate this
guarantee unless extreme care is used. In particular, memory_order_seq_cst
fences ensure a total order only for the fences themselves. Fences cannot, in
general, be used to restore sequential consistency for atomic operations with
weaker ordering specifications.

Atomic read-modify-write operations should always read the last value (in the modification order)
stored before the write associated with the read-modify-write operation. [C11 standard, Section
7.17.3, paragraph 12.]

Implementations should ensure that no "out-of-thin-air" values are computed that circularly
depend on their own computation.

Note: Under the rules described above, and independent to the previously footnoted C++ issue, it is
known that x == y == 42 is a valid final state in the following problematic example:

global atomic_int x = ATOMIC_VAR_INIT(0);
local atomic_int y = ATOMIC_VAR_INIT(0);

unit_of_execution_1:
... [execution not reading or writing x or y, leading up to:]
int t = atomic_load_explicit(&y, memory_order_acquire);
atomic_store_explicit(&x, t, memory_order_release);

unit_of_execution_2:
... [execution not reading or writing x or y, leading up to:]
int t = atomic_load_explicit(&x, memory_order_acquire);
atomic_store_explicit(&y, t, memory_order_release);

This is not useful behavior and implementations should not exploit this phenomenon. It should be
expected that in the future this may be disallowed by appropriate updates to the memory model
description by the OpenCL committee.

Implementations should make atomic stores visible to atomic loads within a reasonable amount of

45



time. [C11 standard, Section 7.17.3, paragraph 16.]

As long as the following conditions are met, a host program sharing SVM memory with a kernel
executing on one or more OpenCL 2.x devices may use atomic and synchronization operations to
ensure that its assignments, and those of the kernel, are visible to each other:

1. Either fine-grained buffer or fine-grained system SVM must be used to share memory. While
coarse-grained buffer SVM allocations may support atomic operations, visibility on these
allocations is not guaranteed except at map and unmap operations.

2. The optional OpenCL 2.x SVM atomic-controlled visibility specified by provision of the CL_MEM_
SVM_ATOMICS flag must be supported by the device and the flag provided to the SVM buffer on
allocation.

3. The host atomic and synchronization operations must be compatible with those of an OpenCL
kernel language. This requires that the size and representation of the data types that the host
atomic operations act on be consistent with the OpenCL kernel language atomic types.

If these conditions are met, the host operations will apply at all_svm_devices scope.

3.3.9.2. Fence Operations

This section describes how the OpenCL 2.x fence operations contribute to the local- and global-
happens-before relations.

Earlier, we introduced synchronization primitives called fences. Fences can utilize the acquire
memory_order, release memory_order, or both. A fence with acquire semantics is called an acquire
fence; a fence with release semantics is called a release fence. The overview of atomic and fence
operations section describes the memory orders that result in acquire and release fences.

A global release fence A global-synchronizes-with a global acquire fence B if there exist atomic
operations X and Y, both operating on some global atomic object M, such that A is sequenced-
before X, X modifies M, Y is sequenced-before B, Y reads the value written by X or a value written
by any side effect in the hypothetical release sequence X would head if it were a release operation,
and that the scopes of A, B are inclusive. [C11 standard, Section 7.17.4, paragraph 2, modified.]

A global release fence A global-synchronizes-with an atomic operation B that performs an acquire
operation on a global atomic object M if there exists an atomic operation X such that A is
sequenced-before X, X modifies M, B reads the value written by X or a value written by any side
effect in the hypothetical release sequence X would head if it were a release operation, and the
scopes of A and B are inclusive. [C11 standard, Section 7.17.4, paragraph 3, modified.]

An atomic operation A that is a release operation on a global atomic object M global-synchronizes-
with a global acquire fence B if there exists some atomic operation X on M such that X is
sequenced-before B and reads the value written by A or a value written by any side effect in the
release sequence headed by A, and the scopes of A and B are inclusive. [C11 standard, Section
7.17.4, paragraph 4, modified.]

A local release fence A local-synchronizes-with a local acquire fence B if there exist atomic
operations X and Y, both operating on some local atomic object M, such that A is sequenced-before
X, X modifies M, Y is sequenced-before B, and Y reads the value written by X or a value written by

46



any side effect in the hypothetical release sequence X would head if it were a release operation, and
the scopes of A and B are inclusive. [C11 standard, Section 7.17.4, paragraph 2, modified.]

A local release fence A local-synchronizes-with an atomic operation B that performs an acquire
operation on a local atomic object M if there exists an atomic operation X such that A is sequenced-
before X, X modifies M, and B reads the value written by X or a value written by any side effect in
the hypothetical release sequence X would head if it were a release operation, and the scopes of A
and B are inclusive. [C11 standard, Section 7.17.4, paragraph 3, modified.]

An atomic operation A that is a release operation on a local atomic object M local-synchronizes-
with a local acquire fence B if there exists some atomic operation X on M such that X is sequenced-
before B and reads the value written by A or a value written by any side effect in the release
sequence headed by A, and the scopes of A and B are inclusive. [C11 standard, Section 7.17.4,
paragraph 4, modified.]

Let X and Y be two work-item fences that each have both the CLK_GLOBAL_MEM_FENCE and
CLK_LOCAL_MEM_FENCE flags set. X global-synchronizes-with Y and X local synchronizes with Y if the
conditions required for X to global-synchronize with Y are met, the conditions required for X to
local-synchronize-with Y are met, or both sets of conditions are met.

3.3.9.3. Work-Group Functions

The OpenCL kernel execution model includes collective operations across the work-items within a
single work-group. These are called work-group functions, and include functions such as barriers,
scans, reductions, and broadcasts. We will first discuss the work-group barrier function. Other
work-group functions are discussed afterwards.

The barrier function provides a mechanism for a kernel to synchronize the work-items within a
single work-group: informally, each work-item of the work-group must execute the barrier before
any are allowed to proceed. It also orders memory operations to a specified combination of one or
more address spaces such as local memory or global memory, in a similar manner to a fence.

To precisely specify the memory ordering semantics for barrier, we need to distinguish between a
dynamic and a static instance of the call to a barrier. A call to a barrier can appear in a loop, for
example, and each execution of the same static barrier call results in a new dynamic instance of the
barrier that will independently synchronize a work-groups work-items.

A work-item executing a dynamic instance of a barrier results in two operations, both fences, that
are called the entry and exit fences. These fences obey all the rules for fences specified elsewhere in
this chapter as well as the following:

• The entry fence is a release fence with the same flags and scope as requested for the barrier.

• The exit fence is an acquire fence with the same flags and scope as requested for the barrier.

• For each work-item the entry fence is sequenced before the exit fence.

• If the flags have CLK_GLOBAL_MEM_FENCE set then for each work-item the entry fence global-
synchronizes-with the exit fence of all other work-items in the same work-group.

• If the flags have CLK_LOCAL_MEM_FENCE set then for each work-item the entry fence local-
synchronizes-with the exit fence of all other work-items in the same work-group.

47



Other work-group functions include such functions as scans, reductions, and broadcasts, and are
described in the kernel language and IL specifications. The use of these work-group functions
implies sequenced-before relationships between statements within the execution of a single work-
item in order to satisfy data dependencies. For example, a work-item that provides a value to a
work-group function must behave as if it generates that value before beginning execution of that
work-group function. Furthermore, the programmer must ensure that all work-items in a work-
group must execute the same work-group function call site, or dynamic work-group function
instance.

3.3.9.4. Sub-Group Functions

 Sub-group functions are missing before version 2.1. Also see cl_khr_subgroups.

The OpenCL kernel execution model includes collective operations across the work-items within a
single sub-group. These are called sub-group functions. We will first discuss the sub-group barrier.
Other sub-group functions are discussed afterwards.

The barrier function provides a mechanism for a kernel to synchronize the work-items within a
single sub-group: informally, each work-item of the sub-group must execute the barrier before any
are allowed to proceed. It also orders memory operations to a specified combination of one or more
address spaces such as local memory or global memory, in a similar manner to a fence.

To precisely specify the memory ordering semantics for barrier, we need to distinguish between a
dynamic and a static instance of the call to a barrier. A call to a barrier can appear in a loop, for
example, and each execution of the same static barrier call results in a new dynamic instance of the
barrier that will independently synchronize the work-items in a sub-group.

A work-item executing a dynamic instance of a barrier results in two operations, both fences, that
are called the entry and exit fences. These fences obey all the rules for fences specified elsewhere in
this chapter as well as the following:

• The entry fence is a release fence with the same flags and scope as requested for the barrier.

• The exit fence is an acquire fence with the same flags and scope as requested for the barrier.

• For each work-item the entry fence is sequenced before the exit fence.

• If the flags have CLK_GLOBAL_MEM_FENCE set then for each work-item the entry fence global-
synchronizes-with the exit fence of all other work-items in the same sub-group.

• If the flags have CLK_LOCAL_MEM_FENCE set then for each work-item the entry fence local-
synchronizes-with the exit fence of all other work-items in the same sub-group.

Other sub-group functions include such functions as scans, reductions, and broadcasts, and are
described in the kernel languages and IL specifications. The use of these sub-group functions
implies sequenced-before relationships between statements within the execution of a single work-
item in order to satisfy data dependencies. For example, a work-item that provides a value to a sub-
group function must behave as if it generates that value before beginning execution of that sub-
group function. Furthermore, the programmer must ensure that all work-items in a sub-group must
execute the same sub-group function call site, or dynamic sub-group function instance.

48



3.3.9.5. Host-Side and Device-Side Commands

This section describes how the OpenCL API functions associated with command-queues contribute
to happens-before relations. There are two types of command-queues and associated API functions
in OpenCL 2.x; host command-queues and device command-queues. The interaction of these
command-queues with the memory model are for the most part equivalent. In a few cases, the rules
only applies to the host command-queue. We will indicate these special cases by specifically
denoting the host command-queue in the memory ordering rule. SVM memory consistency in such
instances is implied only with respect to synchronizing host commands.

Memory ordering rules in this section apply to all memory objects (buffers, images and pipes) as
well as to SVM allocations where no earlier, and more fine-grained, rules apply.

In the remainder of this section, we assume that each command C enqueued onto a command-
queue has an associated event object E that signals its execution status, regardless of whether E was
returned to the unit of execution that enqueued C. We also distinguish between the API function
call that enqueues a command C and creates an event E, the execution of C, and the completion of
C(which marks the event E as complete).

The ordering and synchronization rules for API commands are defined as following:

1. If an API function call X enqueues a command C, then X global-synchronizes-with C. For
example, a host API function to enqueue a kernel global-synchronizes-with the start of that
kernel-instances execution, so that memory updates sequenced-before the enqueue kernel
function call will global-happen-before any kernel reads or writes to those same memory
locations. For a device-side enqueue, global memory updates sequenced before X happens-
before C reads or writes to those memory locations only in the case of fine-grained SVM.

2. If E is an event upon which a command C waits, then E global-synchronizes-with C. In
particular, if C waits on an event E that is tracking the execution status of the command C1,
then memory operations done by C1 will global-happen-before memory operations done by C.
As an example, assume we have an OpenCL program using coarse-grain SVM sharing that
enqueues a kernel to a host command-queue to manipulate the contents of a region of a buffer
that the host thread then accesses after the kernel completes. To do this, the host thread can call
clEnqueueMapBuffer to enqueue a blocking-mode map command to map that buffer region,
specifying that the map command must wait on an event signaling the kernels completion.
When clEnqueueMapBuffer returns, any memory operations performed by the kernel to that
buffer region will global- happen-before subsequent memory operations made by the host
thread.

3. If a command C has an event E that signals its completion, then C global- synchronizes-with E.

4. For a command C enqueued to a host-side command-queue, if C has an event E that signals its
completion, then E global-synchronizes-with an API call X that waits on E. For example, if a host
thread or kernel-instance calls the wait-for-events function on E (e.g. the clWaitForEvents
function called from a host thread), then E global-synchronizes-with that wait-for-events
function call.

5. If commands C and C1 are enqueued in that sequence onto an in-order command-queue, then
the event (including the event implied between C and C1 due to the in-order queue) signaling
C's completion global-synchronizes-with C1. Note that in OpenCL 2.x, only a host command-

49



queue can be configured as an in-order queue.

6. If an API call enqueues a marker command C with an empty list of events upon which C should
wait, then the events of all commands enqueued prior to C in the command-queue global-
synchronize-with C.

7. If a host API call enqueues a command-queue barrier command C with an empty list of events
on which C should wait, then the events of all commands enqueued prior to C in the command-
queue global-synchronize-with C. In addition, the event signaling the completion of C global-
synchronizes-with all commands enqueued after C in the command-queue.

8. If a host thread executes a clFinish call X, then the events of all commands enqueued prior to X
in the command-queue global-synchronizes-with X.

9. The start of a kernel-instance K global-synchronizes-with all operations in the work-items of K.
Note that this includes the execution of any atomic operations by the work-items in a program
using fine-grain SVM.

10. All operations of all work-items of a kernel-instance K global-synchronizes-with the event
signaling the completion of K. Note that this also includes the execution of any atomic
operations by the work-items in a program using fine-grain SVM.

11. If a callback procedure P is registered on an event E, then E global-synchronizes-with all
operations of P. Note that callback procedures are only defined for commands within host
command-queues.

12. If C is a command that waits for an event E's completion, and API function call X sets the status
of a user event E's status to CL_COMPLETE (for example, from a host thread using a
clSetUserEventStatus function), then X global-synchronizes-with C.

13. If a device enqueues a command C with the CLK_ENQUEUE_FLAGS_WAIT_KERNEL flag, then the end
state of the parent kernel instance global-synchronizes with C.

14. If a work-group enqueues a command C with the CLK_ENQUEUE_FLAGS_WAIT_WORK_GROUP flag, then
the end state of the work-group global-synchronizes with C.

When using an out-of-order command-queue, a wait on an event or a marker or command-queue
barrier command can be used to ensure the correct ordering of dependent commands. In those
cases, the wait for the event or the marker or barrier command will provide the necessary global-
synchronizes-with relation.

In this situation:

• access to shared locations or disjoint locations in a single cl_mem object when using atomic
operations from different kernel instances enqueued from the host such that one or more of the
atomic operations is a write is implementation-defined and correct behavior is not guaranteed
except at synchronization points.

• access to shared locations or disjoint locations in a single cl_mem object when using atomic
operations from different kernel instances consisting of a parent kernel and any number of
child kernels enqueued by that kernel is guaranteed under the memory ordering rules
described earlier in this section.

• access to shared locations or disjoint locations in a single program scope global variable, coarse-
grained SVM allocation or fine-grained SVM allocation when using atomic operations from

50



different kernel instances enqueued from the host to a single device is guaranteed under the
memory ordering rules described earlier in this section.

If fine-grain SVM is used but without support for the OpenCL 2.x atomic operations, then the host
and devices can concurrently read the same memory locations and can concurrently update non-
overlapping memory regions, but attempts to update the same memory locations are undefined.
Memory consistency is guaranteed at the OpenCL synchronization points without the need for calls
to clEnqueueMapBuffer and clEnqueueUnmapMemObject. For fine-grained SVM buffers it is
guaranteed that at synchronization points only values written by the kernel will be updated. No
writes to fine-grained SVM buffers can be introduced that were not in the original program.

In the remainder of this section, we discuss a few points regarding the ordering rules for
commands with a host command-queue.



In an OpenCL 1.x implementation a synchronization point is a kernel-instance or
host program location where the contents of memory visible to different work-
items or command-queue commands are the same. It also says that waiting on an
event and a command-queue barrier are synchronization points between
commands in command-queues. Four of the rules listed above (2, 4, 7, and 8) cover
these OpenCL synchronization points.

A map operation (clEnqueueMapBuffer or clEnqueueMapImage) performed on a non-SVM buffer
or a coarse-grained SVM buffer is allowed to overwrite the entire target region with the latest
runtime view of the data as seen by the command with which the map operation synchronizes,
whether the values were written by the executing kernels or not. Any values that were changed
within this region by another kernel or host thread while the kernel synchronizing with the map
operation was executing may be overwritten by the map operation.

Access to non-SVM cl_mem buffers and coarse-grained SVM allocations is ordered at synchronization
points between host commands. In the presence of an out-of-order command-queue or a set of
command-queues mapped to the same device, multiple kernel instances may execute concurrently
on the same device.

3.4. The OpenCL Framework
The OpenCL framework allows applications to use a host and one or more OpenCL devices as a
single heterogeneous parallel computer system. The framework contains the following
components:

• OpenCL Platform layer: The platform layer allows the host program to discover OpenCL
devices and their capabilities and to create contexts.

• OpenCL Runtime: The runtime allows the host program to manipulate contexts once they have
been created.

• OpenCL Compiler: The OpenCL compiler creates program executables that contain OpenCL
kernels. The OpenCL compiler may build program executables from OpenCL C source strings,
the SPIR-V intermediate language, or device-specific program binary objects, depending on the
capabilities of a device. Other kernel languages or intermediate languages may be supported by

51



some implementations.

3.4.1. Mixed Version Support

 Mixed version support missing before version 1.1.

OpenCL supports devices with different capabilities under a single platform. This includes devices
which conform to different versions of the OpenCL specification. There are three version identifiers
to consider for an OpenCL system: the platform version, the version of a device, and the version(s)
of the kernel language or IL supported on a device.

The platform version indicates the version of the OpenCL runtime that is supported. This includes
all of the APIs that the host can use to interact with resources exposed by the OpenCL runtime;
including contexts, memory objects, devices, and command-queues.

The device version is an indication of the device’s capabilities separate from the runtime and
compiler as represented by the device info returned by clGetDeviceInfo. Examples of attributes
associated with the device version are resource limits (e.g., minimum size of local memory per
compute unit) and extended functionality (e.g., list of supported KHR extensions). The version
returned corresponds to the highest version of the OpenCL specification for which the device is
conformant, but is not higher than the platform version.

The language version for a device represents the OpenCL programming language features a
developer can assume are supported on a given device. The version reported is the highest version
of the language supported.

3.4.2. Backwards Compatibility

Backwards compatibility is an important goal for the OpenCL standard. Backwards compatibility is
expected such that a device will consume earlier versions of the OpenCL C programming languages
and the SPIR-V intermediate language with the following minimum requirements:

• An OpenCL 1.x device must support at least one 1.x version of the OpenCL C programming
language.

• An OpenCL 2.0 device must support all the requirements of an OpenCL 1.2 device in addition to
the OpenCL C 2.0 programming language. If multiple language versions are supported, the
compiler defaults to using the OpenCL C 1.2 language version. To utilize the OpenCL 2.0 Kernel
programming language, a programmer must specifically pass the appropriate compiler build
option (-cl-std=CL2.0). The language version must not be higher than the platform version, but
may exceed the device version.

• An OpenCL 2.1 device must support all the requirements of an OpenCL 2.0 device in addition to
the SPIR-V intermediate language at version 1.0 or above. Intermediate language versioning is
encoded as part of the binary object and no flags are required to be passed to the compiler.

• An OpenCL 2.2 device must support all the requirements of an OpenCL 2.0 device in addition to
the SPIR-V intermediate language at version 1.2 or above. Intermediate language versioning is
encoded as a part of the binary object and no flags are required to be passed to the compiler.

• OpenCL 3.0 is designed to enable any OpenCL implementation supporting OpenCL 1.2 or newer

52



to easily support and transition to OpenCL 3.0, by making many features in OpenCL 2.0, 2.1, or
2.2 optional. This means that OpenCL 3.0 is backwards compatible with OpenCL 1.2, but is not
necessarily backwards compatible with OpenCL 2.0, 2.1, or 2.2.

An OpenCL 3.0 platform must implement all OpenCL 3.0 APIs, but some APIs may return an
error code unconditionally when a feature is not supported by any devices in the platform.
Whenever a feature is optional, it will be paired with a query to determine whether the feature
is supported. The queries will enable correctly written applications to selectively use all
optional features without generating any OpenCL errors, if desired.

OpenCL 3.0 also adds a new version of the OpenCL C programming language, which makes
many features in OpenCL C 2.0 optional. The new version of OpenCL C is backwards compatible
with OpenCL C 1.2, but is not backwards compatible with OpenCL C 2.0. The new version of
OpenCL C must be explicitly requested via the -cl-std= build option, otherwise a program will
continue to be compiled using the highest OpenCL C 1.x language version supported for the
device.

Whenever an OpenCL C feature is optional in the new version of the OpenCL C programming
language, it will be paired with a feature macro, such as __opencl_c_<feature_name>, and a
corresponding API query. If a feature macro is defined then the feature is supported by the
OpenCL C compiler, otherwise the optional feature is not supported.

In order to allow future versions of OpenCL to support new types of devices, minor releases of
OpenCL may add new profiles where some features that are currently required for all OpenCL
devices become optional. All features that are required for an OpenCL profile will also be required
for that profile in subsequent minor releases of OpenCL, thereby guaranteeing backwards
compatibility for applications targeting specific profiles. It is therefore strongly recommended that
applications query the profile supported by the OpenCL device they are running on in order to
remain robust to future changes.

3.4.3. Versioning

The OpenCL specification is regularly updated with bug fixes and clarifications. Occasionally new
functionality is added to the core and extensions. In order to indicate to developers how and when
these changes are made to the specification, and to provide a way to identify each set of changes,
the OpenCL API, C language, intermediate languages and extensions maintain a version number.
Built-in kernels are also versioned.

3.4.3.1. Version Numbers

A version number comprises three logical fields:

• The major version indicates a significant change. Backwards compatibility may break across
major versions.

• The minor version indicates the addition of new functionality with backwards compatibility for
any existing profiles.

• The patch version indicates bug fixes, clarifications and general improvements.

Version numbers are represented using the cl_version type that is an alias for a 32-bit integer. The

53



fields are packed as follows:

• The major version is a 10-bit integer packed into bits 31-22.

• The minor version is a 10-bit integer packed into bits 21-12.

• The patch version is a 12-bit integer packed into bits 11-0.

This enables versions to be ordered using standard C/C++ operators.

A number of convenience macros are provided by the OpenCL Headers to make working with
version numbers easier.

• CL_VERSION_MAJOR extracts the major version from a packed cl_version.

• CL_VERSION_MINOR extracts the minor version from a packed cl_version.

• CL_VERSION_PATCH extracts the patch version from a packed cl_version.

• CL_MAKE_VERSION returns a packed cl_version from a major, minor and patch version.

• CL_VERSION_MAJOR_BITS, CL_VERSION_MINOR_BITS, and CL_VERSION_PATCH_BITS are the number of bits
in the corresponding field.

• CL_VERSION_MAJOR_MASK, CL_VERSION_MINOR_MASK, and CL_VERSION_PATCH_MASK are bitmasks used to
extract the corresponding packed fields from the version number.

typedef cl_uint cl_version;

#define CL_VERSION_MAJOR_BITS (10)
#define CL_VERSION_MINOR_BITS (10)
#define CL_VERSION_PATCH_BITS (12)

#define CL_VERSION_MAJOR_MASK ((1 << CL_VERSION_MAJOR_BITS) - 1)
#define CL_VERSION_MINOR_MASK ((1 << CL_VERSION_MINOR_BITS) - 1)
#define CL_VERSION_PATCH_MASK ((1 << CL_VERSION_PATCH_BITS) - 1)

#define CL_VERSION_MAJOR(version) \
  ((version) >> (CL_VERSION_MINOR_BITS + CL_VERSION_PATCH_BITS))

#define CL_VERSION_MINOR(version) \
  (((version) >> CL_VERSION_PATCH_BITS) & CL_VERSION_MINOR_MASK)

#define CL_VERSION_PATCH(version) ((version) & CL_VERSION_PATCH_MASK)

#define CL_MAKE_VERSION(major, minor, patch) \
  ((((major) & CL_VERSION_MAJOR_MASK) << \
        (CL_VERSION_MINOR_BITS + CL_VERSION_PATCH_BITS)) | \
   (((minor) & CL_VERSION_MINOR_MASK) << \
         CL_VERSION_PATCH_BITS) | \
    ((patch) & CL_VERSION_PATCH_MASK))

54



3.4.3.2. Version-Name Pairing

The cl_name_version structure describes a version number and a corresponding entity (e.g.
extension or built-in kernel) name:

typedef struct cl_name_version {
    cl_version    version;
    char          name[CL_NAME_VERSION_MAX_NAME_SIZE];
} cl_name_version;

• version is a Version Number.

• name is an array of CL_NAME_VERSION_MAX_NAME_SIZE characters containing a null-terminated
string, whose maximum length is therefore CL_NAME_VERSION_MAX_NAME_SIZE minus one.

3.4.4. Valid Usage and Undefined Behavior

The OpenCL specification describes valid usage and how to use the API correctly. For some
conditions where an API is used incorrectly, behavior is well-defined, such as returning an error
code. For other conditions, behavior is undefined, and may include program termination. However,
OpenCL implementations must always ensure that incorrect usage by an application does not affect
the integrity of the operating system, the OpenCL implementation, or other OpenCL client
applications in the system. In particular, any guarantees made by an operating system about
whether memory from one process can be visible to another process or not must not be violated by
an OpenCL implementation for any memory allocation. OpenCL implementations are not required
to make additional security or integrity guarantees beyond those provided by the operating system
unless explicitly directed by the application’s use of a particular feature or extension.



For instance, if an operating system guarantees that data in all its memory
allocations are set to zero when newly allocated, the OpenCL implementation must
make the same guarantees for any allocations it controls.

Similarly, if an operating system guarantees that use-after-free of host allocations
will not result in values written by another process becoming visible, the same
guarantees must be made by the OpenCL implementation for memory accessible
to an OpenCL device.

[1] This value for memory_scope can only be used with atomic_work_item_fence with flags set to CLK_IMAGE_MEM_FENCE.

55



Chapter 4. The OpenCL Platform Layer
This section describes the OpenCL platform layer which implements platform-specific features that
allow applications to query OpenCL devices, device configuration information, and to create
OpenCL contexts using one or more devices.

4.1. Querying Platform Info
The list of platforms available can be obtained with the function:

cl_int clGetPlatformIDs(
    cl_uint num_entries,
    cl_platform_id* platforms,
    cl_uint* num_platforms);

• num_entries is the number of cl_platform_id entries that can be added to platforms. If platforms
is not NULL, num_entries must be greater than zero.

• platforms returns a list of OpenCL platforms found. The cl_platform_id values returned in
platforms can be used to identify a specific OpenCL platform. If platforms is NULL, this argument
is ignored. The number of OpenCL platforms returned is the minimum of the value specified by
num_entries or the number of OpenCL platforms available.

• num_platforms returns the number of OpenCL platforms available. If num_platforms is NULL, this
argument is ignored.

clGetPlatformIDs returns CL_SUCCESS if the function is executed and, if the cl_khr_icd extension is
supported, there are a non-zero number of platforms available. Otherwise, it returns one of the
following errors:

• CL_PLATFORM_NOT_FOUND_KHR if the cl_khr_icd extension is supported and zero platforms are
available.

• CL_INVALID_VALUE if num_entries is equal to zero and platforms is not NULL or if both
num_platforms and platforms are NULL.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To obtain the list of platforms accessible through the Khronos ICD Loader, call the function:

cl_int clIcdGetPlatformIDsKHR(
    cl_uint num_entries,
    cl_platform_id* platforms,
    cl_uint* num_platforms);

 clIcdGetPlatformIDsKHR is provided by the cl_khr_icd extension.

56



• num_entries is the number of cl_platform_id entries that can be added to platforms. If platforms
is not NULL, then num_entries must be greater than zero.

• platforms returns a list of OpenCL platforms available for access through the Khronos ICD
Loader. The cl_platform_id values returned in platforms are ICD compatible and can be used to
identify a specific OpenCL platform. If the platforms argument is NULL, then this argument is
ignored. The number of OpenCL platforms returned is the minimum of the value specified by
num_entries or the number of OpenCL platforms available.

• num_platforms returns the number of OpenCL platforms available. If num_platforms is NULL,
then this argument is ignored.

clIcdGetPlatformIDsKHR returns CL_SUCCESS if the function is executed successfully and there are
a non zero number of platforms available. Otherwise, it returns one of the following errors:

• CL_PLATFORM_NOT_FOUND_KHR if zero platforms are available.

• CL_INVALID_VALUE if num_entries is equal to zero and platforms is not NULL or if both
num_platforms and platforms are NULL.

Specific information about an OpenCL platform can be obtained with the function:

cl_int clGetPlatformInfo(
    cl_platform_id platform,
    cl_platform_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• platform refers to the platform ID returned by clGetPlatformIDs or can be NULL. If platform is
NULL, the behavior is implementation-defined.

• param_name is an enumeration constant that identifies the platform information being queried.
It can be one of the following values as specified in the Platform Queries table.

• param_value is a pointer to memory location where appropriate values for a given
param_name, as specified in the Platform Queries table, will be returned. If param_value is NULL,
it is ignored.

• param_value_size specifies the size in bytes of memory pointed to by param_value. This size in
bytes must be ≥ size of return type specified in the Platform Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

The information that can be queried using clGetPlatformInfo is specified in the Platform Queries
table.

Table 3. List of supported param_names by clGetPlatformInfo

57



Platform Info Return Type Description

CL_PLATFORM_PROFILE [1] char[] [2] OpenCL profile string. Returns the profile name
supported by the implementation. The profile
name returned can be one of the following
strings:

FULL_PROFILE - if the implementation supports
the OpenCL specification (functionality defined
as part of the core specification and does not
require any extensions to be supported).

EMBEDDED_PROFILE - if the implementation
supports the OpenCL embedded profile. The
embedded profile is defined to be a subset for
each version of OpenCL. The embedded profile
for OpenCL is described in OpenCL Embedded
Profile.

CL_PLATFORM_VERSION char[] OpenCL version string. Returns the OpenCL
version supported by the implementation. This
version string has the following format:

OpenCL<space><major_version.minor_version><s
pace><platform-specific information>

The major_version.minor_version value returned
will be one of 1.0, 1.1, 1.2, 2.0, 2.1, 2.2 or 3.0.

CL_PLATFORM_NUMERIC_VERSION

missing before version 3.0.

or

CL_PLATFORM_NUMERIC_VERSION_
KHR

provided by the
cl_khr_extended_versioning
extension.

cl_version

or cl_version_
khr

Returns the detailed (major, minor, patch)
version supported by the platform. The major
and minor version numbers returned must
match those returned via CL_PLATFORM_VERSION.

CL_PLATFORM_NAME char[] Platform name string.

CL_PLATFORM_VENDOR char[] Platform vendor string.

58



Platform Info Return Type Description

CL_PLATFORM_EXTENSIONS char[] Returns a space separated list of extension
names (the extension names themselves do not
contain any spaces) supported by the platform.
Each extension that is supported by all devices
associated with this platform must be reported
here.

CL_PLATFORM_EXTENSIONS_WITH_
VERSION

missing before version 3.0.

or

CL_PLATFORM_EXTENSIONS_WITH_
VERSION_KHR

provided by the
cl_khr_extended_versioning
extension.

cl_name_
version[]

or cl_name_
version_khr[]

Returns an array of description (name and
version) structures that lists all the extensions
supported by the platform. The same extension
name must not be reported more than once. The
list of extensions reported must match the list
reported via CL_PLATFORM_EXTENSIONS.

CL_PLATFORM_HOST_TIMER_
RESOLUTION

missing before version 2.1.

cl_ulong Returns the resolution of the host timer in
nanoseconds as used by
clGetDeviceAndHostTimer.

Support for device and host timer
synchronization is required for platforms
supporting OpenCL 2.1 or 2.2. This value must be
0 for devices that do not support device and host
timer synchronization.

59



Platform Info Return Type Description

CL_PLATFORM_COMMAND_BUFFER_
CAPABILITIES_KHR

provided by the
cl_khr_command_buffer_multi_de
vice extension.

cl_platform_
command_buffer_
capabilities_
khr

Describes platform command-buffer
capabilities, encoded as bits in a bitfield.
Supported capabilities are:

CL_COMMAND_BUFFER_PLATFORM_UNIVERSAL_SYNC_KHR -
Platform supports the ability to synchronize all
commands in a command-buffer using sync-
points, irrespective of the queue the individual
commands are recorded to.

provided by the
cl_khr_command_buffer_multi_device extension.

CL_COMMAND_BUFFER_PLATFORM_REMAP_QUEUES_KHR -
Platform supports the ability to create a deep
copy of an existing command-buffer with the
commands explicitly remapped to different,
potentially incompatible, queues.

provided by the
cl_khr_command_buffer_multi_device extension.

CL_COMMAND_BUFFER_PLATFORM_AUTOMATIC_REMAP_KHR
- Platform supports the ability to create a
remapped command-buffer where the mapping
of commands to queues is done by the OpenCL
runtime in a way it determines as optimal. If
CL_COMMAND_BUFFER_PLATFORM_AUTOMATIC_REMAP_KHR
is reported, CL_COMMAND_BUFFER_PLATFORM_REMAP_
QUEUES_KHR must also be reported.

provided by the
cl_khr_command_buffer_multi_device extension.

CL_PLATFORM_EXTERNAL_MEMORY_
IMPORT_HANDLE_TYPES_KHR

provided by the
cl_khr_external_memory
extension.

cl_external_
memory_handle_
type_khr[]

Returns the list of importable external memory
handle types supported by all devices in
platform.

CL_PLATFORM_SEMAPHORE_TYPES_
KHR

provided by the
cl_khr_semaphore extension.

cl_semaphore_
type_khr[]

Returns the list of the semaphore types
supported all devices in platform.

60



Platform Info Return Type Description

CL_PLATFORM_SEMAPHORE_IMPORT_
HANDLE_TYPES_KHR

provided by the
cl_khr_external_semaphore
extension.

cl_external_
semaphore_
handle_type_
khr[]

Returns the list of importable external
semaphore handle types supported by all
devices in platform.

The size of this query may be 0 if no importable
external semaphore handle types are supported
by all devices in platform.

CL_PLATFORM_SEMAPHORE_EXPORT_
HANDLE_TYPES_KHR

provided by the
cl_khr_external_semaphore
extension.

cl_external_
semaphore_
handle_type_
khr[]

Returns the list of exportable external
semaphore handle types supported by all
devices in the platform.

This size of this query may be 0 if no exportable
external semaphore handle types are supported
by all devices in platform.

CL_PLATFORM_ICD_SUFFIX_KHR

provided by the cl_khr_icd
extension.

char[] The function name suffix used to identify
extension functions to be directed to this
platform by the ICD Loader.

clGetPlatformInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors [3].

• CL_INVALID_PLATFORM if platform is not a valid platform.

• CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is < size of return type as specified in the OpenCL Platform Queries table,
and param_value is not a NULL value.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

4.2. Querying Devices
The list of devices available on a platform can be obtained using the function [4]:

cl_int clGetDeviceIDs(
    cl_platform_id platform,
    cl_device_type device_type,
    cl_uint num_entries,
    cl_device_id* devices,
    cl_uint* num_devices);

• platform refers to the platform ID returned by clGetPlatformIDs or can be NULL. If platform is
NULL, the behavior is implementation-defined.

• device_type is a bitfield that identifies the type of OpenCL device. The device_type can be used to
query specific OpenCL devices or all OpenCL devices available. The valid values for device_type

61



are specified in the Device Types table.

• num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL, the num_entries must be greater than zero.

• devices returns a list of OpenCL devices found. The cl_device_id values returned in devices can
be used to identify a specific OpenCL device. If devices is NULL, this argument is ignored. The
number of OpenCL devices returned is the minimum of the value specified by num_entries or
the number of OpenCL devices whose type matches device_type.

• num_devices returns the number of OpenCL devices available that match device_type. If
num_devices is NULL, this argument is ignored.

Table 4. List of supported device_types by clGetDeviceIDs

Device Type Description

CL_DEVICE_TYPE_CPU An OpenCL device similar to a traditional CPU
(Central Processing Unit). The host processor
that executes OpenCL host code may also be
considered a CPU OpenCL device.

CL_DEVICE_TYPE_GPU An OpenCL device similar to a GPU (Graphics
Processing Unit). Many systems include a
dedicated processor for graphics or rendering
that may be considered a GPU OpenCL device.

CL_DEVICE_TYPE_ACCELERATOR Dedicated devices that may accelerate OpenCL
programs, such as FPGAs (Field Programmable
Gate Arrays), DSPs (Digital Signal Processors), or
AI (Artificial Intelligence) processors.

CL_DEVICE_TYPE_CUSTOM

missing before version 1.2.

Specialized devices that implement some of the
OpenCL runtime APIs but do not support all of
the required OpenCL functionality.

CL_DEVICE_TYPE_DEFAULT The default OpenCL device in the platform. One
device in the platform must be returned as the
CL_DEVICE_TYPE_DEFAULT device when passed as
the device_type to clGetDeviceIDs. CL_DEVICE_
TYPE_DEFAULT is only used to query OpenCL
devices using clGetDeviceIDs or to create
OpenCL contexts using
clCreateContextFromType, and will never be
returned in CL_DEVICE_TYPE for any OpenCL
device. The default OpenCL device must not be a
CL_DEVICE_TYPE_CUSTOM device.

62



Device Type Description

CL_DEVICE_TYPE_ALL All OpenCL devices available in the platform,
except for CL_DEVICE_TYPE_CUSTOM devices.
CL_DEVICE_TYPE_ALL is only used to query OpenCL
devices using clGetDeviceIDs or to create
OpenCL contexts using
clCreateContextFromType, and will never be
returned in CL_DEVICE_TYPE for any OpenCL
device.

clGetDeviceIDs returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_PLATFORM if platform is not a valid platform.

• CL_INVALID_DEVICE_TYPE if device_type is not a valid value.

• CL_INVALID_VALUE if num_entries is equal to zero and devices is not NULL or if both num_devices
and devices are NULL.

• CL_DEVICE_NOT_FOUND if no OpenCL devices that matched device_type were found.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The application can query specific capabilities of the OpenCL device(s) returned by
clGetDeviceIDs. This can be used by the application to determine which device(s) to use.

To get specific information about an OpenCL device, call the function:

cl_int clGetDeviceInfo(
    cl_device_id device,
    cl_device_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• device may be a device returned by clGetDeviceIDs or a sub-device created by
clCreateSubDevices. If device is a sub-device, the specific information for the sub-device will be
returned. The information that can be queried using clGetDeviceInfo is specified in the Device
Queries table.

• param_name is an enumeration constant that identifies the device information being queried. It
can be one of the following values as specified in the Device Queries table.

• param_value is a pointer to memory location where appropriate values for a given
param_name, as specified in the Device Queries table, will be returned. If param_value is NULL, it
is ignored.

63



• param_value_size specifies the size in bytes of memory pointed to by param_value. This size in
bytes must be ≥ size of return type specified in the Device Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

The device queries described in the Device Queries table should return the same information for a
root-level device i.e. a device returned by clGetDeviceIDs and any sub-devices created from this
device except for the following queries:

• CL_DEVICE_GLOBAL_MEM_CACHE_SIZE

• CL_DEVICE_BUILT_IN_KERNELS

• CL_DEVICE_PARENT_DEVICE

• CL_DEVICE_PARTITION_TYPE

• CL_DEVICE_REFERENCE_COUNT

Table 5. List of supported param_names by clGetDeviceInfo

Device Info Return Type Description

CL_DEVICE_TYPE cl_device_type The type of the OpenCL device. The device type
is purely informational and has no semantic
meaning. The device must report a single device
type, which must not be CL_DEVICE_TYPE_DEFAULT
or CL_DEVICE_TYPE_ALL.

Please see the Device Types table for supported
device types and device type descriptions.

CL_DEVICE_VENDOR_ID [5] cl_uint A unique device vendor identifier.

If the vendor has a PCI vendor ID, the low 16 bits
must contain that PCI vendor ID, and the
remaining bits must be set to zero. Otherwise,
the value returned must be a valid Khronos
vendor ID represented by type cl_khronos_
vendor_id. Khronos vendor IDs are allocated
starting at 0x10000, to distinguish them from the
PCI vendor ID namespace.

CL_DEVICE_MAX_COMPUTE_UNITS cl_uint The number of parallel compute units on the
OpenCL device. A work-group executes on a
single compute unit. The minimum value is 1.

CL_DEVICE_MAX_WORK_ITEM_
DIMENSIONS

cl_uint Maximum dimensions that specify the global
and local work-item IDs used by the data
parallel execution model. (Refer to
clEnqueueNDRangeKernel). The minimum
value is 3 for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

64



Device Info Return Type Description

CL_DEVICE_MAX_WORK_ITEM_SIZES size_t[] Maximum number of work-items that can be
specified in each dimension of the work-group
to clEnqueueNDRangeKernel.

Returns n size_t entries, where n is the value
returned by the query for CL_DEVICE_MAX_WORK_
ITEM_DIMENSIONS.

The minimum value is (1, 1, 1) for devices that
are not of type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_WORK_GROUP_SIZE size_t Maximum number of work-items in a work-
group that a device is capable of executing on a
single compute unit, for any given kernel-
instance running on the device. (Refer also to
clEnqueueNDRangeKernel and CL_KERNEL_WORK_
GROUP_SIZE ). The minimum value is 1. The
returned value is an upper limit and will not
necessarily maximize performance. This
maximum may be larger than supported by a
specific kernel (refer to the CL_KERNEL_WORK_
GROUP_SIZE query of
clGetKernelWorkGroupInfo).

CL_DEVICE_PREFERRED_VECTOR_
WIDTH_CHAR 
CL_DEVICE_PREFERRED_VECTOR_
WIDTH_SHORT 
CL_DEVICE_PREFERRED_VECTOR_
WIDTH_INT 
CL_DEVICE_PREFERRED_VECTOR_
WIDTH_LONG 
CL_DEVICE_PREFERRED_VECTOR_
WIDTH_FLOAT 
CL_DEVICE_PREFERRED_VECTOR_
WIDTH_DOUBLE
CL_DEVICE_PREFERRED_VECTOR_
WIDTH_HALF

CL_DEVICE_PREFERRED_VECTOR_
WIDTH_HALF is missing before
version 1.1.

cl_uint Preferred native vector width size for built-in
scalar types that can be put into vectors. The
vector width is defined as the number of scalar
elements that can be stored in the vector.

If double precision is not supported, CL_DEVICE_
PREFERRED_VECTOR_WIDTH_DOUBLE must return 0.

If the cl_khr_fp16 extension is not supported,
CL_DEVICE_PREFERRED_VECTOR_WIDTH_HALF must
return 0.

65



Device Info Return Type Description

CL_DEVICE_NATIVE_VECTOR_WIDTH_
CHAR 
CL_DEVICE_NATIVE_VECTOR_WIDTH_
SHORT 
CL_DEVICE_NATIVE_VECTOR_WIDTH_
INT 
CL_DEVICE_NATIVE_VECTOR_WIDTH_
LONG 
CL_DEVICE_NATIVE_VECTOR_WIDTH_
FLOAT 
CL_DEVICE_NATIVE_VECTOR_WIDTH_
DOUBLE
CL_DEVICE_NATIVE_VECTOR_WIDTH_
HALF

missing before version 1.1.

cl_uint Returns the native ISA vector width. The vector
width is defined as the number of scalar
elements that can be stored in the vector.

If double precision is not supported, CL_DEVICE_
NATIVE_VECTOR_WIDTH_DOUBLE must return 0.

If the cl_khr_fp16 extension is not supported,
CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF must return
0.

CL_DEVICE_MAX_CLOCK_FREQUENCY cl_uint Clock frequency of the device in MHz. The
meaning of this value is implementation-
defined. For devices with multiple clock
domains, the clock frequency for any of the
clock domains may be returned. For devices that
dynamically change frequency for power or
thermal reasons, the returned clock frequency
may be any valid frequency. Note: This
definition is missing before version 2.2.

Maximum configured clock frequency of the
device in MHz. Note: This definition is
deprecated by version 2.2.

CL_DEVICE_ADDRESS_BITS cl_uint The default compute device address space size
of the global address space specified as an
unsigned integer value in bits. Currently
supported values are 32 or 64 bits.

CL_DEVICE_MAX_MEM_ALLOC_SIZE cl_ulong Max size of memory object allocation in bytes.
The minimum value is max(min(1024 × 1024 ×
1024, 1/4th of CL_DEVICE_GLOBAL_MEM_SIZE), 32 ×
1024 × 1024) for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_IMAGE_SUPPORT cl_bool Is CL_TRUE if images are supported by the
OpenCL device and CL_FALSE otherwise.

CL_DEVICE_MAX_READ_IMAGE_ARGS
[6]

cl_uint Max number of image objects arguments of a
kernel declared with the read_only qualifier.
The minimum value is 128 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

66



Device Info Return Type Description

CL_DEVICE_MAX_WRITE_IMAGE_ARGS cl_uint Max number of image objects arguments of a
kernel declared with the write_only qualifier.
The minimum value is 64 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_MAX_READ_WRITE_
IMAGE_ARGS

missing before version 2.0.

cl_uint Max number of image objects arguments of a
kernel declared with the write_only or
read_write qualifier.

Support for read-write image arguments is
required for an OpenCL 2.0, 2.1, or 2.2 device if
CL_DEVICE_IMAGE_SUPPORT is CL_TRUE.

The minimum value is 64 if the device supports
read-write images arguments, and must be 0 for
devices that do not support read-write images.

CL_DEVICE_IL_VERSION

missing before version 2.1.

or

CL_DEVICE_IL_VERSION_KHR

provided by the
cl_khr_il_program extension.

char[] The intermediate languages that can be
supported by clCreateProgramWithIL for this
device. Returns a space-separated list of IL
version strings of the form

<IL_Prefix>_<Major_Version>.<Minor_Version>

For an OpenCL 2.1 or 2.2 device, SPIR-V is a
required IL prefix.

If the device does not support intermediate
language programs, the value must be "" (an
empty string).

A device that supports the cl_khr_il_program
extension must support the "SPIR-V" IL prefix.

CL_DEVICE_ILS_WITH_VERSION

missing before version 3.0.

or

CL_DEVICE_ILS_WITH_VERSION_KHR

provided by the
cl_khr_extended_versioning
extension.

cl_name_
version[]

or cl_name_
version_khr[]

Returns an array of descriptions (name and
version) for all supported intermediate
languages. Intermediate languages with the
same name may be reported more than once but
each name and major/minor version
combination may only be reported once. The list
of intermediate languages reported must match
the list reported via CL_DEVICE_IL_VERSION.

For an OpenCL 2.1 or 2.2 device, at least one
version of SPIR-V must be reported.

67



Device Info Return Type Description

CL_DEVICE_IMAGE2D_MAX_WIDTH size_t Max width of 2D image or 1D image not created
from a buffer object in pixels.

The minimum value is 16384 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE2D_MAX_HEIGHT size_t Max height of 2D image in pixels.

The minimum value is 16384 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE3D_MAX_WIDTH size_t Max width of 3D image in pixels.

The minimum value is 2048 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE3D_MAX_HEIGHT size_t Max height of 3D image in pixels.

The minimum value is 2048 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE3D_MAX_DEPTH size_t Max depth of 3D image in pixels.

The minimum value is 2048 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE_MAX_BUFFER_
SIZE

missing before version 1.2.

size_t Max number of pixels for a 1D image created
from a buffer object.

The minimum value is 65536 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE_MAX_ARRAY_SIZE

missing before version 1.2.

size_t Max number of images in a 1D or 2D image
array.

The minimum value is 2048 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_MAX_SAMPLERS cl_uint Maximum number of samplers that can be used
in a kernel.

The minimum value is 16 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

68



Device Info Return Type Description

CL_DEVICE_IMAGE_PITCH_
ALIGNMENT

missing before version 2.0.

The equivalent CL_DEVICE_
IMAGE_PITCH_ALIGNMENT_KHR may
be used if the cl_khr_image2d_
from_buffer extension is
supported.

cl_uint The row pitch alignment size in pixels for 2D
images created from a buffer. The value
returned must be a power of 2.

Support for 2D images created from a buffer is
required for an OpenCL 2.0, 2.1, or 2.2 device if
CL_DEVICE_IMAGE_SUPPORT is CL_TRUE.

This value must be 0 for devices that do not
support 2D images created from a buffer.

CL_DEVICE_IMAGE_BASE_ADDRESS_
ALIGNMENT

missing before version 2.0.

The equivalent CL_DEVICE_
IMAGE_BASE_ADDRESS_ALIGNMENT_
KHR may be used if the cl_khr_
image2d_from_buffer extension
is supported.

cl_uint This query specifies the minimum alignment in
pixels of the host_ptr specified to
clCreateBuffer or
clCreateBufferWithProperties when a 2D
image is created from a buffer which was
created using CL_MEM_USE_HOST_PTR. The value
returned must be a power of 2.

Support for 2D images created from a buffer is
required for an OpenCL 2.0, 2.1, or 2.2 device if
CL_DEVICE_IMAGE_SUPPORT is CL_TRUE.

This value must be 0 for devices that do not
support 2D images created from a buffer.

CL_DEVICE_MAX_PIPE_ARGS

missing before version 2.0.

cl_uint The maximum number of pipe objects that can
be passed as arguments to a kernel. The
minimum value is 16 for devices supporting
pipes, and must be 0 for devices that do not
support pipes.

CL_DEVICE_PIPE_MAX_ACTIVE_
RESERVATIONS

missing before version 2.0.

cl_uint The maximum number of reservations that can
be active for a pipe per work-item in a kernel. A
work-group reservation is counted as one
reservation per work-item. The minimum value
is 1 for devices supporting pipes, and must be 0
for devices that do not support pipes.

CL_DEVICE_PIPE_MAX_PACKET_SIZE

missing before version 2.0.

cl_uint The maximum size of pipe packet in bytes.

Support for pipes is required for an OpenCL 2.0,
2.1, or 2.2 device. The minimum value is 1024
bytes if the device supports pipes, and must be 0
for devices that do not support pipes.

69



Device Info Return Type Description

CL_DEVICE_MAX_PARAMETER_SIZE size_t Max size in bytes of all arguments that can be
passed to a kernel.

The minimum value is 1024 for devices that are
not of type CL_DEVICE_TYPE_CUSTOM. For this
minimum value, only a maximum of 128
arguments can be passed to a kernel. For all
other values, a maximum of 255 arguments can
be passed to a kernel.

CL_DEVICE_MEM_BASE_ADDR_ALIGN cl_uint Alignment requirement (in bits) for sub-buffer
offsets. The minimum value is the size (in bits)
of the largest OpenCL built-in data type
supported by the device (long16 in FULL profile,
long16 or int16 in EMBEDDED profile) for
devices that are not of type CL_DEVICE_TYPE_
CUSTOM.

CL_DEVICE_MIN_DATA_TYPE_ALIGN_
SIZE

deprecated by version 1.2.

cl_uint The minimum value is the size (in bytes) of the
largest OpenCL data type supported by the
device (long16 in FULL profile, long16 or int16 in
EMBEDDED profile).

70



Device Info Return Type Description

CL_DEVICE_SINGLE_FP_CONFIG [7] cl_device_fp_
config

Describes single precision floating-point
capability of the device. This is a bit-field that
describes one or more of the following values:

CL_FP_DENORM - denorms are supported
CL_FP_INF_NAN - INF and quiet NaNs are
supported
CL_FP_ROUND_TO_NEAREST-- round to nearest even
rounding mode supported
CL_FP_ROUND_TO_ZERO - round to zero rounding
mode supported
CL_FP_ROUND_TO_INF - round to positive and
negative infinity rounding modes supported
CL_FP_FMA - IEEE754-2008 fused multiply-add is
supported
CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT - divide
and sqrt are correctly rounded as defined by the
IEEE754 specification
CL_FP_SOFT_FLOAT - Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software

For the full profile, the mandated minimum
floating-point capability for devices that are not
of type CL_DEVICE_TYPE_CUSTOM is:

CL_FP_ROUND_TO_NEAREST |
CL_FP_INF_NAN.

For the embedded profile, see the dedicated
table.

71



Device Info Return Type Description

CL_DEVICE_DOUBLE_FP_CONFIG [7]

missing before version 1.2.

Also see cl_khr_fp64.

cl_device_fp_
config

Describes double precision floating-point
capability of the OpenCL device. This is a bit-
field that describes one or more of the following
values:

CL_FP_DENORM - denorms are supported
CL_FP_INF_NAN - INF and NaNs are supported
CL_FP_ROUND_TO_NEAREST - round to nearest even
rounding mode supported
CL_FP_ROUND_TO_ZERO - round to zero rounding
mode supported
CL_FP_ROUND_TO_INF - round to positive and
negative infinity rounding modes supported
CL_FP_FMA - IEEE754-2008 fused multiply-add is
supported
CL_FP_SOFT_FLOAT - Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software

Double precision is an optional feature so the
mandated minimum double precision floating-
point capability is 0.

If double precision is supported by the device,
then the minimum double precision floating-
point capability for OpenCL 2.0 or newer devices
is:

CL_FP_FMA |
CL_FP_ROUND_TO_NEAREST |
CL_FP_INF_NAN |
CL_FP_DENORM.

or for OpenCL 1.0, OpenCL 1.1 or OpenCL 1.2
devices:

CL_FP_FMA |
CL_FP_ROUND_TO_NEAREST |
CL_FP_ROUND_TO_ZERO |
CL_FP_ROUND_TO_INF |
CL_FP_INF_NAN |
CL_FP_DENORM.

CL_DEVICE_GLOBAL_MEM_CACHE_
TYPE

cl_device_mem_
cache_type

Type of global memory cache supported. Valid
values are: CL_NONE, CL_READ_ONLY_CACHE, and
CL_READ_WRITE_CACHE.

72



Device Info Return Type Description

CL_DEVICE_GLOBAL_MEM_
CACHELINE_SIZE

cl_uint Size of global memory cache line in bytes.

CL_DEVICE_GLOBAL_MEM_CACHE_
SIZE

cl_ulong Size of global memory cache in bytes.

CL_DEVICE_GLOBAL_MEM_SIZE cl_ulong Size of global device memory in bytes.

CL_DEVICE_MAX_CONSTANT_BUFFER_
SIZE

cl_ulong Max size in bytes of a constant buffer allocation.
The minimum value is 64 KB for devices that are
not of type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_CONSTANT_ARGS cl_uint Max number of arguments declared with the
__constant qualifier in a kernel. The minimum
value is 8 for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_GLOBAL_VARIABLE_
SIZE

missing before version 2.0.

size_t The maximum number of bytes of storage that
may be allocated for any single variable in
program scope or inside a function in an
OpenCL kernel language declared in the global
address space.

Support for program scope global variables is
required for an OpenCL 2.0, 2.1, or 2.2 device.
The minimum value is 64 KB if the device
supports program scope global variables, and
must be 0 for devices that do not support
program scope global variables.

CL_DEVICE_GLOBAL_VARIABLE_
PREFERRED_TOTAL_SIZE

missing before version 2.0.

size_t Maximum preferred total size, in bytes, of all
program variables in the global address space.
This is a performance hint. An implementation
may place such variables in storage with
optimized device access. This query returns the
capacity of such storage. The minimum value is
0.

CL_DEVICE_LOCAL_MEM_TYPE cl_device_
local_mem_type

Type of local memory supported. This can be set
to CL_LOCAL implying dedicated local memory
storage such as SRAM , or CL_GLOBAL.

For custom devices, CL_NONE can also be returned
indicating no local memory support.

CL_DEVICE_LOCAL_MEM_SIZE cl_ulong Size of local memory region in bytes. The
minimum value is 32 KB for devices that are not
of type CL_DEVICE_TYPE_CUSTOM.

73



Device Info Return Type Description

CL_DEVICE_ERROR_CORRECTION_
SUPPORT

cl_bool Is CL_TRUE if the device implements error
correction for all accesses to compute device
memory (global and constant). Is CL_FALSE if the
device does not implement such error
correction.

CL_DEVICE_HOST_UNIFIED_MEMORY

missing before version 1.1 and
deprecated by version 2.0.

cl_bool Is CL_TRUE if the device and the host have a
unified memory subsystem and is CL_FALSE
otherwise.

CL_DEVICE_PROFILING_TIMER_
RESOLUTION

size_t Describes the resolution of device timer. This is
measured in nanoseconds. Refer to Profiling
Operations for details.

CL_DEVICE_ENDIAN_LITTLE cl_bool Is CL_TRUE if the OpenCL device is a little endian
device and CL_FALSE otherwise

CL_DEVICE_AVAILABLE cl_bool Is CL_TRUE if the device is available and CL_FALSE
otherwise. A device is considered to be available
if the device can be expected to successfully
execute commands enqueued to the device.

CL_DEVICE_COMPILER_AVAILABLE cl_bool Is CL_FALSE if the implementation does not have
a compiler available to compile the program
source.

Is CL_TRUE if the compiler is available. This can
be CL_FALSE for the embedded platform profile
only.

CL_DEVICE_LINKER_AVAILABLE

missing before version 1.2.

cl_bool Is CL_FALSE if the implementation does not have
a linker available. Is CL_TRUE if the linker is
available.

This can be CL_FALSE for the embedded platform
profile only.

This must be CL_TRUE if CL_DEVICE_COMPILER_
AVAILABLE is CL_TRUE.

74



Device Info Return Type Description

CL_DEVICE_EXECUTION_
CAPABILITIES

cl_device_exec_
capabilities

Describes the execution capabilities of the
device. This is a bit-field that describes one or
more of the following values:

CL_EXEC_KERNEL - The OpenCL device can execute
OpenCL kernels.
CL_EXEC_NATIVE_KERNEL - The OpenCL device can
execute native kernels.

The mandated minimum capability is: CL_EXEC_
KERNEL.

CL_DEVICE_QUEUE_PROPERTIES

deprecated by version 2.0.

cl_command_
queue_
properties

See description of CL_DEVICE_QUEUE_ON_HOST_
PROPERTIES.

CL_DEVICE_QUEUE_ON_HOST_
PROPERTIES

missing before version 2.0.

cl_command_
queue_
properties

Describes the on host command-queue
properties supported by the device. This is a bit-
field that describes one or more of the following
values:

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
CL_QUEUE_PROFILING_ENABLE

These properties are described in the Queue
Properties table.

The mandated minimum capability is: CL_QUEUE_
PROFILING_ENABLE.

75



Device Info Return Type Description

CL_DEVICE_QUEUE_ON_DEVICE_
PROPERTIES

missing before version 2.0.

cl_command_
queue_
properties

Describes the on device command-queue
properties supported by the device. This is a bit-
field that describes one or more of the following
values:

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE
CL_QUEUE_PROFILING_ENABLE

These properties are described in the Queue
Properties table.

Support for on-device queues is required for an
OpenCL 2.0, 2.1, or 2.2 device. When on-device
queues are supported, the mandated minimum
capability is:

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE |
CL_QUEUE_PROFILING_ENABLE.

Must be 0 for devices that do not support on-
device queues.

CL_DEVICE_QUEUE_ON_DEVICE_
PREFERRED_SIZE

missing before version 2.0.

cl_uint The preferred size of the device queue, in bytes.
Applications should use this size for the device
queue to ensure good performance.

The minimum value is 16 KB for devices
supporting on-device queues, and must be 0 for
devices that do not support on-device queues.

CL_DEVICE_QUEUE_ON_DEVICE_MAX_
SIZE

missing before version 2.0.

cl_uint The maximum size of the device queue in bytes.

The minimum value is 256 KB for the full profile
and 64 KB for the embedded profile for devices
supporting on-device queues, and must be 0 for
devices that do not support on-device queues.

CL_DEVICE_MAX_ON_DEVICE_QUEUES

missing before version 2.0.

cl_uint The maximum number of device queues that
can be created for this device in a single context.

The minimum value is 1 for devices supporting
on-device queues, and must be 0 for devices that
do not support on-device queues.

76



Device Info Return Type Description

CL_DEVICE_MAX_ON_DEVICE_EVENTS

missing before version 2.0.

cl_uint The maximum number of events in use by a
device queue. These refer to events returned by
the enqueue_ built-in functions to a device queue
or user events returned by the create_user_event
built-in function that have not been released.

The minimum value is 1024 for devices
supporting on-device queues, and must be 0 for
devices that do not support on-device queues.

CL_DEVICE_BUILT_IN_KERNELS

missing before version 1.2.

char[] A semi-colon separated list of built-in kernels
supported by the device. An empty string is
returned if no built-in kernels are supported by
the device.

CL_DEVICE_BUILT_IN_KERNELS_
WITH_VERSION

missing before version 3.0.

or

CL_DEVICE_BUILT_IN_KERNELS_
WITH_VERSION_KHR

provided by the
cl_khr_extended_versioning
extension.

cl_name_
version[]

or cl_name_
version_khr[]

Returns an array of descriptions for the built-in
kernels supported by the device. Each built-in
kernel may only be reported once. The list of
reported kernels must match the list returned
via CL_DEVICE_BUILT_IN_KERNELS.

CL_DEVICE_PLATFORM cl_platform_id The platform associated with this device.

CL_DEVICE_NAME char[] Device name string.

CL_DEVICE_VENDOR char[] Vendor name string.

CL_DRIVER_VERSION char[] OpenCL software driver version string. Follows
a vendor-specific format.

CL_DEVICE_PROFILE char[] OpenCL profile string. Returns the profile name
supported by the device. The profile name
returned can be one of the following strings:

FULL_PROFILE - if the device supports the
OpenCL specification (functionality defined as
part of the core specification and does not
require any extensions to be supported).

EMBEDDED_PROFILE - if the device supports the
OpenCL embedded profile.

77



Device Info Return Type Description

CL_DEVICE_VERSION char[] OpenCL version string. Returns the OpenCL
version supported by the device. This version
string has the following format:

OpenCL<space><major_version.minor_version><s
pace><vendor-specific information>

The major_version.minor_version value
returned will be one of 1.0, 1.1, 1.2, 2.0, 2.1, 2.2,
or 3.0.

CL_DEVICE_NUMERIC_VERSION

missing before version 3.0.

or

CL_DEVICE_NUMERIC_VERSION_KHR

provided by the
cl_khr_extended_versioning
extension.

cl_version

or cl_version_
khr

Returns the detailed (major, minor, patch)
version supported by the device. The major and
minor version numbers returned must match
those returned via CL_DEVICE_VERSION.

78



Device Info Return Type Description

CL_DEVICE_OPENCL_C_VERSION

missing before version 1.1 and
deprecated by version 3.0.

char[] Returns the highest fully backwards compatible
OpenCL C version supported by the compiler for
the device. For devices supporting compilation
from OpenCL C source, this will return a version
string with the following format:

OpenCL<space>C<space><major_version.minor_v
ersion><space><vendor-specific information>

For devices that support compilation from
OpenCL C source:

Because OpenCL 3.0 is backwards compatible
with OpenCL C 1.2, an OpenCL 3.0 device must
support at least OpenCL C 1.2. An OpenCL 3.0
device may return an OpenCL C version newer
than OpenCL C 1.2 if and only if all optional
OpenCL C features are supported by the device
for the newer version.

Support for OpenCL C 2.0 is required for an
OpenCL 2.0, OpenCL 2.1, or OpenCL 2.2 device.

Support for OpenCL C 1.2 is required for an
OpenCL 1.2 device.

Support for OpenCL C 1.1 is required for an
OpenCL 1.1 device.

Support for either OpenCL C 1.0 or OpenCL C 1.1
is required for an OpenCL 1.0 device.

For devices that do not support compilation
from OpenCL C source, such as when CL_DEVICE_
COMPILER_AVAILABLE is CL_FALSE, this query may
return an empty string.

This query has been superseded by the
CL_DEVICE_OPENCL_C_ALL_VERSIONS query, which
returns a set of OpenCL C versions supported by
a device.

79



Device Info Return Type Description

CL_DEVICE_OPENCL_C_ALL_
VERSIONS

missing before version 3.0.

cl_name_
version[]

Returns an array of name, version descriptions
listing all the versions of OpenCL C supported by
the compiler for the device. In each returned
description structure, the name field is required
to be "OpenCL C". The list may include both
newer non-backwards compatible OpenCL C
versions, such as OpenCL C 3.0, and older
OpenCL C versions with mandatory backwards
compatibility. The version returned by
CL_DEVICE_OPENCL_C_VERSION is required to be
present in the list.

For devices that support compilation from
OpenCL C source:

Because OpenCL 3.0 is backwards compatible
with OpenCL C 1.2, and OpenCL C 1.2 is
backwards compatible with OpenCL C 1.1 and
OpenCL C 1.0, support for at least OpenCL C 3.0,
OpenCL C 1.2, OpenCL C 1.1, and OpenCL C 1.0 is
required for an OpenCL 3.0 device.

Support for OpenCL C 2.0, OpenCL C 1.2, OpenCL
C 1.1, and OpenCL C 1.0 is required for an
OpenCL 2.0, OpenCL 2.1, or OpenCL 2.2 device.

Support for OpenCL C 1.2, OpenCL C 1.1, and
OpenCL C 1.0 is required for an OpenCL 1.2
device.

Support for OpenCL C 1.1 and OpenCL C 1.0 is
required for an OpenCL 1.1 device.

Support for at least OpenCL C 1.0 is required for
an OpenCL 1.0 device.

For devices that do not support compilation
from OpenCL C source, this query may return an
empty array.

80



Device Info Return Type Description

CL_DEVICE_OPENCL_C_NUMERIC_
VERSION_KHR

provided by the
cl_khr_extended_versioning
extension.

cl_version_khr Returns detailed (major, minor, patch) numeric
version information. The major and minor
version numbers returned must match those
returned via CL_DEVICE_OPENCL_C_VERSION.

This query was not promoted to core in OpenCL
version 3.0, but the core query CL_DEVICE_OPENCL_
C_ALL_VERSIONS can be used to obtain equivalent
information.

CL_DEVICE_OPENCL_C_FEATURES

missing before version 3.0.

cl_name_
version[]

Returns an array of optional OpenCL C features
supported by the compiler for the device
alongside the OpenCL C version that introduced
the feature macro. For example, if a compiler
supports an OpenCL C 3.0 feature, the returned
name will be the full name of the OpenCL C
feature macro, and the returned version will be
3.0.0.

For devices that do not support compilation
from OpenCL C source, this query may return an
empty array.

81



Device Info Return Type Description

CL_DEVICE_EXTENSIONS char[] Returns a space separated list of extension
names (the extension names themselves do not
contain any spaces) supported by the device. The
list of extension names may include Khronos
approved extension names and vendor specified
extension names.

The following Khronos extension names must be
returned by all devices that support OpenCL 1.1:

cl_khr_byte_addressable_store
cl_khr_global_int32_base_atomics
cl_khr_global_int32_extended_atomics
cl_khr_local_int32_base_atomics
cl_khr_local_int32_extended_atomics

Additionally, the following Khronos extension
names must be returned by all devices that
support OpenCL 1.2 when and only when the
optional feature is supported:

cl_khr_fp64

Additionally, the following Khronos extension
names must be returned by all devices that
support OpenCL 2.0, OpenCL 2.1, or OpenCL 2.2.
For devices that support OpenCL 3.0, these
extension names must be returned when and
only when the optional feature is supported:

cl_khr_3d_image_writes
cl_khr_depth_images
cl_khr_image2d_from_buffer

Please refer to the OpenCL Extension
Specification or vendor provided documentation
for a detailed description of these extensions.

82



Device Info Return Type Description

CL_DEVICE_EXTENSIONS_WITH_
VERSION

missing before version 3.0.

or

CL_DEVICE_EXTENSIONS_WITH_
VERSION_KHR

provided by the
cl_khr_extended_versioning
extension.

cl_name_
version[]

or cl_name_
version_khr[]

Returns an array of description (name and
version) structures. The same extension name
must not be reported more than once. The list of
extensions reported must match the list
reported via CL_DEVICE_EXTENSIONS.

See CL_DEVICE_EXTENSIONS for a list of extensions
that are required to be reported for a given
OpenCL version.

CL_DEVICE_PRINTF_BUFFER_SIZE

missing before version 1.2.

size_t Maximum size in bytes of the internal buffer
that holds the output of printf calls from a
kernel. The minimum value for the FULL profile
is 1 MB.

CL_DEVICE_PREFERRED_INTEROP_
USER_SYNC

missing before version 1.2.

cl_bool Is CL_TRUE if the devices preference is for the
user to be responsible for synchronization,
when sharing memory objects between OpenCL
and other APIs such as DirectX, CL_FALSE if the
device / implementation has a performant path
for performing synchronization of memory
object shared between OpenCL and other APIs
such as DirectX.

CL_DEVICE_PARENT_DEVICE

missing before version 1.2.

cl_device_id Returns the cl_device_id of the parent device to
which this sub-device belongs. If device is a root-
level device, a NULL value is returned.

CL_DEVICE_PARTITION_MAX_SUB_
DEVICES

missing before version 1.2.

cl_uint Returns the maximum number of sub-devices
that can be created when a device is partitioned.

The value returned cannot exceed CL_DEVICE_
MAX_COMPUTE_UNITS.

83



Device Info Return Type Description

CL_DEVICE_PARTITION_PROPERTIES

missing before version 1.2.

cl_device_
partition_
property[]

Returns the list of partition types supported by
device. This is an array of cl_device_partition_
property values drawn from the following list:

CL_DEVICE_PARTITION_EQUALLY
CL_DEVICE_PARTITION_BY_COUNTS
CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN

If the device cannot be partitioned (i.e. there is
no partitioning scheme supported by the device
that will return at least two sub-devices), a value
of 0 will be returned.

CL_DEVICE_PARTITION_AFFINITY_
DOMAIN

missing before version 1.2.

cl_device_
affinity_domain

Returns the list of supported affinity domains
for partitioning the device using CL_DEVICE_
PARTITION_BY_AFFINITY_DOMAIN. This is a bit-field
that describes one or more of the following
values:

CL_DEVICE_AFFINITY_DOMAIN_NUMA
CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE
CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE

If the device does not support any affinity
domains, a value of 0 will be returned.

84



Device Info Return Type Description

CL_DEVICE_PARTITION_TYPE

missing before version 1.2.

cl_device_
partition_
property[]

Returns the properties argument specified in
clCreateSubDevices if device is a sub-device. In
the case where the properties argument to
clCreateSubDevices is CL_DEVICE_PARTITION_BY_
AFFINITY_DOMAIN, CL_DEVICE_AFFINITY_DOMAIN_
NEXT_PARTITIONABLE, the affinity domain used to
perform the partition will be returned. This can
be one of the following values:

CL_DEVICE_AFFINITY_DOMAIN_NUMA
CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE
CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE

Otherwise the implementation may either
return a param_value_size_ret of 0 i.e. there is no
partition type associated with device or can
return a property value of 0 (where 0 is used to
terminate the partition property list) in the
memory that param_value points to.

CL_DEVICE_REFERENCE_COUNT [8]

missing before version 1.2.

cl_uint Returns the device reference count. If the device
is a root-level device, a reference count of one is
returned.

85



Device Info Return Type Description

CL_DEVICE_SVM_CAPABILITIES

missing before version 2.0.

cl_device_svm_
capabilities

Describes the various shared virtual memory
(SVM) memory allocation types the device
supports. This is a bit-field that describes a
combination of the following values:

CL_DEVICE_SVM_COARSE_GRAIN_BUFFER - Support for
coarse-grain buffer sharing using clSVMAlloc.
Memory consistency is guaranteed at
synchronization points and the host must use
calls to clEnqueueMapBuffer and
clEnqueueUnmapMemObject.
CL_DEVICE_SVM_FINE_GRAIN_BUFFER - Support for
fine-grain buffer sharing using clSVMAlloc.
Memory consistency is guaranteed at
synchronization points without need for
clEnqueueMapBuffer and
clEnqueueUnmapMemObject.
CL_DEVICE_SVM_FINE_GRAIN_SYSTEM - Support for
sharing the host’s entire virtual memory
including memory allocated using malloc.
Memory consistency is guaranteed at
synchronization points.
CL_DEVICE_SVM_ATOMICS - Support for the OpenCL
2.0 atomic operations that provide memory
consistency across the host and all OpenCL
devices supporting fine-grain SVM allocations.

The mandated minimum capability for an
OpenCL 2.0, 2.1, or 2.2 device is CL_DEVICE_SVM_
COARSE_GRAIN_BUFFER.

For other device versions there is no mandated
minimum capability.

CL_DEVICE_PREFERRED_PLATFORM_
ATOMIC_ALIGNMENT

missing before version 2.0.

cl_uint Returns the value representing the preferred
alignment in bytes for OpenCL 2.0 fine-grained
SVM atomic types. This query can return 0
which indicates that the preferred alignment is
aligned to the natural size of the type.

CL_DEVICE_PREFERRED_GLOBAL_
ATOMIC_ALIGNMENT

missing before version 2.0.

cl_uint Returns the value representing the preferred
alignment in bytes for OpenCL 2.0 atomic types
to global memory. This query can return 0 which
indicates that the preferred alignment is aligned
to the natural size of the type.

86



Device Info Return Type Description

CL_DEVICE_PREFERRED_LOCAL_
ATOMIC_ALIGNMENT

missing before version 2.0.

cl_uint Returns the value representing the preferred
alignment in bytes for OpenCL 2.0 atomic types
to local memory. This query can return 0 which
indicates that the preferred alignment is aligned
to the natural size of the type.

CL_DEVICE_MAX_NUM_SUB_GROUPS

missing before version 2.1.

cl_uint Maximum number of sub-groups in a work-
group that a device is capable of executing on a
single compute unit, for any given kernel-
instance running on the device.

The minimum value is 1 if the device supports
sub-groups, and must be 0 for devices that do
not support sub-groups. Support for sub-groups
is required for an OpenCL 2.1 or 2.2 device.

(Refer also to clGetKernelSubGroupInfo.)

CL_DEVICE_SUB_GROUP_
INDEPENDENT_FORWARD_PROGRESS

missing before version 2.1.

cl_bool Is CL_TRUE if this device supports independent
forward progress of sub-groups, CL_FALSE
otherwise.

This query must return CL_TRUE for devices that
support the cl_khr_subgroups extension, and
must return CL_FALSE for devices that do not
support sub-groups.

87



Device Info Return Type Description

CL_DEVICE_ATOMIC_MEMORY_
CAPABILITIES

missing before version 3.0.

cl_device_
atomic_
capabilities

Describes the various memory orders and
scopes that the device supports for atomic
memory operations. This is a bit-field that
describes a combination of the following values:

CL_DEVICE_ATOMIC_ORDER_RELAXED - Support for the
relaxed memory order.
CL_DEVICE_ATOMIC_ORDER_ACQ_REL - Support for the
acquire, release, and acquire-release memory
orders.
CL_DEVICE_ATOMIC_ORDER_SEQ_CST - Support for the
sequentially consistent memory order.

Because atomic memory orders are hierarchical,
a device that supports a strong memory order
must also support all weaker memory orders.

CL_DEVICE_ATOMIC_SCOPE_WORK_ITEM [9] - Support
for memory ordering constraints that apply to a
single work-item.
CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP - Support for
memory ordering constraints that apply to all
work-items in a work-group.
CL_DEVICE_ATOMIC_SCOPE_DEVICE - Support for
memory ordering constraints that apply to all
work-items executing on the device.
CL_DEVICE_ATOMIC_SCOPE_ALL_DEVICES - Support
for memory ordering constraints that apply to
all work-items executing across all devices that
can share SVM memory with each other and the
host process.

Because atomic scopes are hierarchical, a device
that supports a wide scope must also support all
narrower scopes, except for the work-item
scope, which is a special case.

The mandated minimum capability is:

CL_DEVICE_ATOMIC_ORDER_RELAXED |
CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP

88



Device Info Return Type Description

CL_DEVICE_ATOMIC_FENCE_
CAPABILITIES

missing before version 3.0.

cl_device_
atomic_
capabilities

Describes the various memory orders and
scopes that the device supports for atomic fence
operations. This is a bit-field that has the same
set of possible values as described for CL_DEVICE_
ATOMIC_MEMORY_CAPABILITIES.

The mandated minimum capability is:

CL_DEVICE_ATOMIC_ORDER_RELAXED |
CL_DEVICE_ATOMIC_ORDER_ACQ_REL |
CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP

CL_DEVICE_NON_UNIFORM_WORK_
GROUP_SUPPORT

missing before version 3.0.

cl_bool Is CL_TRUE if the device supports non-uniform
work-groups, and CL_FALSE otherwise.

CL_DEVICE_WORK_GROUP_
COLLECTIVE_FUNCTIONS_SUPPORT

missing before version 3.0.

cl_bool Is CL_TRUE if the device supports work-group
collective functions e.g. work_group_broadcast,
work_group_reduce, and work_group_scan, and
CL_FALSE otherwise.

CL_DEVICE_GENERIC_ADDRESS_
SPACE_SUPPORT

missing before version 3.0.

cl_bool Is CL_TRUE if the device supports the generic
address space and its associated built-in
functions, and CL_FALSE otherwise.

CL_DEVICE_DEVICE_ENQUEUE_
CAPABILITIES

missing before version 3.0.

cl_device_
device_enqueue_
capabilities

Describes device-side enqueue capabilities of the
device. This is a bit-field that describes one or
more of the following values:

CL_DEVICE_QUEUE_SUPPORTED - Device supports
device-side enqueue and on-device queues.
CL_DEVICE_QUEUE_REPLACEABLE_DEFAULT - Device
supports a replaceable default on-device queue.

If CL_DEVICE_QUEUE_REPLACEABLE_DEFAULT is set,
CL_DEVICE_QUEUE_SUPPORTED must also be set.

Devices that set CL_DEVICE_QUEUE_SUPPORTED for
CL_DEVICE_DEVICE_ENQUEUE_CAPABILITIES must
also return CL_TRUE for CL_DEVICE_GENERIC_
ADDRESS_SPACE_SUPPORT.

89



Device Info Return Type Description

CL_DEVICE_PIPE_SUPPORT

missing before version 3.0.

cl_bool Is CL_TRUE if the device supports pipes, and
CL_FALSE otherwise.

Devices that return CL_TRUE for CL_DEVICE_PIPE_
SUPPORT must also return CL_TRUE for CL_DEVICE_
GENERIC_ADDRESS_SPACE_SUPPORT.

CL_DEVICE_PREFERRED_WORK_
GROUP_SIZE_MULTIPLE

missing before version 3.0.

size_t Returns the preferred multiple of work-group
size for the given device. This is a performance
hint intended as a guide when specifying the
local work size argument to
clEnqueueNDRangeKernel.

(Refer also to clGetKernelWorkGroupInfo
where CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_
MULTIPLE can return a different value to
CL_DEVICE_PREFERRED_WORK_GROUP_SIZE_MULTIPLE
which may be more optimal.)

CL_DEVICE_LATEST_CONFORMANCE_
VERSION_PASSED

missing before version 3.0.

char[] Returns the latest version of the conformance
test suite that this device has fully passed in
accordance with the official conformance
process.

90



Device Info Return Type Description

CL_DEVICE_COMMAND_BUFFER_
CAPABILITIES_KHR

provided by the
cl_khr_command_buffer
extension.

cl_device_
command_buffer_
capabilities_
khr

Describes device command-buffer capabilities,
encoded as bits in a bitfield. Supported
capabilities are:

CL_COMMAND_BUFFER_CAPABILITY_KERNEL_PRINTF_KHR
Device supports the ability to record commands
that execute kernels which contain printf calls.

provided by the cl_khr_command_buffer
extension.

CL_COMMAND_BUFFER_CAPABILITY_DEVICE_SIDE_
ENQUEUE_KHR Device supports the ability to record
commands that execute kernels which contain
device-side kernel-enqueue calls.

provided by the cl_khr_command_buffer
extension.

CL_COMMAND_BUFFER_CAPABILITY_SIMULTANEOUS_USE_
KHR Device supports the command-buffers
having a Pending Count that exceeds 1.

provided by the cl_khr_command_buffer
extension.

CL_COMMAND_BUFFER_CAPABILITY_OUT_OF_ORDER_KHR
Device supports the ability to record command-
buffers to out-of-order command-queues.

provided by the cl_khr_command_buffer
extension.

CL_COMMAND_BUFFER_CAPABILITY_MULTIPLE_QUEUE_
KHR Device supports the ability to record
commands to more than one command-queue
associated with device in a single command-
buffer.

provided by the
cl_khr_command_buffer_multi_device extension.

91



Device Info Return Type Description

CL_DEVICE_COMMAND_BUFFER_
REQUIRED_QUEUE_PROPERTIES_KHR

provided by the
cl_khr_command_buffer
extension.

cl_command_
queue_
properties

Bitmask of the minimum properties with which
a command-queue must be created to allow a
command-buffer to be executed on it. It is valid
for a command-queue to be created with extra
properties in addition to this base requirement
and still be compatible with command-buffer
execution.

CL_DEVICE_COMMAND_BUFFER_NUM_
SYNC_DEVICES_KHR

provided by the
cl_khr_command_buffer_multi_de
vice extension.

cl_uint Return the number of root devices listed in
CL_DEVICE_COMMAND_BUFFER_SYNC_DEVICES_KHR that
device can use device-side synchronization with.

CL_DEVICE_COMMAND_BUFFER_SYNC_
DEVICES_KHR

provided by the
cl_khr_command_buffer_multi_de
vice extension.

cl_device_id[] Return the list of root devices device can use
device-side synchronization with. A device
should list itself only if it has native support for
synchronizing commands. Sub-devices are not
listed to avoid non-deterministic results as sub-
devices are created. Instead if a root device is
listed, then any of its partitioned sub-devices can
also be natively synchronized with.

92



Device Info Return Type Description

CL_DEVICE_MUTABLE_DISPATCH_
CAPABILITIES_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

cl_mutable_
dispatch_
fields_khr

Describes device mutable-dispatch capabilities,
encoded as bits in a bitfield. Supported
capabilities are:

CL_MUTABLE_DISPATCH_GLOBAL_OFFSET_KHR - Device
supports the ability to modify the
global_work_offset of kernel execution after
command recording.

provided by the
cl_khr_command_buffer_mutable_dispatch
extension.

CL_MUTABLE_DISPATCH_GLOBAL_SIZE_KHR - Device
supports the ability to modify the
global_work_size of kernel execution after
command recording.

provided by the
cl_khr_command_buffer_mutable_dispatch
extension.

CL_MUTABLE_DISPATCH_LOCAL_SIZE_KHR - Device
supports the ability to modify the
local_work_size of kernel execution after
command recording.

provided by the
cl_khr_command_buffer_mutable_dispatch
extension.

CL_MUTABLE_DISPATCH_ARGUMENTS_KHR - Device
supports the ability to modify arguments set on
a kernel after command recording.

provided by the
cl_khr_command_buffer_mutable_dispatch
extension.

CL_MUTABLE_DISPATCH_EXEC_INFO_KHR - Device
supports the ability to modify execution
information set on a kernel after command
recording.

provided by the
cl_khr_command_buffer_mutable_dispatch
extension.

93



Device Info Return Type Description

CL_DEVICE_UUID_KHR

provided by the
cl_khr_device_uuid extension.

cl_uchar[CL_UUI
D_SIZE_KHR]

Returns a universally unique identifier (UUID)
for the device.

Device UUIDs must be immutable for a given
device across processes, driver APIs, driver
versions, and system reboots.

CL_UUID_SIZE_KHR is the size of the UUID, in bytes.

CL_DRIVER_UUID_KHR

provided by the
cl_khr_device_uuid extension.

cl_uchar[CL_UUI
D_SIZE_KHR]

Returns a universally unique identifier (UUID)
for the software driver for the device.

CL_UUID_SIZE_KHR is the size of the UUID, in bytes.

CL_DEVICE_LUID_VALID_KHR

provided by the
cl_khr_device_uuid extension.

cl_bool Returns CL_TRUE if the device has a valid LUID
and CL_FALSE otherwise.

CL_DEVICE_LUID_KHR

provided by the
cl_khr_device_uuid extension.

cl_uchar[CL_LUI
D_SIZE_KHR]

Returns a locally unique identifier (LUID) for the
device.

It is not an error to query CL_DEVICE_LUID_KHR
when CL_DEVICE_LUID_VALID_KHR returns CL_FALSE,
but in this case the returned LUID value is
undefined.

When CL_DEVICE_LUID_VALID_KHR returns CL_TRUE,
and the OpenCL device is running on the
Windows operating system, the returned LUID
value can be cast to an LUID object and must be
equal to the locally unique identifier of an
IDXGIAdapter1 object that corresponds to the
OpenCL device.

CL_LUID_SIZE_KHR is the size of the LUID, in bytes.

94



Device Info Return Type Description

CL_DEVICE_NODE_MASK_KHR

provided by the
cl_khr_device_uuid extension.

cl_uint Returns a node mask for the device.

It is not an error to query CL_DEVICE_NODE_MASK_
KHR when CL_DEVICE_LUID_VALID_KHR returns
CL_FALSE, but in this case the returned node
mask is undefined.

When CL_DEVICE_LUID_VALID_KHR returns CL_TRUE,
the returned node mask must contain exactly
one bit. If the OpenCL device is running on an
operating system that supports the Direct3D 12
API and the OpenCL device corresponds to an
individual device in a linked device adapter, the
returned node mask identifies the Direct3D 12
node corresponding to the OpenCL device.
Otherwise, the returned node mask must be 1.

CL_DEVICE_EXTERNAL_MEMORY_
IMPORT_HANDLE_TYPES_KHR

provided by the
cl_khr_external_memory
extension.

cl_external_
memory_handle_
type_khr[]

Returns the list of importable external memory
handle types supported by device.

Must return a non-empty list of external
memory handle types for at least one of the
devices in the platform.

CL_DEVICE_EXTERNAL_MEMORY_
IMPORT_ASSUME_LINEAR_IMAGES_
HANDLE_TYPES_KHR

provided by the
cl_khr_external_memory
extension.

cl_external_
memory_handle_
type_khr[]

Returns the list of importable external memory
handle types supported by device, that are
assumed to apply linear layout to imported
images when no other tiling information is
provided.

This list contains a subset of CL_DEVICE_EXTERNAL_
MEMORY_IMPORT_HANDLE_TYPES_KHR. The returned
list may be empty.

External memory handle types not in CL_DEVICE_
EXTERNAL_MEMORY_IMPORT_ASSUME_LINEAR_IMAGES_
HANDLE_TYPES_KHR may have any memory layout.
The layout interpretation of images imported
with these handle types is implementation
defined.

95



Device Info Return Type Description

CL_DEVICE_HALF_FP_CONFIG

provided by the cl_khr_fp16
extension.

cl_device_fp_
config

Describes half-precision floating-point capability
of the OpenCL device. This is a bit-field that
describes one or more of the following values:

CL_FP_DENORM - denorms are supported
CL_FP_INF_NAN - INF and NaNs are supported
CL_FP_ROUND_TO_NEAREST - round to nearest even
rounding mode supported
CL_FP_ROUND_TO_ZERO - round to zero rounding
mode supported
CL_FP_ROUND_TO_INF - round to positive and
negative infinity rounding modes supported
CL_FP_FMA - IEEE754-2008 fused multiply-add is
supported
CL_FP_SOFT_FLOAT - Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software

If half-precision is supported by the device, then
the minimum half-precision floating-point
capability for OpenCL 2.0 or newer devices is:

CL_FP_ROUND_TO_ZERO

or

CL_FP_ROUND_TO_NEAREST |
CL_FP_INF_NAN.

96



Device Info Return Type Description

CL_DEVICE_INTEGER_DOT_PRODUCT_
CAPABILITIES_KHR

provided by the
cl_khr_integer_dot_product
extension.

cl_device_
integer_dot_
product_
capabilities_
khr

Returns the integer dot product capabilities
supported by the device.

CL_DEVICE_INTEGER_DOT_PRODUCT_INPUT_4x8BIT_
PACKED_KHR is always set, indicating that all
implementations that support cl_khr_integer_
dot_product must support dot product built-in
functions and, when SPIR-V is supported, SPIR-V
instructions that take four-component vectors of
8-bit integers packed into 32-bit integers as
input.

CL_DEVICE_INTEGER_DOT_PRODUCT_INPUT_4x8BIT_KHR
is set when dot product built-in functions and,
when SPIR-V is supported, SPIR-V instructions
that take four-component of 8-bit elements as
input are supported. NOTE: CL_DEVICE_INTEGER_
DOT_PRODUCT_INPUT_4x8BIT_KHR must be set in
version 2.x of the extension.

CL_DEVICE_INTEGER_DOT_PRODUCT_
ACCELERATION_PROPERTIES_8BIT_
KHR

provided by the
cl_khr_integer_dot_product
extension.

cl_device_
integer_dot_
product_
acceleration_
properties_khr

Returns a structure describing the exact 8-bit dot
product combinations that are accelerated on
the device. Each member is CL_TRUE if the
combination it corresponds to is accelerated,
CL_FALSE otherwise. NOTE: CL_DEVICE_INTEGER_
DOT_PRODUCT_ACCELERATION_PROPERTIES_8BIT_KHR is
missing before version 2.0 of the extension.

CL_DEVICE_INTEGER_DOT_PRODUCT_
ACCELERATION_PROPERTIES_
4x8BIT_PACKED_KHR

provided by the
cl_khr_integer_dot_product
extension.

cl_device_
integer_dot_
product_
acceleration_
properties_khr

Returns a structure describing the exact 4x8-bit
packed dot product combinations that are
accelerated on the device. Each member is
CL_TRUE if the combination it corresponds to is
accelerated, CL_FALSE otherwise. NOTE:
CL_DEVICE_INTEGER_DOT_PRODUCT_ACCELERATION_
PROPERTIES_4x8BIT_PACKED_KHR is missing before
version 2.0 of the extension.

97



Device Info Return Type Description

CL_DEVICE_KERNEL_CLOCK_
CAPABILITIES_KHR

provided by the
cl_khr_kernel_clock extension.

cl_device_
kernel_clock_
capabilities_
khr

Returns the kernel clock capabilities of the
device.

CL_DEVICE_KERNEL_CLOCK_SCOPE_DEVICE_KHR is set
when kernels are allowed to call the
clock_read_device and clock_read_hilo_device
OpenCL-C functions.

CL_DEVICE_KERNEL_CLOCK_SCOPE_WORK_GROUP_KHR is
set when kernels are allowed to call the
clock_read_work_group and
clock_read_hilo_work_group OpenCL-C functions.

CL_DEVICE_KERNEL_CLOCK_SCOPE_SUB_GROUP_KHR is
set when kernels are allowed to call the
clock_read_sub_group and
clock_read_hilo_sub_group OpenCL-C functions.

CL_DEVICE_PCI_BUS_INFO_KHR

provided by the
cl_khr_pci_bus_info extension.

cl_device_pci_
bus_info_khr

Returns PCI bus information for the device.

The PCI bus information is returned as a single
structure that includes the PCI bus domain, the
PCI bus identifier, the PCI device identifier, and
the PCI device function identifier.

CL_DEVICE_SEMAPHORE_TYPES_KHR

provided by the
cl_khr_semaphore extension.

cl_semaphore_
type_khr[]

Returns the list of the semaphore types
supported by device.

Must return a non-empty list for at least one of
the devices in the platform, meeting the
minimum requirements described for
cl_semaphore_type_khr.

CL_DEVICE_SEMAPHORE_IMPORT_
HANDLE_TYPES_KHR

provided by the
cl_khr_external_semaphore
extension.

cl_external_
semaphore_
handle_type_
khr[]

Returns the list of importable external
semaphore handle types supported by device.

This size of this query may be 0 indicating that
the device does not support importing
semaphores.

CL_DEVICE_SEMAPHORE_EXPORT_
HANDLE_TYPES_KHR

provided by the
cl_khr_external_semaphore
extension.

cl_external_
semaphore_
handle_type_
khr[]

Returns the list of exportable external
semaphore handle types supported by device.

This size of this query may be 0 indicating that
the device does not support exporting
semaphores.

98



Device Info Return Type Description

CL_DEVICE_SPIR_VERSIONS

provided by the cl_khr_spir
extension.

char[] A space separated list of SPIR versions
supported by the device.

For example, returning "1.2" in this query
implies that SPIR version 1.2 is supported by the
implementation.

CL_DEVICE_MAX_NAMED_BARRIER_
COUNT_KHR

provided by the
cl_khr_subgroup_named_barrier
extension.

cl_uint Maximum number of named barriers in a work-
group for any given kernel-instance running on
the device. The minimum value is 8.

CL_DEVICE_TERMINATE_
CAPABILITY_KHR

provided by the
cl_khr_terminate_context
extension.

cl_device_
terminate_
capability_khr

Describes the termination capability of the
OpenCL device. This is a bit-field, where the
following values are currently supported:

CL_DEVICE_TERMINATE_CAPABILITY_CONTEXT_KHR -
Indicates that context termination is supported.

OpenCL 3 devices must report the following feature macros via CL_DEVICE_OPENCL_C_FEATURES when
the corresponding bit is set in the bitfield returned for CL_DEVICE_INTEGER_DOT_PRODUCT_
CAPABILITIES_KHR:

Feature Bit Feature Macro

CL_DEVICE_INTEGER_DOT_PRODUCT_INPUT_4x8BIT_
PACKED_KHR

__opencl_c_integer_dot_product_input_4x8bit_
packed

CL_DEVICE_INTEGER_DOT_PRODUCT_INPUT_4x8BIT_KHR __opencl_c_integer_dot_product_input_4x8bit

OpenCL 3 devices must report the following feature macros via CL_DEVICE_OPENCL_C_FEATURES when
the corresponding bit is set in the bitfield returned for CL_DEVICE_KERNEL_CLOCK_CAPABILITIES_KHR:

Feature Bit Feature Macro

CL_DEVICE_KERNEL_CLOCK_SCOPE_DEVICE_KHR __opencl_c_kernel_clock_scope_device

CL_DEVICE_KERNEL_CLOCK_SCOPE_WORK_GROUP_KHR __opencl_c_kernel_clock_scope_work_group

CL_DEVICE_KERNEL_CLOCK_SCOPE_SUB_GROUP_KHR __opencl_c_kernel_clock_scope_sub_group

One of the two queries CL_DEVICE_SEMAPHORE_IMPORT_HANDLE_TYPES_KHR and CL_DEVICE_SEMAPHORE_
EXPORT_HANDLE_TYPES_KHR must return a non-empty list indicating support for at least one of the valid
semaphore handle types either for import, for export, or both.



Note

While CL_DEVICE_UUID_KHR is specified to remain consistent across driver versions
and system reboots, it is not intended to be usable as a serializable persistent
identifier for a device. It may change when a device is physically added to,

99



removed from, or moved to a different connector in a system while that system is
powered down. Further, there is no reasonable way to verify with conformance
testing that a given device retains the same UUID in a given system across all
driver versions supported in that system. While implementations should make
every effort to report consistent device UUIDs across driver versions, applications
should avoid relying on the persistence of this value for uses other than
identifying compatible devices for external object sharing purposes.

clGetDeviceInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_DEVICE if device is not a valid device.

• CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is < size of return type as specified in the Device Queries table and
param_value is not a NULL value or if param_name is a value that is available as an extension and
the corresponding extension is not supported by the device.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The cl_device_integer_dot_product_acceleration_properties_khr structure describes the exact dot
product operations that are accelerated on the device:

typedef struct cl_device_integer_dot_product_acceleration_properties_khr {
    cl_bool    signed_accelerated;
    cl_bool    unsigned_accelerated;
    cl_bool    mixed_signedness_accelerated;
    cl_bool    accumulating_saturating_signed_accelerated;
    cl_bool    accumulating_saturating_unsigned_accelerated;
    cl_bool    accumulating_saturating_mixed_signedness_accelerated;
} cl_device_integer_dot_product_acceleration_properties_khr;

• signed_accelerated is CL_TRUE when signed dot product operations are accelerated, CL_FALSE
otherwise.

• unsigned_accelerated is CL_TRUE when unsigned dot product operations are accelerated, CL_FALSE
otherwise.

• mixed_signedness_accelerated is CL_TRUE when mixed signedness dot product operations are
accelerated, CL_FALSE otherwise.

• accumulating_saturating_signed_accelerated is CL_TRUE when accumulating saturating signed dot
product operations are accelerated, CL_FALSE otherwise.

• accumulating_saturating_unsigned_accelerated is CL_TRUE when accumulating saturating
unsigned dot product operations are accelerated, CL_FALSE otherwise.

• accumulating_saturating_mixed_signedness_accelerated is CL_TRUE when accumulating saturating
mixed signedness dot product operations are accelerated, CL_FALSE otherwise.

100



A dot product operation is deemed accelerated if its implementation provides a performance
advantage over application-provided code composed from elementary instructions and/or other dot
product instructions, either because the implementation uses optimized machine code sequences
whose generation from application-provided code cannot be guaranteed or because it uses
hardware features that cannot otherwise be targeted from application-provided code.

The cl_device_pci_bus_info_khr structure describes PCI bus information for a device:

typedef struct cl_device_pci_bus_info_khr {
    cl_uint    pci_domain;
    cl_uint    pci_bus;
    cl_uint    pci_device;
    cl_uint    pci_function;
} cl_device_pci_bus_info_khr;

• pci_domain is the PCI bus domain of the device.

• pci_bus is the PCI bus identified of the device.

• pci_device is the PCI device identifier of the device.

• pci_function is the PCI device function identifier of the device.

To query device and host timestamps, call the function:

cl_int clGetDeviceAndHostTimer(
    cl_device_id device,
    cl_ulong* device_timestamp,
    cl_ulong* host_timestamp);

 clGetDeviceAndHostTimer is missing before version 2.1.

• device is a device returned by clGetDeviceIDs.

• device_timestamp will be updated with the value of the device timer in nanoseconds. The
resolution of the timer is the same as the device profiling timer returned by clGetDeviceInfo
and the CL_DEVICE_PROFILING_TIMER_RESOLUTION query.

• host_timestamp will be updated with the value of the host timer in nanoseconds at the closest
possible point in time to that at which device_timer was returned. The resolution of the timer
may be queried via clGetPlatformInfo and the flag CL_PLATFORM_HOST_TIMER_RESOLUTION.

clGetDeviceAndHostTimer returns a reasonably synchronized pair of timestamps from the device
timer and the host timer as seen by device. Implementations may need to execute this query with a
high latency in order to provide reasonable synchronization of the timestamps. The host timestamp
and device timestamp returned by this function and clGetHostTimer each have an
implementation-defined timebase. The timestamps will always be in their respective timebases
regardless of which query function is used. The timestamp returned from clGetEventProfilingInfo
for an event on a device and a device timestamp queried from the same device will always be in the
same timebase.

101



clGetDeviceAndHostTimer will return CL_SUCCESS with a time value in host_timestamp if provided.
Otherwise, it returns one of the following errors:

• CL_INVALID_DEVICE if device is not a valid device.

• CL_INVALID_OPERATION if the platform associated with device does not support device and host
timer synchronization.

• CL_INVALID_VALUE if host_timestamp or device_timestamp is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To query the host clock, call the function:

cl_int clGetHostTimer(
    cl_device_id device,
    cl_ulong* host_timestamp);

 clGetHostTimer is missing before version 2.1.

• device is a device returned by clGetDeviceIDs.

• host_timestamp will be updated with the value of the current timer in nanoseconds. The
resolution of the timer may be queried via clGetPlatformInfo and the flag CL_PLATFORM_HOST_
TIMER_RESOLUTION.

clGetHostTimer returns the current value of the host clock as seen by device. This value is in the
same timebase as the host_timestamp returned from clGetDeviceAndHostTimer. The
implementation will return with as low a latency as possible to allow a correlation with a
subsequent application sampled time. The host timestamp and device timestamp returned by this
function and clGetDeviceAndHostTimer each have an implementation-defined timebase. The
timestamps will always be in their respective timebases regardless of which query function is used.
The timestamp returned from clGetEventProfilingInfo for an event on a device and a device
timestamp queried from the same device will always be in the same timebase.

clGetHostTimer will return CL_SUCCESS with a time value in host_timestamp if provided. Otherwise,
it returns one of the following errors:

• CL_INVALID_DEVICE if device is not a valid device.

• CL_INVALID_OPERATION if the platform associated with device does not support device and host
timer synchronization.

• CL_INVALID_VALUE if host_timestamp is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

102



implementation on the host.

4.2.1. Sharing DirectX9 Media Surfaces With OpenCL Images

This section discusses OpenCL functions that allow applications to use media surfaces as OpenCL
memory objects. This allows efficient sharing of data between OpenCL and media surface APIs. The
OpenCL API may be used to execute kernels that read and/or write memory objects that are also
media surfaces. An OpenCL image object may be created from a media surface. OpenCL memory
objects may be created from media surfaces if and only if the OpenCL context has been created
from a media adapter.

4.2.1.1. Querying OpenCL Devices Corresponding to Media Adapters

Media adapters are an abstraction associated with devices that provide media capabilities.
Adapters with associated OpenCL devices can enable media surface sharing between the two.

To query a media adapter for any associated OpenCL devices, call the function

cl_int clGetDeviceIDsFromDX9MediaAdapterKHR(
    cl_platform_id platform,
    cl_uint num_media_adapters,
    cl_dx9_media_adapter_type_khr* media_adapter_type,
    void* media_adapters,
    cl_dx9_media_adapter_set_khr media_adapter_set,
    cl_uint num_entries,
    cl_device_id* devices,
    cl_uint* num_devices);


clGetDeviceIDsFromDX9MediaAdapterKHR is provided by the
cl_khr_dx9_media_sharing extension.

• platform refers to the platform ID returned by clGetPlatformIDs.

• num_media_adapters specifies the number of media adapters.

• media_adapters_type is an array of num_media_adapters entries. Each entry specifies the type of
media adapter and must be one of the values described in the media adapter type table below.

• media_adapters is an array of num_media_adapters entries. Each entry specifies the actual
adapter whose type is specified by media_adapter_type. The media_adapters must be one of the
types described in the cl_dx9_media_adapter_type_khr values table.

• media_adapter_set specifies the set of adapters to return and must be one of the values
described in the cl_dx9_media_adapter_set_khr values table.

• num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL, the num_entries must be greater than zero.

• devices returns a list of OpenCL devices found that support the list of media adapters specified.
The cl_device_id values returned in devices can be used to identify a specific OpenCL device. If
devices argument is NULL, this argument is ignored. The number of OpenCL devices returned is

103



the minimum of the value specified by num_entries or the number of OpenCL devices whose
type matches device_type.

• num_devices returns the number of OpenCL devices. If num_devices is NULL, this argument is
ignored.

Table 6. DirectX 9 object types that may be used by clGetDeviceIDsFromDX9MediaAdapterKHR

cl_dx9_media_adapter_type_khr Type of Media Adapter

CL_ADAPTER_D3D9_KHR

provided by the cl_khr_dx9_media_sharing
extension.

IDirect3DDevice9 *

CL_ADAPTER_D3D9EX_KHR

provided by the cl_khr_dx9_media_sharing
extension.

IDirect3DDevice9Ex *

CL_ADAPTER_DXVA_KHR

provided by the cl_khr_dx9_media_sharing
extension.

IDXVAHD_Device *

Table 7. Sets of devices queriable using clGetDeviceIDsFromDX9MediaAdapterKHR

cl_dx9_media_adapter_set_khr Description

CL_PREFERRED_DEVICES_FOR_DX9_MEDIA_ADAPTER_KHR

provided by the cl_khr_dx9_media_sharing
extension.

The preferred OpenCL devices associated with
the media adapter.

CL_ALL_DEVICES_FOR_DX9_MEDIA_ADAPTER_KHR

provided by the cl_khr_dx9_media_sharing
extension.

All OpenCL devices that may interoperate with
the media adapter

clGetDeviceIDsFromDX9MediaAdapterKHR returns CL_SUCCESS if the function is executed
successfully. Otherwise, it returns one of the following errors:

• CL_INVALID_PLATFORM if platform is not a valid platform.

• CL_INVALID_VALUE if num_media_adapters is zero or if media_adapters_type is NULL or if
media_adapters is NULL.

• CL_INVALID_VALUE if any of the entries in media_adapters_type or media_adapters is not a valid
value.

• CL_INVALID_VALUE if media_adapter_set is not a valid value.

• CL_INVALID_VALUE if num_entries is equal to zero and devices is not NULL or if both num_devices
and devices are NULL.

• CL_DEVICE_NOT_FOUND if no OpenCL devices that correspond to adapters specified in

104



media_adapters and media_adapters_type were found.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

4.2.2. Sharing Direct3D 10 Resources With OpenCL Memory Objects

This section discusses OpenCL functions that allow applications to use Direct3D 10 resources as
OpenCL memory objects. This allows efficient sharing of data between OpenCL and Direct3D 10.
The OpenCL API may be used to execute kernels that read and/or write memory objects that are
also Direct3D 10 resources. An OpenCL image object may be created from a Direct3D 10 texture
resource. An OpenCL buffer object may be created from a Direct3D 10 buffer resource. OpenCL
memory objects may be created from Direct3D 10 objects if and only if the OpenCL context has
been created from a Direct3D 10 device.

4.2.2.1. Querying OpenCL Devices Corresponding to Direct3D 10 Devices

The OpenCL devices corresponding to a Direct3D 10 device may be queried. The OpenCL devices
corresponding to a DXGI adapter may also be queried. The OpenCL devices corresponding to a
Direct3D 10 device will be a subset of the OpenCL devices corresponding to the DXGI adapter
against which the Direct3D 10 device was created.

To query OpenCL devices corresponding to a Direct3D 10 device or a DXGI device, call the function

cl_int clGetDeviceIDsFromD3D10KHR(
    cl_platform_id platform,
    cl_d3d10_device_source_khr d3d_device_source,
    void* d3d_object,
    cl_d3d10_device_set_khr d3d_device_set,
    cl_uint num_entries,
    cl_device_id* devices,
    cl_uint* num_devices);


clGetDeviceIDsFromD3D10KHR is provided by the cl_khr_d3d10_sharing
extension.

• platform refers to the platform ID returned by clGetPlatformIDs.

• d3d_device_source specifies the type of d3d_object, and must be one of the values shown in the
Direct3D 10 object types that may be used by clGetDeviceIDsFromD3D10KHR table.

• d3d_object specifies the object whose corresponding OpenCL devices are being queried. The
type of d3d_object must be as specified in the Direct3D 10 object types that may be used by
clGetDeviceIDsFromD3D10KHR table.

• d3d_device_set specifies the set of devices to return, and must be one of the values shown in the
Sets of devices queriable using clGetDeviceIDsFromD3D10KHR table.

105



• num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL then num_entries must be greater than zero.

• devices returns a list of OpenCL devices found. The cl_device_id values returned in devices can
be used to identify a specific OpenCL device. If devices is NULL, this argument is ignored. The
number of OpenCL devices returned is the minimum of the value specified by num_entries and
the number of OpenCL devices corresponding to d3d_object.

• num_devices returns the number of OpenCL devices available that correspond to d3d_object. If
num_devices is NULL, this argument is ignored.

Table 8. Direct3D 10 object types that may be used by clGetDeviceIDsFromD3D10KHR

cl_d3d10_device_source_khr Type of d3d_object

CL_D3D10_DEVICE_KHR

provided by the cl_khr_d3d10_sharing extension.

ID3D10Device *

CL_D3D10_DXGI_ADAPTER_KHR

provided by the cl_khr_d3d10_sharing extension.

IDXGIAdapter *

Table 9. Sets of devices queriable using clGetDeviceIDsFromD3D10KHR

cl_d3d10_device_set_khr Devices returned in devices

CL_PREFERRED_DEVICES_FOR_D3D10_KHR

provided by the cl_khr_d3d10_sharing extension.

The preferred OpenCL devices associated with
the specified Direct3D object.

CL_ALL_DEVICES_FOR_D3D10_KHR

provided by the cl_khr_d3d10_sharing extension.

All OpenCL devices which may interoperate
with the specified Direct3D object. Performance
of sharing data on these devices may be
considerably less than on the preferred devices.

clGetDeviceIDsFromD3D10KHR returns CL_SUCCESS if the function is executed successfully.
Otherwise it may return

• CL_INVALID_PLATFORM if platform is not a valid platform.

• CL_INVALID_VALUE if d3d_device_source is not a valid value, d3d_device_set is not a valid value,
num_entries is equal to zero and devices is not NULL, or if both num_devices and devices are NULL.

• CL_DEVICE_NOT_FOUND if no OpenCL devices that correspond to d3d_object were found.

4.2.3. Sharing Direct3D 11 Resources With OpenCL Memory Objects

This section discusses OpenCL functions that allow applications to use Direct3D 11 resources as
OpenCL memory objects. This allows efficient sharing of data between OpenCL and Direct3D 11.
The OpenCL API may be used to execute kernels that read and/or write memory objects that are
also Direct3D 11 resources. An OpenCL image object may be created from a Direct3D 11 texture
resource. An OpenCL buffer object may be created from a Direct3D 11 buffer resource. OpenCL
memory objects may be created from Direct3D 11 objects if and only if the OpenCL context has

106



been created from a Direct3D 11 device.

4.2.3.1. Querying OpenCL Devices Corresponding to Direct3D 11 Devices

The OpenCL devices corresponding to a Direct3D 11 device may be queried. The OpenCL devices
corresponding to a DXGI adapter may also be queried. The OpenCL devices corresponding to a
Direct3D 11 device will be a subset of the OpenCL devices corresponding to the DXGI adapter
against which the Direct3D 11 device was created.

To query OpenCL devices corresponding to a Direct3D 11 device or a DXGI device, call the function

cl_int clGetDeviceIDsFromD3D11KHR(
    cl_platform_id platform,
    cl_d3d11_device_source_khr d3d_device_source,
    void* d3d_object,
    cl_d3d11_device_set_khr d3d_device_set,
    cl_uint num_entries,
    cl_device_id* devices,
    cl_uint* num_devices);


clGetDeviceIDsFromD3D11KHR is provided by the cl_khr_d3d11_sharing
extension.

• platform refers to the platform ID returned by clGetPlatformIDs.

• d3d_device_source specifies the type of d3d_object, and must be one of the values shown in the
Direct3D 11 object types that may be used by clGetDeviceIDsFromD3D11KHR table.

• d3d_object specifies the object whose corresponding OpenCL devices are being queried. The
type of d3d_object must be as specified in the Direct3D 11 object types that may be used by
clGetDeviceIDsFromD3D11KHR table.

• d3d_device_set specifies the set of devices to return, and must be one of the values shown in the
Sets of devices queriable using clGetDeviceIDsFromD3D11KHR table.

• num_entries is the number of cl_device_id entries that can be added to devices. If devices is not
NULL then num_entries must be greater than zero.

• devices returns a list of OpenCL devices found. The cl_device_id values returned in devices can
be used to identify a specific OpenCL device. If devices is NULL, this argument is ignored. The
number of OpenCL devices returned is the minimum of the value specified by num_entries and
the number of OpenCL devices corresponding to d3d_object.

• num_devices returns the number of OpenCL devices available that correspond to d3d_object. If
num_devices is NULL, this argument is ignored.

Table 10. Direct3D 11 object types that may be used by clGetDeviceIDsFromD3D11KHR

107



cl_d3d11_device_source_khr Type of d3d_object

CL_D3D11_DEVICE_KHR

provided by the cl_khr_d3d11_sharing extension.

ID3D11Device *

CL_D3D11_DXGI_ADAPTER_KHR

provided by the cl_khr_d3d11_sharing extension.

IDXGIAdapter *

Table 11. Sets of devices queriable using clGetDeviceIDsFromD3D11KHR

cl_d3d11_device_set_khr Devices returned in devices

CL_PREFERRED_DEVICES_FOR_D3D11_KHR

provided by the cl_khr_d3d11_sharing extension.

The preferred OpenCL devices associated with
the specified Direct3D object.

CL_ALL_DEVICES_FOR_D3D11_KHR

provided by the cl_khr_d3d11_sharing extension.

All OpenCL devices which may interoperate
with the specified Direct3D object. Performance
of sharing data on these devices may be
considerably less than on the preferred devices.

clGetDeviceIDsFromD3D11KHR returns CL_SUCCESS if the function is executed successfully.
Otherwise it may return

• CL_INVALID_PLATFORM if platform is not a valid platform.

• CL_INVALID_VALUE if d3d_device_source is not a valid value, d3d_device_set is not a valid value,
num_entries is equal to zero and devices is not NULL, or if both num_devices and devices are NULL.

• CL_DEVICE_NOT_FOUND if no OpenCL devices that correspond to d3d_object were found.

4.3. Partitioning a Device

 Partitioning devices is missing before version 1.2.

To create sub-devices partitioning an OpenCL device, call the function:

cl_int clCreateSubDevices(
    cl_device_id in_device,
    const cl_device_partition_property* properties,
    cl_uint num_devices,
    cl_device_id* out_devices,
    cl_uint* num_devices_ret);

 clCreateSubDevices is missing before version 1.2.

• in_device is the device to be partitioned.

• properties specifies how in_device is to be partitioned, described by a partition name and its

108



corresponding value. Each partition name is immediately followed by the corresponding
desired value. The list is terminated with 0. The list of supported partitioning schemes is
described in the Sub-device Partition table. Only one of the listed partitioning schemes can be
specified in properties.

• num_devices is the size of memory pointed to by out_devices specified as the number of
cl_device_id entries.

• out_devices is the buffer where the OpenCL sub-devices will be returned. If out_devices is NULL,
this argument is ignored. If out_devices is not NULL, num_devices must be greater than or equal to
the number of sub-devices that device may be partitioned into according to the partitioning
scheme specified in properties.

• num_devices_ret returns the number of sub-devices that device may be partitioned into
according to the partitioning scheme specified in properties. If num_devices_ret is NULL, it is
ignored.

clCreateSubDevices creates an array of sub-devices that each reference a non-intersecting set of
compute units within in_device, according to the partition scheme given by properties. The output
sub-devices may be used in every way that the root (or parent) device can be used, including
creating contexts, building programs, further calls to clCreateSubDevices and creating command-
queues. When a command-queue is created against a sub-device, the commands enqueued on the
queue are executed only on the sub-device.

Table 12. List of supported partition schemes by clCreateSubDevices

Partition Property Partition
Value

Description

CL_DEVICE_PARTITION_EQUALLY

missing before version 1.2.

cl_uint Split the aggregate device into as many smaller
aggregate devices as can be created, each
containing n compute units. The value n is
passed as the value accompanying this property.
If n does not divide evenly into CL_DEVICE_MAX_
COMPUTE_UNITS, then the remaining compute units
are not used.

CL_DEVICE_PARTITION_BY_COUNTS

missing before version 1.2.

cl_uint This property is followed by a list of compute
unit counts terminated with 0 or CL_DEVICE_
PARTITION_BY_COUNTS_LIST_END. For each non-zero
count m in the list, a sub-device is created with
m compute units in it.

The number of non-zero count entries in the list
may not exceed CL_DEVICE_PARTITION_MAX_SUB_
DEVICES.

The total number of compute units specified
may not exceed CL_DEVICE_MAX_COMPUTE_UNITS.

109



Partition Property Partition
Value

Description

CL_DEVICE_PARTITION_BY_
AFFINITY_DOMAIN

missing before version 1.2.

cl_device_
affinity_domain

Split the device into smaller aggregate devices
containing one or more compute units that all
share part of a cache hierarchy. The value
accompanying this property may be drawn from
the following list:

CL_DEVICE_AFFINITY_DOMAIN_NUMA - Split the device
into sub-devices comprised of compute units
that share a NUMA node.

CL_DEVICE_AFFINITY_DOMAIN_L4_CACHE - Split the
device into sub-devices comprised of compute
units that share a level 4 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L3_CACHE - Split the
device into sub-devices comprised of compute
units that share a level 3 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L2_CACHE - Split the
device into sub-devices comprised of compute
units that share a level 2 data cache.

CL_DEVICE_AFFINITY_DOMAIN_L1_CACHE - Split the
device into sub-devices comprised of compute
units that share a level 1 data cache.

CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE -
Split the device along the next partitionable
affinity domain. The implementation shall find
the first level along which the device or sub-
device may be further subdivided in the order
NUMA, L4, L3, L2, L1, and partition the device
into sub-devices comprised of compute units
that share memory subsystems at this level.

The user may determine what happened by
calling clGetDeviceInfo(CL_DEVICE_PARTITION_
TYPE) on the sub-devices.

clCreateSubDevices returns CL_SUCCESS if the partition is created successfully. Otherwise, it returns
a NULL value with the following error values returned in errcode_ret:

• CL_INVALID_DEVICE if in_device is not a valid device.

• CL_INVALID_VALUE if values specified in properties are not valid or if values specified in properties
are valid but not supported by the device.

110



• CL_INVALID_VALUE if out_devices is not NULL and num_devices is less than the number of sub-
devices created by the partition scheme.

• CL_DEVICE_PARTITION_FAILED if the partition name is supported by the implementation but
in_device could not be further partitioned.

• CL_INVALID_DEVICE_PARTITION_COUNT if the partition name specified in properties is CL_DEVICE_
PARTITION_BY_COUNTS and the number of sub-devices requested exceeds CL_DEVICE_PARTITION_MAX_
SUB_DEVICES or the total number of compute units requested exceeds CL_DEVICE_MAX_COMPUTE_
UNITS for in_device, or the number of compute units requested for one or more sub-devices is
less than zero or the number of sub-devices requested exceeds CL_DEVICE_MAX_COMPUTE_UNITS for
in_device.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

A few examples that describe how to specify partition properties in properties argument to
clCreateSubDevices are given below:

To partition a device containing 16 compute units into two sub-devices, each containing 8 compute
units, pass the following in properties:

{ CL_DEVICE_PARTITION_EQUALLY, 8,
  0 } // 0 terminates the property list

To partition a device with four compute units into two sub-devices with one sub-device containing
3 compute units and the other sub-device 1 compute unit, pass the following in properties
argument:

{ CL_DEVICE_PARTITION_BY_COUNTS,
    3, 1, CL_DEVICE_PARTITION_BY_COUNTS_LIST_END,
  0 } // 0 terminates the property list

To split a device along the outermost cache line (if any), pass the following in properties argument:

{ CL_DEVICE_PARTITION_BY_AFFINITY_DOMAIN,
    CL_DEVICE_AFFINITY_DOMAIN_NEXT_PARTITIONABLE,
  0 } // 0 terminates the property list

To retain a device, call the function:

cl_int clRetainDevice(
    cl_device_id device);

111



 clRetainDevice is missing before version 1.2.

• device is the OpenCL device to retain.

clRetainDevice increments the device reference count if device is a valid sub-device created by a
call to clCreateSubDevices. If device is a root level device i.e. a cl_device_id returned by
clGetDeviceIDs, the device reference count remains unchanged.

clRetainDevice returns CL_SUCCESS if the function is executed successfully or the device is a root-
level device. Otherwise, it returns one of the following errors:

• CL_INVALID_DEVICE if device is not a valid device.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release a device, call the function:

cl_int clReleaseDevice(
    cl_device_id device);

 clReleaseDevice is missing before version 1.2.

• device is the OpenCL device to release.

clReleaseDevice decrements the device reference count if device is a valid sub-device created by a
call to clCreateSubDevices. If device is a root level device i.e. a cl_device_id returned by
clGetDeviceIDs, the device reference count remains unchanged.

clReleaseDevice returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_DEVICE if device is not a valid device.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

After the device reference count becomes zero and all the objects attached to device (such as
command-queues) are released, the device object is deleted. Using this function to release a
reference that was not obtained by creating the object or by calling clRetainDevice causes
undefined behavior.

112



4.4. Contexts
To create an OpenCL context, call the function:

cl_context clCreateContext(
    const cl_context_properties* properties,
    cl_uint num_devices,
    const cl_device_id* devices,
    void (CL_CALLBACK* pfn_notify)(const char* errinfo, const void* private_info,
size_t cb, void* user_data),
    void* user_data,
    cl_int* errcode_ret);

• properties specifies a list of context property names and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list is
terminated with 0. The list of supported properties, and their default values if not present in
properties, is described in the Context Properties table. properties can be NULL, in which case all
properties take on their default values.

• num_devices is the number of devices specified in the devices argument.

• devices is a pointer to a list of unique devices returned by clGetDeviceIDs or sub-devices
created by clCreateSubDevices for a platform. [10]

• pfn_notify is a callback function that can be registered by the application. This callback function
will be used by the OpenCL implementation to report information on errors during context
creation as well as errors that occur at runtime in this context. This callback function may be
called asynchronously by the OpenCL implementation. It is the application’s responsibility to
ensure that the callback function is thread-safe. If pfn_notify is NULL, no callback function is
registered.

• user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The parameters to the callback function pfn_notify are:

• errinfo is a pointer to an error string.

• private_info and cb represent a pointer to binary data that is returned by the OpenCL
implementation that can be used to log additional information helpful in debugging the error.

• user_data is a pointer to user supplied data.

Contexts are used by the OpenCL runtime for managing objects such as command-queues, memory,
program and kernel objects and for executing kernels on one or more devices specified in the
context.

Table 13. List of supported context creation properties by clCreateContext

113



Context Property Property Value Description

CL_CONTEXT_PLATFORM cl_platform_id Specifies the platform to use.

Defaults to an implementation-defined platform
if not specified.

CL_CONTEXT_INTEROP_USER_SYNC

missing before version 1.2.

cl_bool Specifies whether the user is responsible for
synchronization between OpenCL and other
APIs. Please refer to the specific sections in the
OpenCL Extension Specification that describe
sharing with other APIs for restrictions on using
this flag.

Defaults to CL_FALSE if not specified.

CL_CONTEXT_ADAPTER_D3D9_KHR

provided by the
cl_khr_dx9_media_sharing
extension.

IDirect3DDevice
9 *

Specifies an IDirect3DDevice9 to use for D3D9
interop.

CL_CONTEXT_ADAPTER_D3D9EX_KHR

provided by the
cl_khr_dx9_media_sharing
extension.

IDirect3DDevice
Ex*

Specifies an IDirect3DDevice9Ex to use for D3D9
interop.

CL_CONTEXT_ADAPTER_DXVA_KHR

provided by the
cl_khr_dx9_media_sharing
extension.

IDXVAHD_Device
*

Specifies an IDXVAHD_Device to use for DXVA
interop.

CL_CONTEXT_D3D10_DEVICE_KHR

provided by the
cl_khr_d3d10_sharing extension.

ID3D10Device * Specifies the ID3D10Device * to use for Direct3D
10 interoperability.

The default value is NULL.

CL_CONTEXT_D3D11_DEVICE_KHR

provided by the
cl_khr_d3d11_sharing extension.

ID3D11Device * Specifies the ID3D11Device * to use for Direct3D
11 interoperability.

The default value is NULL.

CL_GL_CONTEXT_KHR

provided by the
cl_khr_gl_sharing extension.

OpenGL
context handle

OpenGL context to associate the OpenCL context
with

Defaults to 0 if not specified.

CL_CGL_SHAREGROUP_KHR

provided by the
cl_khr_gl_sharing extension.

CGL share
group handle

CGL share group to associate the OpenCL
context with

Defaults to 0 if not specified.

114



Context Property Property Value Description

CL_EGL_DISPLAY_KHR

provided by the
cl_khr_gl_sharing extension.

EGL EGLDisplay
handle

EGLDisplay an OpenGL context was created with
respect to

Defaults to EGL_NO_DISPLAY if not specified.

CL_GLX_DISPLAY_KHR

provided by the
cl_khr_gl_sharing extension.

X handle X Display an OpenGL context was created with
respect to

Defaults to None if not specified.

CL_WGL_HDC_KHR

provided by the
cl_khr_gl_sharing extension.

Windows HDC
handle

HDC an OpenGL context was created with
respect to

Defaults to 0 if not specified.

CL_CONTEXT_MEMORY_INITIALIZE_
KHR

provided by the
cl_khr_initialize_memory
extension.

cl_context_
memory_
initialize_khr

Describes which memory types for the context
must be initialized. This is a bit-field, where the
following values are currently supported:

CL_CONTEXT_MEMORY_INITIALIZE_LOCAL_
KHR — Initialize local memory to zeros.

CL_CONTEXT_MEMORY_INITIALIZE_PRIVATE_
KHR — Initialize private memory to zeros.

CL_CONTEXT_TERMINATE_KHR

provided by the
cl_khr_terminate_context
extension.

cl_bool Specifies whether the context can be terminated.
The default value is CL_FALSE.

Some of the properties specified in the Context Properties table control sharing of OpenCL memory
objects with OpenGL buffer, texture, and renderbuffer objects.

Depending on the platform-specific API used to bind OpenGL contexts to the window system, the
following properties may be set to identify an OpenGL context:

• When the CGL binding API is supported, the property CL_CGL_SHAREGROUP_KHR should be set to a
CGLShareGroup handle to a CGL share group object.

• When the EGL binding API is supported, the property CL_GL_CONTEXT_KHR should be set to an
EGLContext handle to an OpenGL ES or OpenGL context, and the property CL_EGL_DISPLAY_KHR
should be set to the EGLDisplay handle of the display used to create the OpenGL ES or OpenGL
context.

• When the GLX binding API is supported, the property CL_GL_CONTEXT_KHR should be set to a
GLXContext handle to an OpenGL context, and the property CL_GLX_DISPLAY_KHR should be set to
the Display handle of the X Window System display used to create the OpenGL context.

• When the WGL binding API is supported, the property CL_GL_CONTEXT_KHR should be set to an
HGLRC handle to an OpenGL context, and the property CL_WGL_HDC_KHR should be set to the HDC

115



handle of the display used to create the OpenGL context.

Memory objects created in the context so specified may be shared with the specified OpenGL or
OpenGL ES context (as well as with any other OpenGL contexts on the share list of that context,
according to the description of sharing in the GLX 1.4 and EGL 1.5 specifications, and the WGL
documentation for OpenGL implementations on Microsoft Windows), or with the explicitly
identified OpenGL share group for CGL. If no OpenGL or OpenGL ES context or share group is
specified in the property list, then memory objects may not be shared, and attempts to create such
objects will result in a CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR error.

OpenCL / OpenGL sharing does not support the CL_CONTEXT_INTEROP_USER_SYNC property defined in
the Context Properties table. Specifying this property when creating a context with OpenCL /
OpenGL sharing will return an appropriate error.



There are a number of cases where error notifications need to be delivered due to
an error that occurs outside a context. Such notifications may not be delivered
through the pfn_notify callback. Where these notifications go is implementation-
defined.

clCreateContext returns a valid non-zero context and errcode_ret is set to CL_SUCCESS if the context
is created successfully. Otherwise, it returns a NULL value with the following error values returned
in errcode_ret:

• CL_INVALID_PLATFORM if no platform is specified in properties and no platform could be selected,
or if the platform specified in properties is not a valid platform.

• CL_INVALID_PROPERTY if a context property name in properties is not a supported property name,
if the value specified for a supported property name is not valid, or if the same property name
is specified more than once. This error code is missing before version 1.1.

• CL_INVALID_VALUE if devices is NULL.

• CL_INVALID_VALUE if num_devices is equal to zero.

• CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

• CL_INVALID_DEVICE if any device in devices is not a valid device.

• CL_DEVICE_NOT_AVAILABLE if a device in devices is currently not available even though the device
was returned by clGetDeviceIDs.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The following errors may be returned if the cl_khr_dx9_media_sharing extension is supported:

• CL_INVALID_DX9_MEDIA_ADAPTER_KHR if any of the values of the properties CL_CONTEXT_ADAPTER_D3D9_
KHR, CL_CONTEXT_ADAPTER_D3D9EX_KHR or CL_CONTEXT_ADAPTER_DXVA_KHR is non-NULL and does not
specify a valid media adapter with which the cl_device_ids against which this context is to be
created may interoperate.

116



The following errors may be returned if the cl_khr_d3d10_sharing extension is supported:

• CL_INVALID_D3D10_DEVICE_KHR if the value of the property CL_CONTEXT_D3D10_DEVICE_KHR is non-NULL
and does not specify a valid Direct3D 10 device with which the cl_device_ids against which this
context is to be created may interoperate.

• CL_INVALID_OPERATION if Direct3D 10 interoperability is specified by setting CL_INVALID_D3D10_
DEVICE_KHR to a non-NULL value, and interoperability with another graphics API is also specified.

The following errors may be returned if the cl_khr_d3d11_sharing extension is supported:

• CL_INVALID_D3D11_DEVICE_KHR if the value of the property CL_CONTEXT_D3D11_DEVICE_KHR is non-NULL
and does not specify a valid Direct3D 11 device with which the cl_device_ids against which this
context is to be created may interoperate.

• CL_INVALID_OPERATION if Direct3D 11 interoperability is specified by setting CL_INVALID_D3D11_
DEVICE_KHR to a non-NULL value, and interoperability with another graphics API is also specified.

The following errors may be returned if the cl_khr_gl_sharing extension is supported:

• CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a context was specified for an OpenGL or OpenGL ES
implementation using the EGL, GLX, or WGL binding APIs, as described above; and any of the
following conditions hold:

◦ The specified display and context properties do not identify a valid OpenGL or OpenGL ES
context.

◦ The specified context does not support buffer and renderbuffer objects.

◦ The specified context is not compatible with the OpenCL context being created (for example,
it exists in a physically distinct address space, such as another hardware device; or it does
not support sharing data with OpenCL due to implementation restrictions).

• CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a share group was specified for a CGL-based OpenGL
implementation by setting the property CL_CGL_SHAREGROUP_KHR, and the specified share group
does not identify a valid CGL share group object.

• CL_INVALID_OPERATION if a context was specified as described above and any of the following
conditions hold:

◦ A context or share group object was specified for one of CGL, EGL, GLX, or WGL and the
OpenGL implementation does not support that window-system binding API.

◦ More than one of the properties CL_CGL_SHAREGROUP_KHR, CL_EGL_DISPLAY_KHR, CL_GLX_DISPLAY_
KHR, and CL_WGL_HDC_KHR is set to a non-default value.

◦ Both of the properties CL_CGL_SHAREGROUP_KHR and CL_GL_CONTEXT_KHR are set to non-default
values.

◦ Any of the devices specified in the devices argument cannot support OpenCL objects which
share the data store of an OpenGL object.

• CL_INVALID_PROPERTY if both CL_CONTEXT_INTEROP_USER_SYNC, and any of the properties defined by
the cl_khr_gl_sharing extension are defined in properties.

The following errors may be returned if the cl_khr_terminate_context extension is supported:

117



• CL_INVALID_PROPERTY if the cl_khr_terminate_context extension is supported and CL_CONTEXT_
TERMINATE_KHR is set to CL_TRUE in properties, but not all of the devices associated with the context
support the ability to support context termination (i.e. CL_DEVICE_TERMINATE_CAPABILITY_CONTEXT_
KHR is set for CL_DEVICE_TERMINATE_CAPABILITY_KHR).



It is possible that a device(s) becomes unavailable after a context and command-
queues that use this device(s) have been created and commands have been queued
to command-queues. In this case the behavior of OpenCL API calls that use this
context (and command-queues) are considered to be implementation-defined. The
user callback function, if specified, when the context is created can be used to
record appropriate information in the errinfo, private_info arguments passed to
the callback function when the device becomes unavailable.

To create an OpenCL context from a specific device type [11], call the function:

cl_context clCreateContextFromType(
    const cl_context_properties* properties,
    cl_device_type device_type,
    void (CL_CALLBACK* pfn_notify)(const char* errinfo, const void* private_info,
size_t cb, void* user_data),
    void* user_data,
    cl_int* errcode_ret);

• properties specifies a list of context property names and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list of
supported properties, and their default values if not present in properties, is described in the
Context Properties table. properties can be NULL, in which case all properties take on their
default values.

• device_type is a bit-field that identifies the type of device and is described in the Device Types
table.

• pfn_notify and user_data are described in clCreateContext.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Only devices that are returned by clGetDeviceIDs for device_type are used to create the context.
The context does not reference any sub-devices that may have been created from these devices.

clCreateContextFromType returns a valid non-zero context and errcode_ret is set to CL_SUCCESS if
the context is created successfully. Otherwise, it returns a NULL value with the following error values
returned in errcode_ret:

• CL_INVALID_PLATFORM if no platform is specified in properties and no platform could be selected,
or if the platform specified in properties is not a valid platform.

• CL_INVALID_PROPERTY if a context property name in properties is not a supported property name,
if the value specified for a supported property name is not valid, or if the same property name
is specified more than once. This error code is missing before version 1.1.

118



• CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

• CL_INVALID_DEVICE_TYPE if device_type is not a valid value.

• CL_DEVICE_NOT_AVAILABLE if no devices that match device_type and property values specified in
properties are currently available.

• CL_DEVICE_NOT_FOUND if no devices that match device_type and property values specified in
properties were found.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The following errors may be returned if the cl_khr_dx9_media_sharing extension is supported:

• CL_INVALID_DX9_MEDIA_ADAPTER_KHR if any of the values of the properties CL_CONTEXT_ADAPTER_D3D9_
KHR, CL_CONTEXT_ADAPTER_D3D9EX_KHR or CL_CONTEXT_ADAPTER_DXVA_KHR is non-NULL and does not
specify a valid media adapter with which the cl_device_ids against which this context is to be
created may interoperate.

The following errors may be returned if the cl_khr_d3d10_sharing extension is supported:

• CL_INVALID_D3D10_DEVICE_KHR if the value of the property CL_CONTEXT_D3D10_DEVICE_KHR is non-NULL
and does not specify a valid Direct3D 10 device with which the cl_device_ids against which this
context is to be created may interoperate.

• CL_INVALID_OPERATION if Direct3D 10 interoperability is specified by setting CL_INVALID_D3D10_
DEVICE_KHR to a non-NULL value, and interoperability with another graphics API is also specified.

The following errors may be returned if the cl_khr_d3d11_sharing extension is supported:

• CL_INVALID_D3D11_DEVICE_KHR if the value of the property CL_CONTEXT_D3D11_DEVICE_KHR is non-NULL
and does not specify a valid Direct3D 11 device with which the cl_device_ids against which this
context is to be created may interoperate.

• CL_INVALID_OPERATION if Direct3D 11 interoperability is specified by setting CL_INVALID_D3D11_
DEVICE_KHR to a non-NULL value, and interoperability with another graphics API is also specified.

The following errors may be returned if the cl_khr_gl_sharing extension is supported:

• CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a context was specified for an OpenGL or OpenGL ES
implementation using the EGL, GLX, or WGL binding APIs, as described for clCreateContext; and
any of the following conditions hold:

◦ The specified display and context properties do not identify a valid OpenGL or OpenGL ES
context.

◦ The specified context does not support buffer and renderbuffer objects.

◦ The specified context is not compatible with the OpenCL context being created (for example,
it exists in a physically distinct address space, such as another hardware device; or it does
not support sharing data with OpenCL due to implementation restrictions).

119



• CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a share group was specified for a CGL-based OpenGL
implementation by setting the property CL_CGL_SHAREGROUP_KHR, and the specified share group
does not identify a valid CGL share group object.

• CL_INVALID_OPERATION if a context was specified as described above and any of the following
conditions hold:

◦ A context or share group object was specified for one of CGL, EGL, GLX, or WGL and the
OpenGL implementation does not support that window-system binding API.

◦ More than one of the properties CL_CGL_SHAREGROUP_KHR, CL_EGL_DISPLAY_KHR, CL_GLX_DISPLAY_
KHR, and CL_WGL_HDC_KHR is set to a non-default value.

◦ Both of the properties CL_CGL_SHAREGROUP_KHR and CL_GL_CONTEXT_KHR are set to non-default
values.

◦ Any of the devices specified in the devices argument cannot support OpenCL objects which
share the data store of an OpenGL object.

• CL_INVALID_PROPERTY if both CL_CONTEXT_INTEROP_USER_SYNC, and any of the properties defined by
the cl_khr_gl_sharing extension are defined in properties.

To retain a context, call the function:

cl_int clRetainContext(
    cl_context context);

• context specifies the OpenCL context to retain.

clRetainContext increments the context reference count.

clCreateContext and clCreateContextFromType perform an implicit retain. This is very helpful
for 3rd party libraries, which typically get a context passed to them by the application. However, it is
possible that the application may delete the context without informing the library. Allowing
functions to attach to (i.e. retain) and release a context solves the problem of a context being used
by a library no longer being valid.

clRetainContext returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_CONTEXT if context is not a valid OpenCL context.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release a context, call the function:

cl_int clReleaseContext(
    cl_context context);

120



• context specifies the OpenCL context to release.

clReleaseContext decrements the context reference count. After the reference count becomes zero
and all the objects attached to context (such as memory objects, command-queues) are released, the
context is deleted. Using this function to release a reference that was not obtained by creating the
object or by calling clRetainContext causes undefined behavior.

clReleaseContext returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_CONTEXT if context is not a valid OpenCL context.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To terminate all pending work associated with a context and render all data owned by the context
invalid, call the function

cl_int clTerminateContextKHR(
    cl_context context);

 clTerminateContextKHR is provided by the cl_khr_terminate_context extension.

• context must be a valid OpenCL context.

It is the responsibility of the application to release all objects associated with the context being
terminated.

When a context is terminated:

• The execution status of enqueued commands will be CL_CONTEXT_TERMINATED_KHR. Event objects
can be queried using clGetEventInfo. Event callbacks can be registered and registered event
callbacks will be called with event_command_status set to CL_CONTEXT_TERMINATED_KHR.
clWaitForEvents will return as immediately for commands associated with event objects
specified in event_list. The status of user events can be set. Event objects can be retained and
released. clGetEventProfilingInfo returns CL_PROFILING_INFO_NOT_AVAILABLE.

• The context is considered to be terminated. A callback function registered when the context was
created will be called. Only queries, retain and release operations can be performed on the
context. All other APIs that use a context as an argument will return CL_CONTEXT_TERMINATED_KHR.

• The contents of the memory regions of the memory objects is undefined. Queries, registering a
destructor callback, retain and release operations can be performed on the memory objects.

• Once a context has been terminated, all OpenCL API calls that create objects or enqueue
commands will return CL_CONTEXT_TERMINATED_KHR. APIs that release OpenCL objects will
continue to operate as though clTerminateContextKHR was not called.

• The behavior of callbacks will remain unchanged, and will report appropriate error, if

121



executing after termination of context. This behavior is similar to enqueued commands, after
the command-queue has become invalid.

clTerminateContextKHR returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_CONTEXT if context is not a valid OpenCL context.

• CL_CONTEXT_TERMINATED_KHR if context has already been terminated.

• CL_INVALID_OPERATION if context was not created with CL_CONTEXT_TERMINATE_KHR set to CL_TRUE.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

An implementation that supports this extension must be able to terminate commands currently
executing on devices or queued across all command-queues associated with the context that is
being terminated. The implementation cannot implement this extension by waiting for currently
executing (or queued) commands to finish execution on devices associated with this context (i.e.
doing a clFinish).

To query information about a context, call the function:

cl_int clGetContextInfo(
    cl_context context,
    cl_context_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• context specifies the OpenCL context being queried.

• param_name is an enumeration constant that specifies the information to query.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size specifies the size in bytes of memory pointed to by param_value. This size
must be greater than or equal to the size of return type as described in the Context Attributes
table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetContextInfo is described in the Context Attributes table.

Table 14. List of supported param_names by clGetContextInfo

122



Context Info Return Type Description

CL_CONTEXT_REFERENCE_COUNT [12] cl_uint Return the context reference count.

CL_CONTEXT_NUM_DEVICES

missing before version 1.1.

cl_uint Return the number of devices in context.

CL_CONTEXT_DEVICES cl_device_id[] Return the list of devices and sub-devices in
context.

CL_CONTEXT_PROPERTIES cl_context_
properties[]

Return the properties argument specified in
clCreateContext or
clCreateContextFromType.

If the properties argument specified in
clCreateContext or clCreateContextFromType
used to create context was not NULL, the
implementation must return the values specified
in the properties argument in the same order
and without including additional properties.

If the properties argument specified in
clCreateContext or clCreateContextFromType
used to create context was NULL, the
implementation must return
param_value_size_ret equal to 0, indicating that
there are no properties to be returned.

CL_CONTEXT_D3D10_PREFER_
SHARED_RESOURCES_KHR

provided by the
cl_khr_d3d10_sharing extension.

cl_bool Returns CL_TRUE if Direct3D 10 resources created
as shared by setting MiscFlags to include
D3D10_RESOURCE_MISC_SHARED will perform faster
when shared with OpenCL, compared with
resources which have not set this flag.
Otherwise returns CL_FALSE.

CL_CONTEXT_D3D11_PREFER_
SHARED_RESOURCES_KHR

provided by the
cl_khr_d3d11_sharing extension.

cl_bool Returns CL_TRUE if Direct3D 11 resources created
as shared by setting MiscFlags to include
D3D11_RESOURCE_MISC_SHARED will perform faster
when shared with OpenCL, compared with
resources which have not set this flag.
Otherwise returns CL_FALSE.

clGetContextInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is < size of return type as specified in the Context Attributes table and
param_value is not a NULL value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

123



implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To register a callback function with a context that is called when the context is destroyed, call the
function

cl_int clSetContextDestructorCallback(
    cl_context context,
    void (CL_CALLBACK* pfn_notify)(cl_context context, void* user_data),
    void* user_data);

 clSetContextDestructorCallback is missing before version 3.0.

• context specifies the OpenCL context to register the callback to.

• pfn_notify is the callback function to register. This callback function may be called
asynchronously by the OpenCL implementation. It is the application’s responsibility to ensure
that the callback function is thread-safe. The parameters to this callback function are:

◦ context is the OpenCL context being deleted. When the callback function is called by the
implementation, this context is no longer valid. context is only provided for reference
purposes.

◦ user_data is a pointer to user-supplied data.

• user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

Each call to clSetContextDestructorCallback registers the specified callback function on a
destructor callback stack associated with context. The registered callback functions are called in the
reverse order in which they were registered. If a context callback function was specified when
context was created, it will not be called after any context destructor callback is called. Therefore,
the context destructor callback provides a mechanism for an application to safely re-use or free any
user_data specified for the context callback function when context was created.

clSetContextDestructorCallback returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if pfn_notify is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

[1] The platform profile returns the profile that is implemented by the OpenCL framework. If the platform profile returned is
FULL_PROFILE, the OpenCL framework will support devices that are FULL_PROFILE and may also support devices that are
EMBEDDED_PROFILE. The compiler must be available for all devices i.e. CL_DEVICE_COMPILER_AVAILABLE is CL_TRUE. If the platform
profile returned is EMBEDDED_PROFILE, then devices that are only EMBEDDED_PROFILE are supported.

124



[2] A null terminated string is returned by OpenCL query function calls if the return type of the information being queried is a
char[].

[3] The OpenCL specification does not describe the order of precedence for error codes returned by API calls.

[4] clGetDeviceIDs may return all or a subset of the actual physical devices present in the platform and that match device_type.

[5] OpenCL adopters must report a valid vendor ID for their implementation. If there is no valid PCI vendor ID defined for the
physical device, implementations must obtain a Khronos vendor ID. This is a unique identifier greater than the largest PCI vendor
ID (0x10000) and is representable by a cl_uint. Khronos vendor IDs are synchronized across APIs by utilizing Vulkan’s vk.xml as the
central Khronos vendor ID registry. An ID must be reserved here prior to use in OpenCL, regardless of whether a vendor
implements Vulkan. Only once the ID has been allotted may it be exposed to OpenCL by proposing a merge request against cl.xml,
in the main branch of the OpenCL-Docs project. The merge must define a new enumerant by adding an <enum> tag to the cl_khronos_
vendor_id <enums> tag, with the <value> attribute set as the acquired Khronos vendor ID. The <name> attribute must identify the
vendor/adopter, and be of the form CL_KHRONOS_VENDOR_ID_<vendor>.

[6] A kernel that uses an image argument with the write_only or read_write image qualifier may result in additional read_only
images resources being created internally by an implementation. The internally created read_only image resources will count
against the max supported read image arguments given by CL_DEVICE_MAX_READ_IMAGE_ARGS. Enqueuing a kernel that requires more
images than the implementation can support will result in a CL_OUT_OF_RESOURCES error being returned.

[7] The optional rounding modes should be included as a device capability only if it is supported natively. All explicit conversion
functions with specific rounding modes must still operate correctly.

[8] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

[9] Note that this flag does not provide meaning for atomic memory operations, but only for atomic fence operations in certain
circumstances, refer to the Memory Scope section of the OpenCL C specification.

[10] Duplicate devices specified in devices are ignored.

[11] clCreateContextFromType may may create a context for all or a subset of the actual physical devices present in the platform
that match device_type.

[12] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

125



Chapter 5. The OpenCL Runtime
In this section we describe the API calls that manage OpenCL objects such as command-queues,
memory objects, program objects, kernel objects for kernel functions in a program and calls that
allow you to enqueue commands to a command-queue such as executing a kernel, reading, or
writing a memory object.

5.1. Command-Queues
OpenCL objects such as memory, program and kernel objects are created using a context.
Operations on these objects are performed using a command-queue. The command-queue can be
used to queue a set of operations (referred to as commands) in order. Having multiple command-
queues allows applications to queue multiple independent commands without requiring
synchronization. Note that this should work as long as these objects are not being shared. Sharing
of objects across multiple command-queues will require the application to perform appropriate
synchronization. This is described in Shared OpenCL Objects

To create a host or device command-queue on a specific device, call the function

cl_command_queue clCreateCommandQueueWithProperties(
    cl_context context,
    cl_device_id device,
    const cl_queue_properties* properties,
    cl_int* errcode_ret);

 clCreateCommandQueueWithProperties is missing before version 2.0.

or the equivalent

cl_command_queue clCreateCommandQueueWithPropertiesKHR(
    cl_context context,
    cl_device_id device,
    const cl_queue_properties_khr* properties,
    cl_int* errcode_ret);


clCreateCommandQueueWithPropertiesKHR is provided by the
cl_khr_create_command_queue extension.

• context must be a valid OpenCL context.

• device must be a device or sub-device associated with context. It can either be in the list of
devices and sub-devices specified when context is created using clCreateContext or be a root
device with the same device type as specified when context is created using
clCreateContextFromType.

• properties specifies a list of properties for the command-queue and their corresponding values.

126



Each property name is immediately followed by the corresponding desired value. The list is
terminated with 0. The list of supported properties is described in the table below. If a
supported property and its value is not specified in properties, its default value will be used.
properties can be NULL in which case the default values for supported command-queue
properties will be used.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Table 15. List of supported queue creation properties by clCreateCommandQueueWithProperties

Queue Property Property Value Description

CL_QUEUE_PROPERTIES cl_command_
queue_
properties

This is a bitfield and can be set to a combination
of the following values:

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE -
Determines whether the commands queued in
the command-queue are executed in-order or
out-of-order. If set, the commands in the
command-queue are executed out-of-order.
Otherwise, commands are executed in-order.

CL_QUEUE_PROFILING_ENABLE - Enable or disable
profiling of commands in the command-queue.
If set, the profiling of commands is enabled.
Otherwise profiling of commands is disabled.

CL_QUEUE_ON_DEVICE - Indicates that this is a
device queue. If CL_QUEUE_ON_DEVICE is set,
CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE [1] must
also be set.

missing before version 2.0.

CL_QUEUE_ON_DEVICE_DEFAULT [2] - indicates that
this is the default device queue. This can only be
used with CL_QUEUE_ON_DEVICE.

missing before version 2.0.

If CL_QUEUE_PROPERTIES is not specified an in-
order host command-queue is created for the
specified device

127



Queue Property Property Value Description

CL_QUEUE_SIZE

missing before version 2.0.

cl_uint Specifies the size of the device queue in bytes.

This can only be specified if CL_QUEUE_ON_DEVICE
is set in CL_QUEUE_PROPERTIES. This must be a
value ≤ CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE.

For best performance, this should be ≤
CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_SIZE.

If CL_QUEUE_SIZE is not specified, the device
queue is created with CL_DEVICE_QUEUE_ON_
DEVICE_PREFERRED_SIZE as the size of the queue.

CL_QUEUE_PRIORITY_KHR

provided by the
cl_khr_priority_hints
extension.

cl_queue_
priority_khr

Specifies a priority hint for command queues
belonging to the same OpenCL context.

NOTE: Refer to the user guide associated with
each implementation supporting this extension
for its priority behavior guarantees, if any.

CL_QUEUE_PRIORITY_HIGH_KHR - Indicates command
queues should have high priority.

CL_QUEUE_PRIORITY_MED_KHR - Indicates command
queues should have medium priority.

CL_QUEUE_PRIORITY_LOW_KHR - Indicates command
queues should have low priority.

If CL_QUEUE_PRIORITY_KHR is not specified, the
default priority CL_QUEUE_PRIORITY_MED_KHR is
used.

128



Queue Property Property Value Description

CL_QUEUE_THROTTLE_KHR

provided by the
cl_khr_throttle_hints
extension.

cl_queue_
throttle_khr

Specifies a throttle hint for a command queue.

NOTE: Refer to the user guide associated with
each implementation supporting this extension
for its throttling behavior guarantees, if any.

CL_QUEUE_THROTTLE_HIGH_KHR - Indicates the queue
should execute at full throttle, which may
consume more energy.

CL_QUEUE_THROTTLE_MED_KHR - Indicates normal
throttling behavior.

CL_QUEUE_THROTTLE_LOW_KHR - Indicates the queue
should execute at low throttle, optimized for
lowest energy consumption.

If CL_QUEUE_THROTTLE_KHR is not specified, the
default priority CL_QUEUE_THROTTLE_MED_KHR is
used.

clCreateCommandQueueWithProperties returns a valid non-zero command-queue and
errcode_ret is set to CL_SUCCESS if the command-queue is created successfully. Otherwise, it returns a
NULL value with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_DEVICE if device is not a valid device or is not associated with context.

• CL_INVALID_VALUE if values specified in properties are not valid.

• CL_INVALID_QUEUE_PROPERTIES if values specified in properties are valid but are not supported by
the device.

• CL_INVALID_QUEUE_PROPERTIES if the cl_khr_priority_hints extension is supported, the CL_QUEUE_
PRIORITY_KHR property is specified, and the queue is a CL_QUEUE_ON_DEVICE.

• CL_INVALID_QUEUE_PROPERTIES if the cl_khr_throttle_hints extension is supported, the CL_QUEUE_
THROTTLE_KHR property is specified, and the queue is a CL_QUEUE_ON_DEVICE.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create a host command-queue on a specific device, call the function

129



cl_command_queue clCreateCommandQueue(
    cl_context context,
    cl_device_id device,
    cl_command_queue_properties properties,
    cl_int* errcode_ret);

 clCreateCommandQueue is deprecated by version 2.0.

• context must be a valid OpenCL context.

• device must be a device or sub-device associated with context. It can either be in the list of
devices and sub-devices specified when context is created using clCreateContext or be a root
device with the same device type as specified when context is created using
clCreateContextFromType.

• properties specifies a list of properties for the command-queue. This is a bit-field and the
supported properties are described in the table below. Only command-queue properties
specified in this table can be used, otherwise the value specified in properties is considered to be
not valid. properties can be 0 in which case the default values for supported command-queue
properties will be used.

Table 16. List of supported cl_command_queue_property values by clCreateCommandQueue

Command-Queue Properties Description

CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE Determines whether the commands queued in
the command-queue are executed in-order or
out-of-order. If set, the commands in the
command-queue are executed out-of-order.
Otherwise, commands are executed in-order.

CL_QUEUE_PROFILING_ENABLE Enable or disable profiling of commands in the
command-queue. If set, the profiling of
commands is enabled. Otherwise profiling of
commands is disabled.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateCommandQueue returns a valid non-zero command-queue and errcode_ret is set to
CL_SUCCESS if the command-queue is created successfully. Otherwise, it returns a NULL value with
one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_DEVICE if device is not a valid device or is not associated with context.

• CL_INVALID_VALUE if values specified in properties are not valid.

• CL_INVALID_QUEUE_PROPERTIES if values specified in properties are valid but are not supported by
the device.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

130



implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To replace the default command-queue on a device, call the function

cl_int clSetDefaultDeviceCommandQueue(
    cl_context context,
    cl_device_id device,
    cl_command_queue command_queue);

 clSetDefaultDeviceCommandQueue is missing before version 2.1.

• context is the OpenCL context used to create command_queue.

• device is a valid OpenCL device associated with context.

• command_queue specifies a command-queue object which replaces the default device
command-queue

clSetDefaultDeviceCommandQueue may be used to replace a default device command-queue
created with clCreateCommandQueueWithProperties and the CL_QUEUE_ON_DEVICE_DEFAULT flag.

clSetDefaultDeviceCommandQueue returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_DEVICE if device is not a valid device or is not associated with context.

• CL_INVALID_OPERATION if device does not support a replaceable default on-device queue.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue for device.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To retain a command-queue, call the function

cl_int clRetainCommandQueue(
    cl_command_queue command_queue);

• command_queue specifies the command-queue to be retained.

The command_queue reference count is incremented.

clCreateCommandQueueWithProperties and clCreateCommandQueue perform an implicit
retain. This is very helpful for 3rd party libraries, which typically get a command-queue passed to

131



them by the application. However, it is possible that the application may delete the command-
queue without informing the library. Allowing functions to attach to (i.e. retain) and release a
command-queue solves the problem of a command-queue being used by a library no longer being
valid.

clRetainCommandQueue returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release a command-queue, call the function

cl_int clReleaseCommandQueue(
    cl_command_queue command_queue);

• command_queue specifies the command-queue to be released.

The command_queue reference count is decremented.

After the command_queue reference count becomes zero and all commands queued to
command_queue have finished (eg. kernel-instances, memory object updates etc.), the command-
queue is deleted.

clReleaseCommandQueue performs an implicit flush to issue any previously queued OpenCL
commands in command_queue. Using this function to release a reference that was not obtained by
creating the object or by calling clRetainCommandQueue causes undefined behavior.

clReleaseCommandQueue returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To query information about a command-queue, call the function

132



cl_int clGetCommandQueueInfo(
    cl_command_queue command_queue,
    cl_command_queue_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• command_queue specifies the command-queue being queried.

• param_name specifies the information to query.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Command-Queue Parameter table. If
param_value is NULL, it is ignored.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetCommandQueueInfo is described in the Command-Queue Parameter table.

Table 17. List of supported param_names by clGetCommandQueueInfo

Queue Info Return Type Description

CL_QUEUE_CONTEXT cl_context Return the context specified when the
command-queue is created.

CL_QUEUE_DEVICE cl_device_id Return the device specified when the command-
queue is created.

CL_QUEUE_REFERENCE_COUNT [3] cl_uint Return the command-queue reference count.

CL_QUEUE_PROPERTIES cl_command_
queue_
properties

Return the currently specified properties for the
command-queue. These properties are specified
by the value associated with the CL_QUEUE_
PROPERTIES passed in properties argument in
clCreateCommandQueueWithProperties, or
the value of the properties argument in
clCreateCommandQueue.

133



Queue Info Return Type Description

CL_QUEUE_PROPERTIES_ARRAY

missing before version 3.0.

cl_queue_
properties[]

Return the properties argument specified in
clCreateCommandQueueWithProperties.

If the properties argument specified in
clCreateCommandQueueWithProperties used
to create command_queue was not NULL, the
implementation must return the values specified
in the properties argument in the same order
and without including additional properties.

If command_queue was created using
clCreateCommandQueue, or if the properties
argument specified in
clCreateCommandQueueWithProperties was
NULL, the implementation must return
param_value_size_ret equal to 0, indicating that
there are no properties to be returned.

CL_QUEUE_SIZE

missing before version 2.0.

cl_uint Return the size of the device command-queue.
To be considered valid for this query,
command_queue must be a device command-
queue.

CL_QUEUE_DEVICE_DEFAULT

missing before version 2.1.

cl_command_
queue

Return the current default command-queue for
the underlying device.

clGetCommandQueueInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue, or if
command_queue is not a valid command-queue for param_name.

• CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is < size of return type as specified in the Command-Queue Parameter
table, and param_value is not a NULL value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enable or disable the properties of a command-queue, call the function

134



cl_int clSetCommandQueueProperty(
    cl_command_queue command_queue,
    cl_command_queue_properties properties,
    cl_bool enable,
    cl_command_queue_properties* old_properties);

 clSetCommandQueueProperty is deprecated by version 1.1.

• command_queue specifies the command-queue being modified.

• properties specifies the new list of properties for the command-queue. This is a bit-field and the
supported properties are described in the Command-Queue Properties table for
clCreateCommandQueue. Only command-queue properties specified in this table can be used,
otherwise the value specified in properties is considered to be not valid.

• enable determines whether the values specified by properties are enabled (if enable is CL_TRUE)
or disabled (if enable is CL_FALSE) for the command-queue.

• old_properties returns the command-queue properties before they were changed by
clSetCommandQueueProperty. If old_properties is NULL, it is ignored.

clSetCommandQueueProperty may unconditionally return an error if no devices in the context
associated with command_queue support modifying the properties of a command-queue. Support
for modifying the properties of a command-queue is required only for OpenCL 1.0 devices.

clSetCommandQueueProperty returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_OPERATION if no devices in the context associated with command_queue support
modifying the properties of a command-queue.

• CL_INVALID_VALUE if values specified in properties are not valid.

• CL_INVALID_QUEUE_PROPERTIES if values specified in properties are valid but are not supported by
the device.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.2. Buffer Objects
A buffer object stores a one-dimensional collection of elements. Elements of a buffer object can be a
scalar data type (such as an int, float), vector data type, or a user-defined structure.

5.2.1. Creating Buffer Objects

A buffer object may be created using the function

135



cl_mem clCreateBuffer(
    cl_context context,
    cl_mem_flags flags,
    size_t size,
    void* host_ptr,
    cl_int* errcode_ret);

A buffer object may also be created with additional properties using the function

cl_mem clCreateBufferWithProperties(
    cl_context context,
    const cl_mem_properties* properties,
    cl_mem_flags flags,
    size_t size,
    void* host_ptr,
    cl_int* errcode_ret);

 clCreateBufferWithProperties is missing before version 3.0.

• context is a valid OpenCL context used to create the buffer object.

• properties is an optional list of properties for the buffer object and their corresponding values.
The list is terminated with the special property 0. If no properties are required, properties may
be NULL. OpenCL 3.0 does not define any optional properties for buffers, but extensions may
define properties as described in the List of supported buffer creation properties.

• flags is a bit-field that is used to specify allocation and usage information about the image
memory object being created and is described in the supported memory flag values table.

• size is the size in bytes of the buffer memory object to be allocated.

• host_ptr is a pointer to the buffer data that may already be allocated by the application. The size
of the buffer that host_ptr points to must be greater than or equal to size bytes.

• errcode_ret may return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The alignment requirements for data stored in buffer objects are described in Alignment of
Application Data Types.

If clCreateBuffer or clCreateBufferWithProperties is called with CL_MEM_USE_HOST_PTR set in its
flags argument, the contents of the memory pointed to by host_ptr at the time of the clCreateBuffer
call define the initial contents of the buffer object.

If clCreateBuffer or clCreateBufferWithProperties is called with a pointer returned by
clSVMAlloc as its host_ptr argument, and CL_MEM_USE_HOST_PTR is set in its flags argument,
clCreateBuffer or clCreateBufferWithProperties will succeed and return a valid non-zero buffer
object as long as the size argument is no larger than the size argument passed in the original
clSVMAlloc call. The new buffer object returned has the shared memory as the underlying storage.
Locations in the buffers underlying shared memory can be operated on using atomic operations to

136



the devices level of support as defined in the memory model.

Table 18. List of supported buffer creation properties

Property Property Value Description

CL_MEM_DEVICE_HANDLE_LIST_KHR

provided by the
cl_khr_external_memory
extension.

cl_device_id[] Specifies the list of OpenCL devices (terminated
with CL_MEM_DEVICE_HANDLE_LIST_END_KHR) to
associate with the external memory handle.

If CL_MEM_DEVICE_HANDLE_LIST_KHR is not specified as part of properties, the memory object created by
clCreateBufferWithProperties or clCreateImageWithProperties is by default accessible to all
devices in the context.

The properties used to create a buffer from an external memory handle are described for the
corresponding extensions. When a buffer is created from an external memory handle, the flags
used to specify usage information for the buffer must not include CL_MEM_USE_HOST_PTR, CL_MEM_
ALLOC_HOST_PTR, or CL_MEM_COPY_HOST_PTR, and the host_ptr argument must be NULL.

clCreateBuffer and clCreateBufferWithProperties returns a valid non-zero buffer object and
errcode_ret is set to CL_SUCCESS if the buffer object is created successfully. Otherwise, they return a
NULL value with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_PROPERTY if a property name in properties is not a supported property name, if the
value specified for a supported property name is not valid, or if the same property name is
specified more than once.

• CL_INVALID_VALUE if values specified in flags are not valid as defined in the Memory Flags table.

• CL_INVALID_BUFFER_SIZE if size is 0, or if size is greater than CL_DEVICE_MAX_MEM_ALLOC_SIZE for all
devices in context, or if CL_MEM_USE_HOST_PTR is set in flags and host_ptr is a pointer returned by
clSVMAlloc and size is greater than the size passed to clSVMAlloc.

• CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR are set
in flags or if host_ptr is not NULL but CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in
flags.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for buffer object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_DEVICE

◦ if a device identified by the property CL_MEM_DEVICE_HANDLE_LIST_KHR is not a valid device or
is not associated with context, or

◦ if a device identified by property CL_MEM_DEVICE_HANDLE_LIST_KHR cannot import the
requested external memory object type, or

137



◦ if CL_MEM_DEVICE_HANDLE_LIST_KHR is not specified as part of properties and one or more
devices in context cannot import the requested external memory object type.

• CL_INVALID_VALUE

◦ if properties includes a supported external memory handle and flags includes CL_MEM_USE_
HOST_PTR, CL_MEM_ALLOC_HOST_PTR, or CL_MEM_COPY_HOST_PTR.

• CL_INVALID_HOST_PTR

◦ if properties includes a supported external memory handle and host_ptr is not NULL.

• CL_INVALID_PROPERTY

◦ if properties does not include a supported external memory handle and CL_MEM_DEVICE_
HANDLE_LIST_KHR is specified as part of properties.

Table 19. List of supported memory flag values

Memory Flags Description

CL_MEM_READ_WRITE This flag specifies that the memory object will be
read and written by a kernel. This is the default.

CL_MEM_WRITE_ONLY This flag specifies that the memory object will be
written but not read by a kernel.

Reading from a buffer or image object created
with CL_MEM_WRITE_ONLY inside a kernel is
undefined.

CL_MEM_READ_WRITE and CL_MEM_WRITE_ONLY are
mutually exclusive.

CL_MEM_READ_ONLY This flag specifies that the memory object is a
readonly memory object when used inside a
kernel.

Writing to a buffer or image object created with
CL_MEM_READ_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY and
CL_MEM_READ_ONLY are mutually exclusive.

138



Memory Flags Description

CL_MEM_USE_HOST_PTR This flag is valid only if host_ptr is not NULL. If
specified, it indicates that the application wants
the OpenCL implementation to use memory
referenced by host_ptr as the storage bits for the
memory object.

The contents of the memory pointed to by
host_ptr at the time of the clCreateBuffer,
clCreateBufferWithProperties,
clCreateImage, clCreateImageWithProperties,
clCreateImage2D, or clCreateImage3D call
define the initial contents of the memory object.

OpenCL implementations are allowed to cache
the contents pointed to by host_ptr in device
memory. This cached copy can be used when
kernels are executed on a device.

The result of OpenCL commands that operate on
multiple buffer objects created with the same
host_ptr or from overlapping host or SVM
regions is considered to be undefined.

CL_MEM_ALLOC_HOST_PTR This flag specifies that the application wants the
OpenCL implementation to allocate memory
from host accessible memory.

CL_MEM_ALLOC_HOST_PTR and CL_MEM_USE_HOST_PTR
are mutually exclusive.

139



Memory Flags Description

CL_MEM_COPY_HOST_PTR This flag is valid only if host_ptr is not NULL. If
specified, it indicates that the application wants
the OpenCL implementation to allocate memory
for the memory object and copy the data from
memory referenced by host_ptr. The
implementation will copy the memory
immediately and host_ptr is available for reuse
by the application when the clCreateBuffer,
clCreateBufferWithProperties,
clCreateImage, clCreateImageWithProperties,
clCreateImage2D, or clCreateImage3D
operation returns.

CL_MEM_COPY_HOST_PTR and CL_MEM_USE_HOST_PTR
are mutually exclusive.

CL_MEM_COPY_HOST_PTR can be used with CL_MEM_
ALLOC_HOST_PTR to initialize the contents of the
cl_mem object allocated using host-accessible (e.g.
PCIe) memory.

CL_MEM_HOST_WRITE_ONLY

missing before version 1.2.

This flag specifies that the host will only write to
the memory object (using OpenCL APIs that
enqueue a write or a map for write). This can be
used to optimize write access from the host (e.g.
enable write-combined allocations for memory
objects for devices that communicate with the
host over a system bus such as PCIe).

CL_MEM_HOST_READ_ONLY

missing before version 1.2.

This flag specifies that the host will only read the
memory object (using OpenCL APIs that
enqueue a read or a map for read).

CL_MEM_HOST_WRITE_ONLY and CL_MEM_HOST_READ_
ONLY are mutually exclusive.

CL_MEM_HOST_NO_ACCESS

missing before version 1.2.

This flag specifies that the host will not read or
write the memory object.

CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_READ_ONLY
and CL_MEM_HOST_NO_ACCESS are mutually
exclusive.

140



Memory Flags Description

CL_MEM_KERNEL_READ_AND_WRITE

missing before version 2.0.

This flag is only used by
clGetSupportedImageFormats to query image
formats that may be both read from and written
to by the same kernel instance. To create a
memory object that may be read from and
written to use CL_MEM_READ_WRITE.

To create a new buffer object (referred to as a sub-buffer object) from an existing buffer object, call
the function

cl_mem clCreateSubBuffer(
    cl_mem buffer,
    cl_mem_flags flags,
    cl_buffer_create_type buffer_create_type,
    const void* buffer_create_info,
    cl_int* errcode_ret);

 clCreateSubBuffer is missing before version 1.1.

• buffer must be a valid buffer object and cannot be a sub-buffer object.

• flags is a bit-field that is used to specify allocation and usage information about the sub-buffer
memory object being created and is described in the Memory Flags table. If the CL_MEM_READ_
WRITE, CL_MEM_READ_ONLY, or CL_MEM_WRITE_ONLY values are not specified in flags, they are inherited
from the corresponding memory access qualifiers associated with buffer. The CL_MEM_USE_HOST_
PTR, CL_MEM_ALLOC_HOST_PTR, and CL_MEM_COPY_HOST_PTR values cannot be specified in flags but are
inherited from the corresponding memory access qualifiers associated with buffer. If CL_MEM_
COPY_HOST_PTR is specified in the memory access qualifier values associated with buffer it does
not imply any additional copies when the sub-buffer is created from buffer. If the CL_MEM_HOST_
WRITE_ONLY, CL_MEM_HOST_READ_ONLY, or CL_MEM_HOST_NO_ACCESS values are not specified in flags,
they are inherited from the corresponding memory access qualifiers associated with buffer.

• buffer_create_type and buffer_create_info describe the type of buffer object to be created. The list
of supported values for buffer_create_type and corresponding descriptor that buffer_create_info
points to is described in the SubBuffer Attributes table.

Table 20. List of supported buffer creation types by clCreateSubBuffer

141



Buffer Creation Type Description

CL_BUFFER_CREATE_TYPE_REGION

missing before version 1.1.

Create a buffer object that represents a specific
region in buffer.

buffer_create_info is a pointer to a cl_buffer_
region structure specifying a region of the
buffer.

If buffer is created with CL_MEM_USE_HOST_PTR, the
host_ptr associated with the buffer object
returned is host_ptr + origin.

The buffer object returned references the data
store allocated for buffer and points to the
region specified by buffer_create_info in this data
store.

clCreateSubBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors in errcode_ret:

• CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object or is a sub-buffer object.

• CL_INVALID_VALUE if buffer was created with CL_MEM_WRITE_ONLY and flags specifies CL_MEM_READ_
WRITE or CL_MEM_READ_ONLY, or if buffer was created with CL_MEM_READ_ONLY and flags specifies
CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY, or if flags specifies CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_
HOST_PTR or CL_MEM_COPY_HOST_PTR.

• CL_INVALID_VALUE if buffer was created with CL_MEM_HOST_WRITE_ONLY and flags specify CL_MEM_
HOST_READ_ONLY, or if buffer was created with CL_MEM_HOST_READ_ONLY and flags specify CL_MEM_
HOST_WRITE_ONLY, or if buffer was created with CL_MEM_HOST_NO_ACCESS and flags specify CL_MEM_
HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.

• CL_INVALID_VALUE if the value specified in buffer_create_type is not valid.

• CL_INVALID_VALUE if value(s) specified in buffer_create_info (for a given buffer_create_type) is not
valid or if buffer_create_info is NULL.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for sub-buffer object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_VALUE if the region specified by the cl_buffer_region structure passed in
buffer_create_info is out of bounds in buffer.

• CL_INVALID_BUFFER_SIZE if the size field of the cl_buffer_region structure passed in
buffer_create_info is 0.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if there are no devices in context associated with buffer for
which the origin field of the cl_buffer_region structure passed in buffer_create_info is aligned to

142



the CL_DEVICE_MEM_BASE_ADDR_ALIGN value.



Concurrent reading from, writing to and copying between both a buffer object and
its sub-buffer object(s) is undefined. Concurrent reading from, writing to and
copying between overlapping sub-buffer objects created with the same buffer
object is undefined. Only reading from both a buffer object and its sub-buffer
objects or reading from multiple overlapping sub-buffer objects is defined.

The cl_buffer_region structure specifies a region of a buffer object:

typedef struct cl_buffer_region {
    size_t    origin;
    size_t    size;
} cl_buffer_region;

• origin is the offset in bytes of the region.

• size is the size in bytes of the region.

Constraints on the values of origin and size are specified for the clCreateSubBuffer function to
which this structure is passed.

5.2.2. Reading, Writing and Copying Buffer Objects

The following functions enqueue commands to read from a buffer object to host memory or write
to a buffer object from host memory.

To read from a buffer object to host memory or to write to a buffer object from host memory call
one of the functions

cl_int clEnqueueReadBuffer(
    cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    size_t offset,
    size_t size,
    void* ptr,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

143



cl_int clEnqueueWriteBuffer(
    cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    size_t offset,
    size_t size,
    const void* ptr,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• command_queue is a valid host command-queue in which the read / write command will be
queued. command_queue and buffer must be created with the same OpenCL context.

• buffer refers to a valid buffer object.

• blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking (see below).

• offset is the offset in bytes in the buffer object to read from or write to.

• size is the size in bytes of data being read or written.

• ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this read / write command and can be used to query
or queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful,
no event will be created and therefore it will not be possible to query the status of this
command or to wait for this command to complete. If event_wait_list and event are not NULL,
event must not refer to an element of the event_wait_list array.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadBuffer does not
return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadBuffer queues a
non-blocking read command and returns. The contents of the buffer that ptr points to cannot be
used until the read command has completed. The event argument returns an event object which
can be used to query the execution status of the read command. When the read command has
completed, the contents of the buffer that ptr points to can be used by the application.

If blocking_write is CL_TRUE, the write command is blocking and does not return until the command
is complete, including transfer of the data. The memory pointed to by ptr can be reused by the
application after the clEnqueueWriteBuffer call returns.

144



If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-blocking
write. As the write is non-blocking the implementation can return immediately. The memory
pointed to by ptr cannot be reused by the application after the call returns. The event argument
returns an event object which can be used to query the execution status of the write command.
When the write command has completed, the memory pointed to by ptr can then be reused by the
application.

clEnqueueReadBuffer and clEnqueueWriteBuffer return CL_SUCCESS if the function is executed
successfully. Otherwise, they return one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same or
if the context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

• CL_INVALID_VALUE if the region being read or written specified by (offset, size) is out of bounds or
if ptr is a NULL value.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking and
the execution status of any of the events in event_wait_list is a negative integer value. This error
code is missing before version 1.1.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

• CL_INVALID_OPERATION if clEnqueueReadBuffer is called on buffer which has been created with
CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

• CL_INVALID_OPERATION if clEnqueueWriteBuffer is called on buffer which has been created with
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The following functions enqueue commands to read a 2D or 3D rectangular region from a buffer
object to host memory or write a 2D or 3D rectangular region to a buffer object from host memory.

145



cl_int clEnqueueReadBufferRect(
    cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_read,
    const size_t* buffer_origin,
    const size_t* host_origin,
    const size_t* region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
    size_t host_slice_pitch,
    void* ptr,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueReadBufferRect is missing before version 1.1.

cl_int clEnqueueWriteBufferRect(
    cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_write,
    const size_t* buffer_origin,
    const size_t* host_origin,
    const size_t* region,
    size_t buffer_row_pitch,
    size_t buffer_slice_pitch,
    size_t host_row_pitch,
    size_t host_slice_pitch,
    const void* ptr,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueWriteBufferRect is missing before version 1.1.

• command_queue refers is a valid host command-queue in which the read / write command will
be queued. command_queue and buffer must be created with the same OpenCL context.

• buffer refers to a valid buffer object.

• blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking (see below).

• buffer_origin defines the (x, y, z) offset in the memory region associated with buffer. For a 2D
rectangle region, the z value given by buffer_origin[2] should be 0. The offset in bytes is
computed as buffer_origin[2] × buffer_slice_pitch + buffer_origin[1] × buffer_row_pitch +
buffer_origin[0].

146



• host_origin defines the (x, y, z) offset in the memory region pointed to by ptr. For a 2D rectangle
region, the z value given by host_origin[2] should be 0. The offset in bytes is computed as
host_origin[2] × host_slice_pitch + host_origin[1] × host_row_pitch + host_origin[0].

• region defines the (width in bytes, height in rows, depth in slices) of the 2D or 3D rectangle being
read or written. For a 2D rectangle copy, the depth value given by region[2] should be 1. The
values in region cannot be 0.

• buffer_row_pitch is the length of each row in bytes to be used for the memory region associated
with buffer. If buffer_row_pitch is 0, buffer_row_pitch is computed as region[0].

• buffer_slice_pitch is the length of each 2D slice in bytes to be used for the memory region
associated with buffer. If buffer_slice_pitch is 0, buffer_slice_pitch is computed as region[1] ×
buffer_row_pitch.

• host_row_pitch is the length of each row in bytes to be used for the memory region pointed to by
ptr. If host_row_pitch is 0, host_row_pitch is computed as region[0].

• host_slice_pitch is the length of each 2D slice in bytes to be used for the memory region pointed
to by ptr. If host_slice_pitch is 0, host_slice_pitch is computed as region[1] × host_row_pitch.

• ptr is the pointer to buffer in host memory where data is to be read into or to be written from.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this read / write command and can be used to query
or queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful,
no event will be created and therefore it will not be possible to query the status of this
command or to wait for this command to complete. If event_wait_list and event are not NULL,
event must not refer to an element of the event_wait_list array.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadBufferRect does not
return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadBufferRect
queues a non-blocking read command and returns. The contents of the buffer that ptr points to
cannot be used until the read command has completed. The event argument returns an event object
which can be used to query the execution status of the read command. When the read command
has completed, the contents of the buffer that ptr points to can be used by the application.

If blocking_write is CL_TRUE, the write command is blocking and does not return until the command
is complete, including transfer of the data. The memory pointed to by ptr can be reused by the
application after the clEnqueueWriteBufferRect call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-blocking
write. As the write is non-blocking the implementation can return immediately. The memory

147



pointed to by ptr cannot be reused by the application after the call returns. The event argument
returns an event object which can be used to query the execution status of the write command.
When the write command has completed, the memory pointed to by ptr can then be reused by the
application.

clEnqueueReadBufferRect and clEnqueueWriteBufferRect return CL_SUCCESS if the function is
executed successfully. Otherwise, they return one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same or
if the context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

• CL_INVALID_VALUE if buffer_origin, host_origin, or region is NULL.

• CL_INVALID_VALUE if the region being read or written specified by (buffer_origin, region,
buffer_row_pitch, buffer_slice_pitch) is out of bounds.

• CL_INVALID_VALUE if any region array element is 0.

• CL_INVALID_VALUE if buffer_row_pitch is not 0 and is less than region[0].

• CL_INVALID_VALUE if host_row_pitch is not 0 and is less than region[0].

• CL_INVALID_VALUE if buffer_slice_pitch is not 0 and is less than region[1] × buffer_row_pitch and
not a multiple of buffer_row_pitch.

• CL_INVALID_VALUE if host_slice_pitch is not 0 and is less than region[1] × host_row_pitch and not a
multiple of host_row_pitch.

• CL_INVALID_VALUE if ptr is NULL.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking and
the execution status of any of the events in event_wait_list is a negative integer value. This error
code is missing before version 1.1.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

• CL_INVALID_OPERATION if clEnqueueReadBufferRect is called on buffer which has been created
with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

• CL_INVALID_OPERATION if clEnqueueWriteBufferRect is called on buffer which has been created
with CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

148



implementation on the host.



Calling clEnqueueReadBuffer to read a region of the buffer object with the ptr
argument value set to host_ptr + offset, where host_ptr is a pointer to the memory
region specified when the buffer object being read is created with CL_MEM_USE_
HOST_PTR, must meet the following requirements in order to avoid undefined
behavior:

• All commands that use this buffer object or a memory object (buffer or image)
created from this buffer object have finished execution before the read
command begins execution.

• The buffer object or memory objects created from this buffer object are not
mapped.

• The buffer object or memory objects created from this buffer object are not
used by any command-queue until the read command has finished execution.

Calling clEnqueueReadBufferRect to read a region of the buffer object with the
ptr argument value set to host_ptr and host_origin, buffer_origin values are the
same, where host_ptr is a pointer to the memory region specified when the buffer
object being read is created with CL_MEM_USE_HOST_PTR, must meet the same
requirements given above for clEnqueueReadBuffer.

Calling clEnqueueWriteBuffer to update the latest bits in a region of the buffer
object with the ptr argument value set to host_ptr + offset, where host_ptr is a
pointer to the memory region specified when the buffer object being written is
created with CL_MEM_USE_HOST_PTR, must meet the following requirements in order
to avoid undefined behavior:

• The host memory region given by (host_ptr + offset, cb) contains the latest bits
when the enqueued write command begins execution.

• The buffer object or memory objects created from this buffer object are not
mapped.

• The buffer object or memory objects created from this buffer object are not
used by any command-queue until the write command has finished execution.

Calling clEnqueueWriteBufferRect to update the latest bits in a region of the
buffer object with the ptr argument value set to host_ptr and host_origin,
buffer_origin values are the same, where host_ptr is a pointer to the memory
region specified when the buffer object being written is created with CL_MEM_USE_
HOST_PTR, must meet the following requirements in order to avoid undefined
behavior:

• The host memory region given by (buffer_origin region) contains the latest bits
when the enqueued write command begins execution.

• The buffer object or memory objects created from this buffer object are not
mapped.

• The buffer object or memory objects created from this buffer object are not

149



used by any command-queue until the write command has finished execution.

To enqueue a command to copy a buffer object identified by src_buffer to another buffer object
identified by dst_buffer, call the function

cl_int clEnqueueCopyBuffer(
    cl_command_queue command_queue,
    cl_mem src_buffer,
    cl_mem dst_buffer,
    size_t src_offset,
    size_t dst_offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• command_queue refers to a host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_buffer and dst_buffer must be the
same.

• src_offset refers to the offset where to begin copying data from src_buffer.

• dst_offset refers to the offset where to begin copying data into dst_buffer.

• size refers to the size in bytes to copy.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this copy command and can be used to query or
queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no
event will be created and therefore it will not be possible to query the status of this command or
to wait for this command to complete. If event_wait_list and event are not NULL, event must not
refer to an element of the event_wait_list array.

clEnqueueCopyBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_buffer are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_MEM_OBJECT if src_buffer and dst_buffer are not valid buffer objects.

• CL_INVALID_VALUE if src_offset, dst_offset, size, src_offset + size or dst_offset + size require

150



accessing elements outside the src_buffer and dst_buffer buffer objects respectively.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-buffer object and the
source and destination regions overlap or if src_buffer and dst_buffer are different sub-buffers
of the same associated buffer object and they overlap. The regions overlap if src_offset ≤
dst_offset ≤ src_offset + size - 1 or if dst_offset ≤ src_offset ≤ dst_offset + size - 1.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_buffer or dst_buffer.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to copy a 2D or 3D rectangular region from the buffer object identified by
src_buffer to a 2D or 3D region in the buffer object identified by dst_buffer, call the function

cl_int clEnqueueCopyBufferRect(
    cl_command_queue command_queue,
    cl_mem src_buffer,
    cl_mem dst_buffer,
    const size_t* src_origin,
    const size_t* dst_origin,
    const size_t* region,
    size_t src_row_pitch,
    size_t src_slice_pitch,
    size_t dst_row_pitch,
    size_t dst_slice_pitch,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueCopyBufferRect is missing before version 1.1.

• command_queue refers to the host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_buffer and dst_buffer must be the
same.

151



• src_origin defines the (x, y, z) offset in the memory region associated with src_buffer. For a 2D
rectangle region, the z value given by src_origin[2] should be 0. The offset in bytes is computed
as src_origin[2] × src_slice_pitch + src_origin[1] × src_row_pitch + src_origin[0].

• dst_origin defines the (x, y, z) offset in the memory region associated with dst_buffer. For a 2D
rectangle region, the z value given by dst_origin[2] should be 0. The offset in bytes is computed
as dst_origin[2] × dst_slice_pitch + dst_origin[1] × dst_row_pitch + dst_origin[0].

• region defines the (width in bytes, height in rows, depth in slices) of the 2D or 3D rectangle being
copied. For a 2D rectangle, the depth value given by region[2] should be 1. The values in region
cannot be 0.

• src_row_pitch is the length of each row in bytes to be used for the memory region associated
with src_buffer. If src_row_pitch is 0, src_row_pitch is computed as region[0].

• src_slice_pitch is the length of each 2D slice in bytes to be used for the memory region associated
with src_buffer. If src_slice_pitch is 0, src_slice_pitch is computed as region[1] × src_row_pitch.

• dst_row_pitch is the length of each row in bytes to be used for the memory region associated
with dst_buffer. If dst_row_pitch is 0, dst_row_pitch is computed as region[0].

• dst_slice_pitch is the length of each 2D slice in bytes to be used for the memory region associated
with dst_buffer. If dst_slice_pitch is 0, dst_slice_pitch is computed as region[1] × dst_row_pitch.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this copy command and can be used to query or
queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no
event will be created and therefore it will not be possible to query the status of this command or
to wait for this command to complete. If event_wait_list and event are not NULL, event must not
refer to an element of the event_wait_list array.

Copying begins at the source offset and destination offset which are computed as described below
in the description for src_origin and dst_origin. Each byte of the region’s width is copied from the
source offset to the destination offset. After copying each width, the source and destination offsets
are incremented by their respective source and destination row pitches. After copying each 2D
rectangle, the source and destination offsets are incremented by their respective source and
destination slice pitches.


If src_buffer and dst_buffer are the same buffer object, src_row_pitch must equal
dst_row_pitch and src_slice_pitch must equal dst_slice_pitch.

clEnqueueCopyBufferRect returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

152



• CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_buffer are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_MEM_OBJECT if src_buffer and dst_buffer are not valid buffer objects.

• CL_INVALID_VALUE if src_origin, dst_origin, or region is NULL.

• CL_INVALID_VALUE if (src_origin, region, src_row_pitch, src_slice_pitch) or (dst_origin, region,
dst_row_pitch, dst_slice_pitch) require accessing elements outside the src_buffer and dst_buffer
buffer objects respectively.

• CL_INVALID_VALUE if any region array element is 0.

• CL_INVALID_VALUE if src_row_pitch is not 0 and is less than region[0].

• CL_INVALID_VALUE if dst_row_pitch is not 0 and is less than region[0].

• CL_INVALID_VALUE if src_slice_pitch is not 0 and is less than region[1] × src_row_pitch or if
src_slice_pitch is not 0 and is not a multiple of src_row_pitch.

• CL_INVALID_VALUE if dst_slice_pitch is not 0 and is less than region[1] × dst_row_pitch or if
dst_slice_pitch is not 0 and is not a multiple of dst_row_pitch.

• CL_INVALID_VALUE if src_buffer and dst_buffer are the same buffer object and src_slice_pitch is not
equal to dst_slice_pitch and src_row_pitch is not equal to dst_row_pitch.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MEM_COPY_OVERLAP if src_buffer and dst_buffer are the same buffer or sub-buffer object and the
source and destination regions overlap or if src_buffer and dst_buffer are different sub-buffers
of the same associated buffer object and they overlap. Refer to Checking for Memory Copy
Overlap for details on how to determine if source and destination regions overlap.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_buffer or dst_buffer.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.2.3. Filling Buffer Objects

 Filling buffer objects is missing before version 1.2.

153



To enqueue a command to fill a buffer object with a pattern of a given pattern size, call the function

cl_int clEnqueueFillBuffer(
    cl_command_queue command_queue,
    cl_mem buffer,
    const void* pattern,
    size_t pattern_size,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueFillBuffer is missing before version 1.2.

• command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and buffer must be the same.

• buffer is a valid buffer object.

• pattern is a pointer to the data pattern of size pattern_size in bytes. pattern will be used to fill a
region in buffer starting at offset and is size bytes in size. The data pattern must be a scalar or
vector integer or floating-point data type supported by OpenCL as described in Shared
Application Scalar Data Types and Supported Application Vector Data Types. For example, if
buffer is to be filled with a pattern of float4 values, then pattern will be a pointer to a cl_float4
value and pattern_size will be sizeof(cl_float4). The maximum value of pattern_size is the size
of the largest integer or floating-point vector data type supported by the OpenCL device. The
memory associated with pattern can be reused or freed after the function returns.

• offset is the location in bytes of the region being filled in buffer and must be a multiple of
pattern_size.

• size is the size in bytes of region being filled in buffer and must be a multiple of pattern_size.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

The usage information which indicates whether the memory object can be read or written by a
kernel and/or the host and is given by the cl_mem_flags argument value specified when buffer is

154



created is ignored by clEnqueueFillBuffer.

clEnqueueFillBuffer returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue and buffer are not the same or
if the context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

• CL_INVALID_VALUE if offset or offset + size require accessing elements outside the buffer buffer
object respectively.

• CL_INVALID_VALUE if pattern is NULL or if pattern_size is 0 or if pattern_size is not one of { 1, 2, 4, 8,
16, 32, 64, 128 }.

• CL_INVALID_VALUE if offset and size are not a multiple of pattern_size.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.2.4. Mapping Buffer Objects

To enqueue a command to map a region of the buffer object given by buffer into the host address
space and returns a pointer to this mapped region, call the function

void* clEnqueueMapBuffer(
    cl_command_queue command_queue,
    cl_mem buffer,
    cl_bool blocking_map,
    cl_map_flags map_flags,
    size_t offset,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event,
    cl_int* errcode_ret);

155



• command_queue must be a valid host command-queue.

• blocking_map indicates if the map operation is blocking or non-blocking.

If blocking_map is CL_TRUE, clEnqueueMapBuffer does not return until the specified region in
buffer is mapped into the host address space and the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapBuffer.

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the pointer to the mapped region
returned by clEnqueueMapBuffer cannot be used until the map command has completed. The
event argument returns an event object which can be used to query the execution status of the map
command. When the map command is completed, the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapBuffer.

• map_flags is a bit-field and is described in the Memory Map Flags table.

• buffer is a valid buffer object. The OpenCL context associated with command_queue and buffer
must be the same.

• offset and size are the offset in bytes and the size of the region in the buffer object that is being
mapped.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clEnqueueMapBuffer will return a pointer to the mapped region. The errcode_ret is set to
CL_SUCCESS.

A NULL pointer is returned otherwise with one of the following error values returned in errcode_ret:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue and buffer are not the same or if
the context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_MEM_OBJECT if buffer is not a valid buffer object.

• CL_INVALID_VALUE if region being mapped given by (offset, size) is out of bounds or if size is 0 or if
values specified in map_flags are not valid.

156



• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for the device
associated with queue. This error code is missing before version 1.1.

• CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This
error cannot occur for buffer objects created with CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_
PTR.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is blocking and the
execution status of any of the events in event_wait_list is a negative integer value. This error
code is missing before version 1.1.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer.

• CL_INVALID_OPERATION if buffer has been created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_
ACCESS and CL_MAP_READ is set in map_flags or if buffer has been created with CL_MEM_HOST_READ_
ONLY or CL_MEM_HOST_NO_ACCESS and CL_MAP_WRITE or CL_MAP_WRITE_INVALIDATE_REGION is set in
map_flags.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_OPERATION if mapping would lead to overlapping regions being mapped for writing.

The pointer returned maps a region starting at offset and is at least size bytes in size. The result of a
memory access outside this region is undefined.

If the buffer object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following will be true:

• The host_ptr specified in clCreateBuffer or clCreateBufferWithProperties will contain the
latest bits in the region being mapped when the clEnqueueMapBuffer command has
completed.

• The pointer value returned by clEnqueueMapBuffer will be derived from the host_ptr
specified when the buffer object is created.

Mapped buffer objects are unmapped using clEnqueueUnmapMemObject. This is described in
Unmapping Mapped Memory Objects.

Table 21. List of supported map flag values

157



Map Flags Description

CL_MAP_READ This flag specifies that the region being mapped
in the memory object is being mapped for
reading.

The pointer returned by clEnqueueMapBuffer
(clEnqueueMapImage) is guaranteed to contain
the latest bits in the region being mapped when
the clEnqueueMapBuffer
(clEnqueueMapImage) command has
completed.

CL_MAP_WRITE This flag specifies that the region being mapped
in the memory object is being mapped for
writing.

The pointer returned by clEnqueueMapBuffer
(clEnqueueMapImage) is guaranteed to contain
the latest bits in the region being mapped when
the clEnqueueMapBuffer
(clEnqueueMapImage) command has
completed

CL_MAP_WRITE_INVALIDATE_REGION

missing before version 1.2.

This flag specifies that the region being mapped
in the memory object is being mapped for
writing.

The contents of the region being mapped are to
be discarded. This is typically the case when the
region being mapped is overwritten by the host.
This flag allows the implementation to no longer
guarantee that the pointer returned by
clEnqueueMapBuffer (clEnqueueMapImage)
contains the latest bits in the region being
mapped which can be a significant performance
enhancement.

CL_MAP_READ or CL_MAP_WRITE and CL_MAP_WRITE_
INVALIDATE_REGION are mutually exclusive.

5.2.5. Creating OpenCL Buffer Objects From Direct3D 10 Buffer Resources

To create an OpenCL buffer object from a Direct3D 10 buffer, call the function

158



cl_mem clCreateFromD3D10BufferKHR(
    cl_context context,
    cl_mem_flags flags,
    ID3D10Buffer* resource,
    cl_int* errcode_ret);


clCreateFromD3D10BufferKHR is provided by the cl_khr_d3d10_sharing
extension.

• context is a valid OpenCL context created from a Direct3D 10 device.

• flags is a bit-field that is used to specify usage information. Refer to the List of supported
memory flag values table for a description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY
and CL_MEM_READ_WRITE flags specified in that table can be used.

• resource is a pointer to the Direct3D 10 buffer to share.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The size of the returned OpenCL buffer object is the same as the size of resource. This call will
increment the internal Direct3D 10 reference count on resource. The internal Direct3D 10 reference
count on resource will be decremented when the OpenCL reference count on the returned OpenCL
memory object drops to zero.


Refer to the Lifetime of Shared Direct3D Memory Objects and Acquiring, Releasing,
and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects sections for
more information.

clCreateFromD3D10BufferKHR returns a valid non-zero OpenCL buffer object and errcode_ret is
set to CL_SUCCESS if the buffer object is created successfully. Otherwise, it returns a NULL value with
one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if values specified in flags are not valid.

• CL_INVALID_D3D10_RESOURCE_KHR if resource is not a Direct3D 10 buffer resource, if resource was
created with the D3D10_USAGE flag D3D10_USAGE_IMMUTABLE, if a cl_mem from resource has
already been created using clCreateFromD3D10BufferKHR, or if context was not created
against the same Direct3D 10 device from which resource was created.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.2.6. Creating OpenCL Buffer Objects From Direct3D 11 Buffer Resources

To create an OpenCL buffer object from a Direct3D 11 buffer, call the function

159



cl_mem clCreateFromD3D11BufferKHR(
    cl_context context,
    cl_mem_flags flags,
    ID3D11Buffer* resource,
    cl_int* errcode_ret);


clCreateFromD3D11BufferKHR is provided by the cl_khr_d3d11_sharing
extension.

• context is a valid OpenCL context created from a Direct3D 11 device.

• flags is a bit-field that is used to specify usage information. Refer to the List of supported
memory flag values table for a description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY
and CL_MEM_READ_WRITE flags specified in that table can be used.

• resource is a pointer to the Direct3D 11 buffer to share.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The size of the returned OpenCL buffer object is the same as the size of resource. This call will
increment the internal Direct3D 11 reference count on resource. The internal Direct3D 11 reference
count on resource will be decremented when the OpenCL reference count on the returned OpenCL
memory object drops to zero.


Refer to the Lifetime of Shared Direct3D Memory Objects and Acquiring, Releasing,
and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects sections for
more information.

clCreateFromD3D11BufferKHR returns a valid non-zero OpenCL buffer object and errcode_ret is
set to CL_SUCCESS if the buffer object is created successfully. Otherwise, it returns a NULL value with
one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if values specified in flags are not valid.

• CL_INVALID_D3D11_RESOURCE_KHR if resource is not a Direct3D 11 buffer resource, if resource was
created with the D3D11_USAGE flag D3D11_USAGE_IMMUTABLE, if a cl_mem from resource has
already been created using clCreateFromD3D11BufferKHR, or if context was not created
against the same Direct3D 11 device from which resource was created.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.2.7. Creating OpenCL Buffer Objects From OpenGL Buffer Objects

To create an OpenCL buffer object from an OpenGL buffer object, call the function

160



cl_mem clCreateFromGLBuffer(
    cl_context context,
    cl_mem_flags flags,
    cl_GLuint bufobj,
    cl_int* errcode_ret);

 clCreateFromGLBuffer is provided by the cl_khr_gl_sharing extension.

• context is a valid OpenCL context created from an OpenGL context.

• flags is a bit-field that is used to specify usage information. Refer to the Memory Flags table for a
description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE flags
specified in that table can be used.

• bufobj is the name of an OpenGL buffer object. The data store of the OpenGL buffer object must
have have been previously created by calling glBufferData, although its contents need not be
initialized. The size of the data store will be used to determine the size of the OpenCL buffer
object.

• errcode_ret will return an appropriate error code as described below. If errcode_ret is NULL, no
error code is returned.

The size of the OpenGL buffer object data store at the time clCreateFromGLBuffer is called will be
used as the size of buffer object returned by clCreateFromGLBuffer. If the state of an OpenGL
buffer object is modified through the OpenGL API (e.g. glBufferData) while there exists a
corresponding OpenCL buffer object, subsequent use of the OpenCL buffer object will result in
undefined behavior.

The clRetainMemObject and clReleaseMemObject functions can be used to retain and release the
buffer object.

The OpenCL buffer object created using clCreateFromGLBuffer can also be used to create an
OpenCL 1D image buffer object.


Refer to the Lifetime of Shared OpenCL/OpenGL Memory Objects and Acquiring,
Releasing, and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects
sections for more information.

clCreateFromGLBuffer returns a valid non-zero OpenCL buffer object and errcode_ret is set to
CL_SUCCESS if the buffer object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context or was not created from an OpenGL context.

• CL_INVALID_VALUE if values specified in flags are not valid.

• CL_INVALID_GL_OBJECT if bufobj is not an OpenGL buffer object or is a OpenGL buffer object but
does not have an existing data store or the size of the buffer is 0.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

161



• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.3. Image Objects
An image object is used to store a one-, two- or three-dimensional texture, frame-buffer or image.
The elements of an image object are selected from a list of predefined image formats. The minimum
number of elements in a memory object is one.

5.3.1. Creating Image Objects

An image object may be created using the function

cl_mem clCreateImage(
    cl_context context,
    cl_mem_flags flags,
    const cl_image_format* image_format,
    const cl_image_desc* image_desc,
    void* host_ptr,
    cl_int* errcode_ret);

 clCreateImage is missing before version 1.2.

An image object may also be created with additional properties using the function

cl_mem clCreateImageWithProperties(
    cl_context context,
    const cl_mem_properties* properties,
    cl_mem_flags flags,
    const cl_image_format* image_format,
    const cl_image_desc* image_desc,
    void* host_ptr,
    cl_int* errcode_ret);

 clCreateImageWithProperties is missing before version 3.0.

• context is a valid OpenCL context used to create the image object.

• properties is an optional list of properties for the image object and their corresponding values.
The list is terminated with the special property 0. If no properties are required, properties may
be NULL. OpenCL 3.0 does not define any optional properties for images, but extensions may
define properties as described in the List of supported image creation properties.

• flags is a bit-field that is used to specify allocation and usage information about the image
memory object being created and is described in the supported memory flag values table.

• image_format is a pointer to a structure that describes format properties of the image to be
allocated. A 1D image buffer or 2D image can be created from a buffer by specifying a buffer

162



object in the image_desc→mem_object. A 2D image can be created from another 2D image object
by specifying an image object in the image_desc→mem_object. Refer to the Image Format
Descriptor section for a detailed description of the image format descriptor.

• image_desc is a pointer to a structure that describes type and dimensions of the image to be
allocated. Refer to the Image Descriptor section for a detailed description of the image
descriptor.

• host_ptr is a pointer to the image data that may already be allocated by the application. Refer to
the table below for a description of how large the buffer that host_ptr points to must be.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The alignment requirements for data stored in image objects are described in Alignment of
Application Data Types.

For all image types except CL_MEM_OBJECT_IMAGE1D_BUFFER, if the value specified for flags is 0, the
default is used which is CL_MEM_READ_WRITE.

For CL_MEM_OBJECT_IMAGE1D_BUFFER image type, or an image created from another memory object
(image or buffer), if the CL_MEM_READ_WRITE, CL_MEM_READ_ONLY or CL_MEM_WRITE_ONLY values are not
specified in flags, they are inherited from the corresponding memory access qualifiers associated
with mem_object. The CL_MEM_USE_HOST_PTR, CL_MEM_ALLOC_HOST_PTR and CL_MEM_COPY_HOST_PTR values
cannot be specified in flags but are inherited from the corresponding memory access qualifiers
associated with mem_object. If CL_MEM_COPY_HOST_PTR is specified in the memory access qualifier
values associated with mem_object it does not imply any additional copies when the image is
created from mem_object. If the CL_MEM_HOST_WRITE_ONLY, CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_
ACCESS values are not specified in flags, they are inherited from the corresponding memory access
qualifiers associated with mem_object.

Mipmap Images

A mipmapped 1D image, 1D image array, 2D image, 2D image array or 3D image is created by
specifying num_mip_levels to be a value greater than one in image_desc. The dimensions of a
mipmapped image can be a power of two or a non-power of two. Each successively smaller
mipmap level is half the size of the previous level, rounded down to the nearest integer.

The following restrictions apply when mipmapped images are created with clCreateImage:

• CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR cannot be specified if a mipmapped image is
created.

• The host_ptr argument to clCreateImage must be a NULL value.

• Mip-mapped images cannot be created for CL_MEM_OBJECT_IMAGE1D_BUFFER images, depth images
or multi-sampled (i.e. msaa) images.

Image Data in Host Memory

For a 3D image or 2D image array, the image data specified by host_ptr is stored as a linear
sequence of adjacent 2D image slices or 2D images respectively. Each 2D image is a linear sequence
of adjacent scanlines. Each scanline is a linear sequence of image elements.

163



For a 2D image, the image data specified by host_ptr is stored as a linear sequence of adjacent
scanlines. Each scanline is a linear sequence of image elements.

For a 1D image array, the image data specified by host_ptr is stored as a linear sequence of adjacent
1D images. Each 1D image is stored as a single scanline which is a linear sequence of adjacent
elements.

For 1D image or 1D image buffer, the image data specified by host_ptr is stored as a single scanline
which is a linear sequence of adjacent elements.

Image elements are stored according to their image format as described in the Image Format
Descriptor section.

Table 22. List of supported image creation properties

Property Property Value Description

CL_MEM_DEVICE_HANDLE_LIST_KHR

provided by the
cl_khr_external_memory
extension.

cl_device_id[] Specifies the list of OpenCL devices (terminated
with CL_MEM_DEVICE_HANDLE_LIST_END_KHR) to
associate with the external memory handle.

If CL_MEM_DEVICE_HANDLE_LIST_KHR is not specified as part of properties, the memory object created by
clCreateBufferWithProperties or clCreateImageWithProperties is by default accessible to all
devices in the context.

The properties used to create an image from an external memory handle are described for the
corresponding extensions. When an image is created from an external memory handle, the flags
used to specify usage information for the image must not include CL_MEM_USE_HOST_PTR, CL_MEM_
ALLOC_HOST_PTR, or CL_MEM_COPY_HOST_PTR, and the host_ptr argument must be NULL. When images are
created from an external memory handle, implementations may acquire information about image
attributes such as format and layout at the time of creation. When such information is acquired at
image creation time, it is used for the lifetime of the image object.

clCreateImage and clCreateImageWithProperties returns a valid non-zero image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, they return a
NULL value with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_PROPERTY if a property name in properties is not a supported property name, if the
value specified for a supported property name is not valid, or if the same property name is
specified more than once.

• CL_INVALID_VALUE if values specified in flags are not valid.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in image_format are not valid or if
image_format is NULL.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a buffer and the row pitch and
base address alignment does not follow the rules described for creating a 2D image from a
buffer.

164



• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if a 2D image is created from a 2D image object and the
rules described above are not followed.

• CL_INVALID_IMAGE_DESCRIPTOR if values specified in image_desc are not valid or if image_desc is
NULL.

• CL_INVALID_IMAGE_SIZE if image dimensions specified in image_desc exceed the maximum image
dimensions described in the Device Queries table for all devices in context.

• CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR are set
in flags or if host_ptr is not NULL but CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in
flags.

• CL_INVALID_VALUE if an image is being created from another memory object (buffer or image)
under one of the following circumstances: 1) mem_object was created with CL_MEM_WRITE_ONLY
and flags specifies CL_MEM_READ_WRITE or CL_MEM_READ_ONLY, 2) mem_object was created with
CL_MEM_READ_ONLY and flags specifies CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY, 3) flags specifies
CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR or CL_MEM_COPY_HOST_PTR.

• CL_INVALID_VALUE if an image is being created from another memory object (buffer or image)
and mem_object was created with CL_MEM_HOST_WRITE_ONLY and flags specifies CL_MEM_HOST_READ_
ONLY, or if mem_object was created with CL_MEM_HOST_READ_ONLY and flags specifies CL_MEM_HOST_
WRITE_ONLY, or if mem_object was created with CL_MEM_HOST_NO_ACCESS and_flags_ specifies CL_MEM_
HOST_READ_ONLY or CL_MEM_HOST_WRITE_ONLY.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if there are no devices in context that support image_format.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for image object.

• CL_INVALID_OPERATION if there are no devices in context that support images (i.e. CL_DEVICE_IMAGE_
SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_DEVICE

◦ if a device identified by the property CL_MEM_DEVICE_HANDLE_LIST_KHR is not a valid device or
is not associated with context, or

◦ if a device identified by property CL_MEM_DEVICE_HANDLE_LIST_KHR cannot import the
requested external memory object type, or

◦ if CL_MEM_DEVICE_HANDLE_LIST_KHR is not specified as part of properties and one or more
devices in context cannot import the requested external memory object type.

• CL_INVALID_VALUE

◦ if properties includes a supported external memory handle and flags includes CL_MEM_USE_
HOST_PTR, CL_MEM_ALLOC_HOST_PTR, or CL_MEM_COPY_HOST_PTR.

• CL_INVALID_HOST_PTR

◦ if properties includes a supported external memory handle and host_ptr is not NULL.

• CL_INVALID_PROPERTY

165



◦ if properties does not include a supported external memory handle and CL_MEM_DEVICE_
HANDLE_LIST_KHR is specified as part of properties.

Table 23. Required host_ptr buffer sizes for images

Image Type Size of buffer that host_ptr points to

CL_MEM_OBJECT_IMAGE1D

missing before version 1.2.

≥ image_row_pitch

CL_MEM_OBJECT_IMAGE1D_BUFFER

missing before version 1.2.

≥ image_row_pitch

CL_MEM_OBJECT_IMAGE2D ≥ image_row_pitch × image_height

CL_MEM_OBJECT_IMAGE3D ≥ image_slice_pitch × image_depth

CL_MEM_OBJECT_IMAGE1D_ARRAY

missing before version 1.2.

≥ image_slice_pitch × image_array_size

CL_MEM_OBJECT_IMAGE2D_ARRAY

missing before version 1.2.

≥ image_slice_pitch × image_array_size

A 2D image object can be created using the following function

cl_mem clCreateImage2D(
    cl_context context,
    cl_mem_flags flags,
    const cl_image_format* image_format,
    size_t image_width,
    size_t image_height,
    size_t image_row_pitch,
    void* host_ptr,
    cl_int* errcode_ret);

 clCreateImage2D is deprecated by version 1.2.

• context is a valid OpenCL context on which the image object is to be created.

• flags is a bit-field that is used to specify allocation and usage information about the image
memory object being created and is described in the supported memory flag values table. If the
value specified for flags is 0, the default is used which is CL_MEM_READ_WRITE.

• image_format is a pointer to a structure that describes format properties of the image to be
allocated. Refer to the Image Format Descriptor section for a detailed description of the image
format descriptor.

• image_width and image_height are the width and height of the image in pixels. These must be
values greater than or equal to 1.

166



• image_row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can be
either 0 or ≥ image_width × size of element in bytes if host_ptr is not NULL. If host_ptr is not NULL
and image_row_pitch is 0, image_row_pitch is calculated as image_width × size of element in
bytes. If image_row_pitch is not 0, it must be a multiple of the image element size in bytes.

• host_ptr is a pointer to the image data that may already be allocated by the application. Refer to
the CL_MEM_OBJECT_IMAGE2D entry in the required host_ptr buffer size table for a description of
how large the buffer that host_ptr points to must be. The image data specified by host_ptr is
stored as a linear sequence of adjacent scanlines. Each scanline is a linear sequence of image
elements. Image elements are stored according to their image format as described in the Image
Format Descriptor section.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateImage2D returns a valid non-zero image object created and the errcode_ret is set to
CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if values specified in flags are not valid.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in image_format are not valid or if
image_format is NULL.

• CL_INVALID_IMAGE_SIZE if image_width or image_height are 0 or if they exceed the maximum
values specified in CL_DEVICE_IMAGE2D_MAX_WIDTH or CL_DEVICE_IMAGE2D_MAX_HEIGHT respectively
for all devices in context or if values specified by image_row_pitch do not follow rules described
in the argument description above.

• CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR are set
in flags or if host_ptr is not NULL but CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in
flags.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if there are no devices in context that support image_format.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for image object.

• CL_INVALID_OPERATION if there are no devices in context that support images (i.e. CL_DEVICE_IMAGE_
SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

A 3D image object can be created using the following function

167



cl_mem clCreateImage3D(
    cl_context context,
    cl_mem_flags flags,
    const cl_image_format* image_format,
    size_t image_width,
    size_t image_height,
    size_t image_depth,
    size_t image_row_pitch,
    size_t image_slice_pitch,
    void* host_ptr,
    cl_int* errcode_ret);

 clCreateImage3D is deprecated by version 1.2.

• context is a valid OpenCL context on which the image object is to be created.

• flags is a bit-field that is used to specify allocation and usage information about the image
memory object being created and is described in the supported memory flag values table. If the
value specified for flags is 0, the default is used which is CL_MEM_READ_WRITE.

• image_format is a pointer to a structure that describes format properties of the image to be
allocated. Refer to the Image Format Descriptor section for a detailed description of the image
format descriptor.

• image_width and image_height are the width and height of the image in pixels. These must be
values greater than or equal to 1.

• image_depth is the depth of the image in pixels. For clCreateImage3D, this must be a value > 1.

• image_row_pitch is the scan-line pitch in bytes. This must be 0 if host_ptr is NULL and can be
either 0 or ≥ image_width × size of element in bytes if host_ptr is not NULL. If host_ptr is not NULL
and image_row_pitch is 0, image_row_pitch is calculated as image_width × size of element in
bytes. If image_row_pitch is not 0, it must be a multiple of the image element size in bytes.

• image_slice_pitch is the size in bytes of each 2D slice in the 3D image. This must be 0 if host_ptr is
NULL and can be 0 or ≥ image_row_pitch × image_height if host_ptr is not NULL. If host_ptr is not
NULL and image_slice_pitch is 0, image_slice_pitch is calculated as image_row_pitch ×
image_height. If image_slice_pitch is not 0, it must be a multiple of the image_row_pitch.

• host_ptr is a pointer to the image data that may already be allocated by the application. Refer to
the CL_MEM_OBJECT_IMAGE3D entry in the required host_ptr buffer size table for a description of
how large the buffer that host_ptr points to must be. The image data specified by host_ptr is
stored as a linear sequence of adjacent 2D slices. Each scanline is a linear sequence of image
elements. Image elements are stored according to their image format as described in the Image
Format Descriptor section.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateImage3D returns a valid non-zero image object created and the errcode_ret is set to
CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

168



• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if values specified in flags are not valid.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if values specified in image_format are not valid or if
image_format is NULL.

• CL_INVALID_IMAGE_SIZE if image_width or image_height are 0 or if image_depth ≤ 1, or if they
exceed the maximum values specified in CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_
HEIGHT or CL_DEVICE_IMAGE3D_MAX_DEPTH respectively for all devices in context, or if values
specified by image_row_pitch and image_slice_pitch do not follow rules described in the
argument description above.

• CL_INVALID_HOST_PTR if host_ptr is NULL and CL_MEM_USE_HOST_PTR or CL_MEM_COPY_HOST_PTR are set
in flags or if host_ptr is not NULL but CL_MEM_COPY_HOST_PTR or CL_MEM_USE_HOST_PTR are not set in
flags.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if there are no devices in context that support image_format.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for image object.

• CL_INVALID_OPERATION if there are no devices in context that support images (i.e. CL_DEVICE_IMAGE_
SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.3.1.1. Image Format Descriptor

The cl_image_format image format descriptor structure describes an image format, and is defined
as:

typedef struct cl_image_format {
    cl_channel_order    image_channel_order;
    cl_channel_type     image_channel_data_type;
} cl_image_format;

• image_channel_order specifies the number of channels and the channel layout i.e. the memory
layout in which channels are stored in the image. Valid values are described in the Image
Channel Order table.

• image_channel_data_type describes the size of the channel data type. The list of supported
values is described in the Image Channel Data Types table. The number of bits per element
determined by the image_channel_data_type and image_channel_order must be a power of two.

Table 24. List of supported Image Channel Order Values

Image Channel Order Description

CL_R, CL_A, Single channel image formats where the single
channel represents a RED or ALPHA component.

169



Image Channel Order Description

CL_DEPTH

missing before version 2.0.

Also supported if the cl_khr_depth_images
extension is supported.

A single channel image format where the single
channel represents a DEPTH component.

CL_LUMINANCE A single channel image format where the single
channel represents a LUMINANCE value. The
LUMINANCE value is replicated into the RED, GREEN,
and BLUE components.

CL_INTENSITY, A single channel image format where the single
channel represents an INTENSITY value. The
INTENSITY value is replicated into the RED, GREEN,
BLUE, and ALPHA components.

CL_RG, CL_RA Two channel image formats. The first channel
always represents a RED component. The second
channel represents a GREEN component or an
ALPHA component.

CL_Rx

missing before version 1.1.

A two channel image format, where the first
channel represents a RED component and the
second channel is ignored.

CL_DEPTH_STENCIL

provided by the cl_khr_gl_depth_images
extension.

A two channel image format, where the first
channel represents a DEPTH component and the
second channel represents a stencil component.
This format can only be used if the image
channel data type is CL_UNORM_INT24 or CL_FLOAT.

See Restrictions on Depth/Stencil Images.

CL_RGB A three channel image format, where the three
channels represent RED, GREEN, and BLUE
components.

CL_RGx

missing before version 1.1.

A three channel image format, where the first
two channels represent RED and GREEN
components and the third channel is ignored.

CL_RGBA, CL_ARGB, CL_BGRA, CL_ABGR

CL_ABGR is missing before version 2.0.

Four channel image formats, where the four
channels represent RED, GREEN, BLUE, and ALPHA
components.

CL_RGBx

missing before version 1.1.

A four channel image format, where the first
three channels represent RED, GREEN, and BLUE
components and the fourth channel is ignored.

170



Image Channel Order Description

CL_sRGB

missing before version 2.0.

A three channel image format, where the three
channels represent RED, GREEN, and BLUE
components in the sRGB color space.

CL_sRGBA, CL_sBGRA

missing before version 2.0.

Four channel image formats, where the first
three channels represent RED, GREEN, and BLUE
components in the sRGB color space. The fourth
channel represents an ALPHA component.

CL_sRGBx

missing before version 2.0.

A four channel image format, where the three
channels represent RED, GREEN, and BLUE
components in the sRGB color space. The fourth
channel is ignored.

Table 25. List of supported Image Channel Data Types

Image Channel Data Type Description

CL_SNORM_INT8 Each channel component is a normalized signed
8-bit integer value

CL_SNORM_INT16 Each channel component is a normalized signed
16-bit integer value

CL_UNORM_INT8 Each channel component is a normalized
unsigned 8-bit integer value

CL_UNORM_INT16

Also supported if the cl_khr_depth_images
extension is supported.

Each channel component is a normalized
unsigned 16-bit integer value

CL_UNORM_SHORT_565 Represents a normalized 5-6-5 3-channel RGB
image. The channel order must be CL_RGB or
CL_RGBx.

CL_UNORM_SHORT_555 Represents a normalized x-5-5-5 4-channel xRGB
image. The channel order must be CL_RGB or
CL_RGBx.

CL_UNORM_INT_101010 Represents a normalized x-10-10-10 4-channel
xRGB image. The channel order must be CL_RGB
or CL_RGBx.

CL_UNORM_INT_101010_2

missing before version 2.1.

Represents a normalized 10-10-10-2 four-
channel RGBA image. The channel order must be
CL_RGBA.

CL_SIGNED_INT8 Each channel component is an unnormalized
signed 8-bit integer value

CL_SIGNED_INT16 Each channel component is an unnormalized
signed 16-bit integer value

171



Image Channel Data Type Description

CL_SIGNED_INT32 Each channel component is an unnormalized
signed 32-bit integer value

CL_UNSIGNED_INT8 Each channel component is an unnormalized
unsigned 8-bit integer value

CL_UNSIGNED_INT16 Each channel component is an unnormalized
unsigned 16-bit integer value

CL_UNORM_INT24

provided by the cl_khr_gl_depth_images
extension.

Each channel component is a normalized
unsigned 24-bit integer value

CL_UNSIGNED_INT32 Each channel component is an unnormalized
unsigned 32-bit integer value

CL_HALF_FLOAT Each channel component is a 16-bit half-float
value

CL_FLOAT

Also supported if the cl_khr_depth_images
extension is supported.

Each channel component is a single precision
floating-point value

For example, to specify a normalized unsigned 8-bit / channel RGBA image, image_channel_order =
CL_RGBA, and image_channel_data_type = CL_UNORM_INT8. The memory layout of this image format is
described below:

R G B A …

with the corresponding byte offsets

0 1 2 3 …

Similar, if image_channel_order = CL_RGBA and image_channel_data_type = CL_SIGNED_INT16, the
memory layout of this image format is described below:

R G B A …

with the corresponding byte offsets

0 2 4 6 …

image_channel_data_type values of CL_UNORM_SHORT_565, CL_UNORM_SHORT_555, CL_UNORM_INT_101010, and
CL_UNORM_INT_101010_2 are special cases of packed image formats where the channels of each
element are packed into a single unsigned short or unsigned int. For these special packed image
formats, the channels are normally packed with the first channel in the most significant bits of the
bitfield, and successive channels occupying progressively less significant locations. For CL_UNORM_
SHORT_565, R is in bits 15:11, G is in bits 10:5 and B is in bits 4:0. For CL_UNORM_SHORT_555, bit 15 is

172



undefined, R is in bits 14:10, G in bits 9:5 and B in bits 4:0. For CL_UNORM_INT_101010, bits 31:30 are
undefined, R is in bits 29:20, G in bits 19:10 and B in bits 9:0. For CL_UNORM_INT_101010_2, R is in bits
31:22, G in bits 21:12, B in bits 11:2 and A in bits 1:0.

OpenCL implementations must maintain the minimum precision specified by the number of bits in
image_channel_data_type. If the image format specified by image_channel_order, and
image_channel_data_type cannot be supported by the OpenCL implementation, then the call to
clCreateImage, clCreateImageWithProperties, clCreateImage2D, or clCreateImage3D will
return a NULL memory object.

5.3.1.2. Image Descriptor

The cl_image_desc image descriptor structure describes the image type and dimensions of an image
or image array when creating an image using clCreateImage or clCreateImageWithProperties,
and is defined as:

typedef struct cl_image_desc {
    cl_mem_object_type    image_type;
    size_t                image_width;
    size_t                image_height;
    size_t                image_depth;
    size_t                image_array_size;
    size_t                image_row_pitch;
    size_t                image_slice_pitch;
    cl_uint               num_mip_levels;
    cl_uint               num_samples;
    union {
        cl_mem buffer;
        cl_mem mem_object;
    };
} cl_image_desc;

• image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D, CL_MEM_OBJECT_
IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE1D_ARRAY, CL_MEM_OBJECT_IMAGE2D, CL_MEM_OBJECT_IMAGE2D_
ARRAY, or CL_MEM_OBJECT_IMAGE3D.

• image_width is the width of the image in pixels. For a 2D image and image array, the image
width must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE2D_MAX_WIDTH. For a 3D image, the image width
must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE3D_MAX_WIDTH. For a 1D image buffer, the image width
must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE_MAX_BUFFER_SIZE. For a 1D image and 1D image array,
the image width must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE2D_MAX_WIDTH.

• image_height is the height of the image in pixels. This is only used if the image is a 2D or 3D
image, or a 2D image array. For a 2D image or image array, the image height must be a value ≥ 1
and ≤ CL_DEVICE_IMAGE2D_MAX_HEIGHT. For a 3D image, the image height must be a value ≥ 1 and ≤
CL_DEVICE_IMAGE3D_MAX_HEIGHT.

• image_depth is the depth of the image in pixels. This is only used if the image is a 3D image and
must be a value ≥ 1 and ≤ CL_DEVICE_IMAGE3D_MAX_DEPTH.

• image_array_size [4] is the number of images in the image array. This is only used if the image is

173



a 1D or 2D image array. The values for image_array_size, if specified, must be a value ≥ 1 and ≤
CL_DEVICE_IMAGE_MAX_ARRAY_SIZE.

• image_row_pitch is the scan-line pitch in bytes. The image_row_pitch must be zero if host_ptr is
NULL, the image is not an image created from an external memory handle, and the image is not a
2D image created from a buffer, If image_row_pitch is zero and host_ptr is not NULL, then the
image row pitch is calculated as image_width × the size of an image element in bytes. If
image_row_pitch is zero and the image is created from an external memory handle, then the
image row pitch is implementation-defined. The image row pitch must be ≥ image_width × the
size of an image element in bytes, and must be a multiple of the size of an image element in
bytes. For a 2D image created from a buffer the image row pitch must also be a multiple of the
maximum of the CL_DEVICE_IMAGE_PITCH_ALIGNMENT value for all devices in the context that
support images.

• image_slice_pitch is the size in bytes of each 2D slice in a 3D image, or the size in bytes of each
image in a 1D or 2D image array. The image_slice_pitch must be zero if host_ptr is NULL and the
image is not an image created from an external memory handle, If image_slice_pitch is zero and
host_ptr is not NULL then the image slice pitch is calculated as the image row pitch ×
image_height for a 2D image array or a 3D image, and as the image row pitch for a 1D image
array. If image_slice_pitch is zero and the image is created from an external memory handle,
then the image slice pitch is implementation-defined. The image slice pitch must be ≥ the image
image row pitch × image_height for a 2D image array or a 3D image, must be ≥ the image row
pitch for a 1D image array, and must be a multiple of the image row pitch.

• num_mip_levels must be 0 unless the cl_khr_mipmap_image extension is supported, in which case
it must be a value greater than 1 specifying the number of mipmap levels in the image.

• num_samples must be 0.

• mem_object may refer to a valid buffer or image memory object. mem_object can be a buffer
memory object if image_type is CL_MEM_OBJECT_IMAGE1D_BUFFER or CL_MEM_OBJECT_IMAGE2D [5].
mem_object can be an image object if image_type is CL_MEM_OBJECT_IMAGE2D [6]. Otherwise it must be
NULL. The image pixels are taken from the memory objects data store. When the contents of the
specified memory objects data store are modified, those changes are reflected in the contents of
the image object and vice-versa at corresponding synchronization points.

For a 1D image buffer created from a buffer object, the image_width × size of element in bytes must
be ≤ size of the buffer object. The image data in the buffer object is stored as a single scanline which
is a linear sequence of adjacent elements.

For a 2D image created from a buffer object, the image_row_pitch × image_height must be ≤ size of
the buffer object specified by mem_object. The image data in the buffer object is stored as a linear
sequence of adjacent scanlines. Each scanline is a linear sequence of image elements padded to
image_row_pitch bytes.

For an image object created from another image object, the values specified in the image descriptor
except for mem_object must match the image descriptor information associated with mem_object.

Image elements are stored according to their image format as described in Image Format
Descriptor.

If the buffer object specified by mem_object was created with CL_MEM_USE_HOST_PTR, the host_ptr

174



specified to clCreateBuffer or clCreateBufferWithProperties must be aligned to the maximum of
the CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT value for all devices in the context associated with the
buffer specified by mem_object that support images.

Creating a 2D image object from another 2D image object creates a new 2D image object that shares
the image data store with mem_object but views the pixels in the image with a different image
channel order. Restrictions are:

• All of the values specified in image_desc must match the image descriptor information
associated with mem_object, except for mem_object.

• The image channel data type specified in image_format must match the image channel data type
associated with mem_object.

• The image channel order specified in image_format must be compatible with the image channel
order associated with mem_object, as described in the Compatible Image Channel Orders table.


The image channel order compatibility constraint allows creation of a sRGB view
of the image from a linear RGB view or vice-versa, i.e. the pixels stored in the
image can be accessed as linear RGB or sRGB values.

Table 26. Compatible Image Channel Orders

Image Channel Order in image_format: Image Channel Order associated with
mem_object:

CL_sBGRA CL_BGRA

CL_BGRA CL_sBGRA

CL_sRGBA CL_RGBA

CL_RGBA CL_sRGBA

CL_sRGB CL_RGB

CL_RGB CL_sRGB

CL_sRGBx CL_RGBx

CL_RGBx CL_sRGBx

CL_DEPTH CL_R



Concurrent reading from, writing to and copying between both a buffer object and
1D image buffer or 2D image object associated with the buffer object is undefined.
Only reading from both a buffer object and 1D image buffer or 2D image object
associated with the buffer object is defined.

Writing to an image created from a buffer and then reading from this buffer in a
kernel even if appropriate synchronization operations (such as a barrier) are
performed between the writes and reads is undefined. Similarly, writing to the
buffer and reading from the image created from this buffer with appropriate
synchronization between the writes and reads is undefined.

175



5.3.2. Querying List of Supported Image Formats

To get the list of image formats supported by an OpenCL implementation for a specified context,
image type, and allocation information, call the function

cl_int clGetSupportedImageFormats(
    cl_context context,
    cl_mem_flags flags,
    cl_mem_object_type image_type,
    cl_uint num_entries,
    cl_image_format* image_formats,
    cl_uint* num_image_formats);

• context is a valid OpenCL context on which the image object(s) will be created.

• flags is a bit-field that is used to specify usage information about the image formats being
queried and is described in the Memory Flags table. flags may be CL_MEM_READ_WRITE to query
image formats that may be read from and written to by different kernel instances when
correctly ordered by event dependencies, or CL_MEM_READ_ONLY to query image formats that may
be read from by a kernel, or CL_MEM_WRITE_ONLY to query image formats that may be written to by
a kernel, or CL_MEM_KERNEL_READ_AND_WRITE to query image formats that may be both read from
and written to by the same kernel instance. Please see Image Format Mapping for clarification.

• image_type describes the image type and must be either CL_MEM_OBJECT_IMAGE1D, CL_MEM_OBJECT_
IMAGE1D_BUFFER, CL_MEM_OBJECT_IMAGE2D, CL_MEM_OBJECT_IMAGE3D, CL_MEM_OBJECT_IMAGE1D_ARRAY, or
CL_MEM_OBJECT_IMAGE2D_ARRAY.

• num_entries specifies the number of entries that can be returned in the memory location given
by image_formats.

• image_formats is a pointer to a memory location where the list of supported image formats are
returned. Each entry describes a cl_image_format structure supported by the OpenCL
implementation. If image_formats is NULL, it is ignored.

• num_image_formats is the actual number of supported image formats for a specific context and
values specified by flags. If num_image_formats is NULL, it is ignored.

clGetSupportedImageFormats returns a union of image formats supported by all devices in the
context.

clGetSupportedImageFormats returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if flags or image_type are not valid, or if num_entries is 0 and image_formats is
not NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

176



If CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_TRUE, the values assigned to
CL_DEVICE_MAX_READ_IMAGE_ARGS, CL_DEVICE_MAX_WRITE_IMAGE_ARGS CL_DEVICE_IMAGE2D_MAX_WIDTH,
CL_DEVICE_IMAGE2D_MAX_HEIGHT CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT
CL_DEVICE_IMAGE3D_MAX_DEPTH, and CL_DEVICE_MAX_SAMPLERS by the implementation must be greater
than or equal to the minimum values specified in the Device Queries table.

5.3.2.1. Minimum List of Supported Image Formats

The tables below describe the required minimum lists of supported image formats. To query all
image formats supported by an implementation, call the function clGetSupportedImageFormats.

For full profile devices supporting OpenCL 2.0, 2.1, or 2.2, the minimum list of supported image
formats for either reading or writing in a kernel is:

Table 27. Minimum list of supported image formats for reading or writing (OpenCL 2.0, 2.1, or 2.2)

num_channels channel_order channel_data_type

1 CL_R CL_UNORM_INT8
CL_UNORM_INT16
CL_SNORM_INT8
CL_SNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

1 CL_DEPTH [7]

Also supported if the cl_khr_
depth_images extension is
supported.

CL_UNORM_INT16
CL_FLOAT

1 CL_DEPTH_STENCIL CL_UNORM_INT24
CL_FLOAT

See Restrictions on
Depth/Stencil Images.

177



num_channels channel_order channel_data_type

2 CL_RG CL_UNORM_INT8
CL_UNORM_INT16
CL_SNORM_INT8
CL_SNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_RGBA CL_UNORM_INT8
CL_UNORM_INT16
CL_SNORM_INT8
CL_SNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_BGRA CL_UNORM_INT8

4 CL_sRGBA [8] CL_UNORM_INT8

For full profile devices supporting other OpenCL versions, such as OpenCL 1.2 or OpenCL 3.0, the
minimum list of supported image formats for either reading or writing in a kernel is:

Table 28. Minimum list of required image formats for reading or writing

num_channels channel_order channel_data_type

4 CL_RGBA CL_UNORM_INT8
CL_UNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_BGRA CL_UNORM_INT8

178



For full profile devices that support reading from and writing to the same image object from the
same kernel instance (see CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS), the minimum list of supported
image formats for reading and writing in the same kernel instance is:

Table 29. Minimum list of required image formats for reading and writing

num_channels channel_order channel_data_type

1 CL_R CL_UNORM_INT8
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

4 CL_RGBA CL_UNORM_INT8
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

5.3.2.2. Image Format Mapping to OpenCL Kernel Language Image Access Qualifiers

Image arguments to kernels may have the read_only, write_only or read_write qualifier. Not all
image formats supported by the device and platform are valid to be passed to all of these access
qualifiers. For each access qualifier, only images whose format is in the list of formats returned by
clGetSupportedImageFormats with the given flag arguments in the Image Format Mapping table
are permitted. It is not valid to pass an image supporting writing as both a read_only image and a
write_only image parameter, or to a read_write image parameter and any other image parameter.

Table 30. Mapping from format flags passed to clGetSupportedImageFormats to OpenCL kernel language
image access qualifiers

Access Qualifier Memory Flags

read_only CL_MEM_READ_ONLY,
CL_MEM_READ_WRITE,
CL_MEM_KERNEL_READ_AND_WRITE

write_only CL_MEM_WRITE_ONLY,
CL_MEM_READ_WRITE,
CL_MEM_KERNEL_READ_AND_WRITE

read_write CL_MEM_KERNEL_READ_AND_WRITE

179



5.3.3. Mapping to External Image Formats

OpenCL image objects can be created which share storage with image objects in external APIs such
as DirectX and OpenGL when the corresponding OpenCL extensions are supported. When creating
such OpenCL images, there are restrictions on the allowed formats. The tables in this section list,
for each such external API, the supported image formats in that API and the corresponding OpenCL
image format.

5.3.3.1. Image Formats for DirectX 9 Media Surface Sharing

When the cl_khr_dx9_media_sharing extension is supported, image objects sharing storage with
Direct3D 9 surfaces can be created. This section describes the Direct3D 9 surface formats that are
supported when the adapter type is one of the Direct 3D lineage. Using a Direct3D 9 surface format
not listed here is an error. To extend the use of this extension to support media adapters beyond
DirectX 9 tables similar to the ones in this section will need to be defined for the surface formats
supported by the new media adapter. All implementations that support this extension are required
to support the NV12 surface format. The other surface formats supported are the same surface
formats that the adapter you are sharing with supports as long as they are listed in the YUV FourCC
Codes and Corresponding OpenCL Image Formats or Direct3D 9 Formats and Corresponding
OpenCL Image Formats tables.

Table 31. YUV FourCC Codes and Corresponding OpenCL Image Formats

FOUR CC Code CL Image Format (Channel Order, Channel
Data Type)

FOURCC('N','V','1','2'), Plane 0 CL_R, CL_UNORM_INT8

FOURCC('N','V','1','2'), Plane 1 CL_RG, CL_UNORM_INT8

FOURCC('Y','V','1','2'), Plane 0 CL_R, CL_UNORM_INT8

FOURCC('Y','V','1','2'), Plane 1 CL_R, CL_UNORM_INT8

FOURCC('Y','V','1','2'), Plane 2 CL_R, CL_UNORM_INT8

In the YUV FourCC Codes and Corresponding OpenCL Image Formats table, NV12 Plane 0
corresponds to the luminance (Y) channel and Plane 1 corresponds to the UV channels. The YV12
Plane 0 corresponds to the Y channel, Plane 1 corresponds to the V channel and Plane 2
corresponds to the U channel. Note that the YUV formats map to CL_R and CL_RG but do not perform
any YUV to RGB conversion, and vice-versa.

Table 32. Direct3D 9 Formats and Corresponding OpenCL Image Formats

Direct3D 9 Format CL Image Format (Channel Order, Channel
Data Type)

D3DFMT_R32F CL_R, CL_FLOAT

D3DFMT_R16F CL_R, CL_HALF_FLOAT

D3DFMT_L16 CL_R, CL_UNORM_INT16

D3DFMT_A8 CL_A, CL_UNORM_INT8

D3DFMT_L8 CL_R, CL_UNORM_INT8

180



Direct3D 9 Format CL Image Format (Channel Order, Channel
Data Type)

D3DFMT_G32R32F CL_RG, CL_FLOAT

D3DFMT_G16R16F CL_RG, CL_HALF_FLOAT

D3DFMT_G16R16 CL_RG, CL_UNORM_INT16

D3DFMT_A8L8 CL_RG, CL_UNORM_INT8

D3DFMT_A32B32G32R32F CL_RGBA, CL_FLOAT

D3DFMT_A16B16G16R16F CL_RGBA, CL_HALF_FLOAT

D3DFMT_A16B16G16R16 CL_RGBA, CL_UNORM_INT16

D3DFMT_A8B8G8R8 CL_RGBA, CL_UNORM_INT8

D3DFMT_X8B8G8R8 CL_RGBA, CL_UNORM_INT8

D3DFMT_A8R8G8B8 CL_BGRA, CL_UNORM_INT8

D3DFMT_X8R8G8B8 CL_BGRA, CL_UNORM_INT8



The Direct3D 9 format names in the table above seem to imply that the order of the
color channels are switched relative to OpenCL, but this is not the case. For
example, the layout of channels for each pixel for D3DFMT_A32FB32FG32FR32F is the
same as CL_RGBA, CL_FLOAT.

5.3.3.2. Image Formats for Direct3D Texture Sharing

When the cl_khr_d3d10_sharing or cl_khr_d3d11_sharing extensions are supported, image objects
sharing storage with Direct3D 10 and Direct3D 11 textures, respectively, can be created. The DXGI
Formats and Corresponding OpenCL Image Formats table describes the supported DirectX Graphics
Infrastructure (DXGI) texture formats.

Table 33. DXGI Formats and Corresponding OpenCL Image Formats

DXGI Format CL Image Format (Channel Order, Channel
Data Type)

DXGI_FORMAT_R32G32B32A32_FLOAT CL_RGBA, CL_FLOAT

DXGI_FORMAT_R32G32B32A32_UINT CL_RGBA, CL_UNSIGNED_INT32

DXGI_FORMAT_R32G32B32A32_SINT CL_RGBA, CL_SIGNED_INT32

DXGI_FORMAT_R16G16B16A16_FLOAT CL_RGBA, CL_HALF_FLOAT

DXGI_FORMAT_R16G16B16A16_UNORM CL_RGBA, CL_UNORM_INT16

DXGI_FORMAT_R16G16B16A16_UINT CL_RGBA, CL_UNSIGNED_INT16

DXGI_FORMAT_R16G16B16A16_SNORM CL_RGBA, CL_SNORM_INT16

DXGI_FORMAT_R16G16B16A16_SINT CL_RGBA, CL_SIGNED_INT16

181



DXGI Format CL Image Format (Channel Order, Channel
Data Type)

DXGI_FORMAT_B8G8R8A8_UNORM CL_BGRA, CL_UNORM_INT8

DXGI_FORMAT_R8G8B8A8_UNORM CL_RGBA, CL_UNORM_INT8

DXGI_FORMAT_R8G8B8A8_UINT CL_RGBA, CL_UNSIGNED_INT8

DXGI_FORMAT_R8G8B8A8_SNORM CL_RGBA, CL_SNORM_INT8

DXGI_FORMAT_R8G8B8A8_SINT CL_RGBA, CL_SIGNED_INT8

DXGI_FORMAT_R32G32_FLOAT CL_RG, CL_FLOAT

DXGI_FORMAT_R32G32_UINT CL_RG, CL_UNSIGNED_INT32

DXGI_FORMAT_R32G32_SINT CL_RG, CL_SIGNED_INT32

DXGI_FORMAT_R16G16_FLOAT CL_RG, CL_HALF_FLOAT

DXGI_FORMAT_R16G16_UNORM CL_RG, CL_UNORM_INT16

DXGI_FORMAT_R16G16_UINT CL_RG, CL_UNSIGNED_INT16

DXGI_FORMAT_R16G16_SNORM CL_RG, CL_SNORM_INT16

DXGI_FORMAT_R16G16_SINT CL_RG, CL_SIGNED_INT16

DXGI_FORMAT_R8G8_UNORM CL_RG, CL_UNORM_INT8

DXGI_FORMAT_R8G8_UINT CL_RG, CL_UNSIGNED_INT8

DXGI_FORMAT_R8G8_SNORM CL_RG, CL_SNORM_INT8

DXGI_FORMAT_R8G8_SINT CL_RG, CL_SIGNED_INT8

DXGI_FORMAT_R32_FLOAT CL_R, CL_FLOAT

DXGI_FORMAT_R32_UINT CL_R, CL_UNSIGNED_INT32

DXGI_FORMAT_R32_SINT CL_R, CL_SIGNED_INT32

DXGI_FORMAT_R16_FLOAT CL_R, CL_HALF_FLOAT

DXGI_FORMAT_R16_UNORM CL_R, CL_UNORM_INT16

DXGI_FORMAT_R16_UINT CL_R, CL_UNSIGNED_INT16

DXGI_FORMAT_R16_SNORM CL_R, CL_SNORM_INT16

DXGI_FORMAT_R16_SINT CL_R, CL_SIGNED_INT16

DXGI_FORMAT_R8_UNORM CL_R, CL_UNORM_INT8

DXGI_FORMAT_R8_UINT CL_R, CL_UNSIGNED_INT8

DXGI_FORMAT_R8_SNORM CL_R, CL_SNORM_INT8

DXGI_FORMAT_R8_SINT CL_R, CL_SIGNED_INT8

182



5.3.3.3. Image Formats for OpenGL Texture and Renderbuffer Sharing

When the cl_khr_gl_sharing extension is supported, image objects sharing storage with OpenGL
texture and renderbuffer objects can be created. The OpenGL Internal Formats and Corresponding
OpenCL Internal Formats table describes the supported OpenGL image formats. If an OpenGL
texture or renderbuffer object with an internal format from the table is successfully created by
OpenGL, then there is guaranteed to be a mapping to one of the corresponding OpenCL image
format(s) in the table. Texture and renderbuffer objects created with other OpenGL internal
formats may (but are not guaranteed to) have a mapping to an OpenCL image format. If such
mappings exist, they are guaranteed to preserve all color components, data types, and at least the
number of bits/component actually allocated by OpenGL for that format.

Table 34. OpenGL Internal Formats and Corresponding OpenCL Internal Formats

OpenGL internal format OpenCL Image Format (Channel Order,
Channel Data Type)

GL_RGBA8 CL_RGBA, CL_UNORM_INT8 or
CL_BGRA, CL_UNORM_INT8

GL_SRGB8_ALPHA8 CL_sRGBA, CL_UNORM_INT8

GL_RGBA, GL_UNSIGNED_INT_8_8_8_8_REV CL_RGBA, CL_UNORM_INT8

GL_BGRA, GL_UNSIGNED_INT_8_8_8_8_REV CL_BGRA, CL_UNORM_INT8

GL_RGBA8I, GL_RGBA8I_EXT CL_RGBA, CL_SIGNED_INT8

GL_RGBA16I, GL_RGBA16I_EXT CL_RGBA, CL_SIGNED_INT16

GL_RGBA32I, GL_RGBA32I_EXT CL_RGBA, CL_SIGNED_INT32

GL_RGBA8UI, GL_RGBA8UI_EXT CL_RGBA, CL_UNSIGNED_INT8

GL_RGBA16UI, GL_RGBA16UI_EXT CL_RGBA, CL_UNSIGNED_INT16

GL_RGBA32UI, GL_RGBA32UI_EXT CL_RGBA, CL_UNSIGNED_INT32

GL_RGBA8_SNORM CL_RGBA, CL_SNORM_INT8

GL_RGBA16 CL_RGBA, CL_UNORM_INT16

GL_RGBA16_SNORM CL_RGBA, CL_SNORM_INT16

GL_RGBA16F, GL_RGBA16F_ARB CL_RGBA, CL_HALF_FLOAT

GL_RGBA32F, GL_RGBA32F_ARB CL_RGBA, CL_FLOAT

GL_R8 CL_R, CL_UNORM_INT8

GL_R8_SNORM CL_R, CL_SNORM_INT8

GL_R16 CL_R, CL_UNORM_INT16

GL_R16_SNORM CL_R, CL_SNORM_INT16

GL_R16F CL_R, CL_HALF_FLOAT

GL_R32F CL_R, CL_FLOAT

183



OpenGL internal format OpenCL Image Format (Channel Order,
Channel Data Type)

GL_R8I CL_R, CL_SIGNED_INT8

GL_R16I CL_R, CL_SIGNED_INT16

GL_R32I CL_R, CL_SIGNED_INT32

GL_R8UI CL_R, CL_UNSIGNED_INT8

GL_R16UI CL_R, CL_UNSIGNED_INT16

GL_R32UI CL_R, CL_UNSIGNED_INT32

GL_RG8 CL_RG, CL_UNORM_INT8

GL_RG8_SNORM CL_RG, CL_SNORM_INT8

GL_RG16 CL_RG, CL_UNORM_INT16

GL_RG16_SNORM CL_RG, CL_SNORM_INT16

GL_RG16F CL_RG, CL_HALF_FLOAT

GL_RG32F CL_RG, CL_FLOAT

GL_RG8I CL_RG, CL_SIGNED_INT8

GL_RG16I CL_RG, CL_SIGNED_INT16

GL_RG32I CL_RG, CL_SIGNED_INT32

GL_RG8UI CL_RG, CL_UNSIGNED_INT8

GL_RG16UI CL_RG, CL_UNSIGNED_INT16

GL_RG32UI CL_RG, CL_UNSIGNED_INT32

GL_DEPTH_COMPONENT32F CL_DEPTH, CL_FLOAT

GL_DEPTH_COMPONENT16 CL_DEPTH, CL_UNORM_INT16

GL_DEPTH24_STENCIL8 CL_DEPTH_STENCIL, CL_UNORM_INT24

GL_DEPTH32F_STENCIL8 CL_DEPTH_STENCIL, CL_FLOAT

5.3.4. Reading, Writing and Copying Image Objects

The following functions enqueue commands to read from an image or image array object to host
memory or write to an image or image array object from host memory.

184



cl_int clEnqueueReadImage(
    cl_command_queue command_queue,
    cl_mem image,
    cl_bool blocking_read,
    const size_t* origin,
    const size_t* region,
    size_t row_pitch,
    size_t slice_pitch,
    void* ptr,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

cl_int clEnqueueWriteImage(
    cl_command_queue command_queue,
    cl_mem image,
    cl_bool blocking_write,
    const size_t* origin,
    const size_t* region,
    size_t input_row_pitch,
    size_t input_slice_pitch,
    const void* ptr,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• command_queue refers to the host command-queue in which the read / write command will be
queued. command_queue and image must be created with the same OpenCL context.

• image refers to a valid image or image array object.

• blocking_read and blocking_write indicate if the read and write operations are blocking or non-
blocking.

• origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer object,
origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be 0. If
image is a 1D image array object, origin[1] describes the image index in the 1D image array. If
image is a 2D image array object, origin[2] describes the image index in the 2D image array.

• region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is a
2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object, region[1]
and region[2] must be 1. If image is a 1D image array object, region[2] must be 1. The values in
region cannot be 0. If image is a mipmapped image, the mip level to read or write is determined
from origin as described in Specifying Mipmap Levels to Image Operations

• row_pitch in clEnqueueReadImage and input_row_pitch in clEnqueueWriteImage is the

185



length of each row in bytes. This value must be greater than or equal to the element size in
bytes × width. If row_pitch (or input_row_pitch) is set to 0, the appropriate row pitch is
calculated based on the size of each element in bytes multiplied by width.

• slice_pitch in clEnqueueReadImage and input_slice_pitch in clEnqueueWriteImage is the size
in bytes of the 2D slice of the 3D region of a 3D image or each image of a 1D or 2D image array
being read or written respectively. This must be 0 if image is a 1D or 2D image. Otherwise this
value must be greater than or equal to row_pitch × height. If slice_pitch (or input_slice_pitch) is
set to 0, the appropriate slice pitch is calculated based on the row_pitch × height.

• ptr is the pointer to a buffer in host memory where image data is to be read from or to be
written to. The alignment requirements for ptr are specified in Alignment of Application Data
Types.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this read / write command and can be used to query
or queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful,
no event will be created and therefore it will not be possible to query the status of this
command or to wait for this command to complete. If event_wait_list and event are not NULL,
event must not refer to an element of the event_wait_list array.

If blocking_read is CL_TRUE i.e. the read command is blocking, clEnqueueReadImage does not
return until the buffer data has been read and copied into memory pointed to by ptr.

If blocking_read is CL_FALSE i.e. the read command is non-blocking, clEnqueueReadImage queues a
non-blocking read command and returns. The contents of the buffer that ptr points to cannot be
used until the read command has completed. The event argument returns an event object which
can be used to query the execution status of the read command. When the read command has
completed, the contents of the buffer that ptr points to can be used by the application.

If blocking_write is CL_TRUE, the write command is blocking and does not return until the command
is complete, including transfer of the data. The memory pointed to by ptr can be reused by the
application after the clEnqueueWriteImage call returns.

If blocking_write is CL_FALSE, the OpenCL implementation will use ptr to perform a non-blocking
write. As the write is non-blocking the implementation can return immediately. The memory
pointed to by ptr cannot be reused by the application after the call returns. The event argument
returns an event object which can be used to query the execution status of the write command.
When the write command has completed, the memory pointed to by ptr can then be reused by the
application.

clEnqueueReadImage and clEnqueueWriteImage return CL_SUCCESS if the function is executed
successfully. Otherwise, it returns one of the following errors:

186



• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue and image are not the same
or if the context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_MEM_OBJECT if image is not a valid image object.

• CL_INVALID_VALUE if origin or region is NULL.

• CL_INVALID_VALUE if the region being read or written specified by origin and region is out of
bounds.

• CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
description for origin and region.

• CL_INVALID_VALUE if image is a 1D or 2D image and slice_pitch or input_slice_pitch is not 0.

• CL_INVALID_VALUE if ptr is NULL.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for image are not supported by device associated with queue.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image
are not supported by device associated with queue.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image.

• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_INVALID_OPERATION if clEnqueueReadImage is called on image which has been created with
CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_ACCESS.

• CL_INVALID_OPERATION if clEnqueueWriteImage is called on image which has been created with
CL_MEM_HOST_READ_ONLY or CL_MEM_HOST_NO_ACCESS.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the read and write operations are blocking and
the execution status of any of the events in event_wait_list is a negative integer value. This error
code is missing before version 1.1.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_MIP_LEVEL if the cl_khr_mipmap_image extension is supported, and the mip level
specified in origin is not a valid level for image,



Calling clEnqueueReadImage to read a region of the image with the ptr argument
value set to host_ptr + (origin[2] × image slice pitch + origin[1] × image row pitch +
origin[0] × bytes per pixel), where host_ptr is a pointer to the memory region
specified when the image being read is created with CL_MEM_USE_HOST_PTR, must
meet the following requirements in order to avoid undefined behavior:

187



• All commands that use this image object have finished execution before the
read command begins execution.

• The row_pitch and slice_pitch argument values in clEnqueueReadImage must
be set to the image row pitch and slice pitch.

• The image object is not mapped.

• The image object is not used by any command-queue until the read command
has finished execution.

Calling clEnqueueWriteImage to update the latest bits in a region of the image
with the ptr argument value set to host_ptr + (origin[2] × image slice pitch +
origin[1] × image row pitch + origin[0] × bytes per pixel), where host_ptr is a pointer
to the memory region specified when the image being written is created with
CL_MEM_USE_HOST_PTR, must meet the following requirements in order to avoid
undefined behavior:

• The host memory region being written contains the latest bits when the
enqueued write command begins execution.

• The input_row_pitch and input_slice_pitch argument values in
clEnqueueWriteImage must be set to the image row pitch and slice pitch.

• The image object is not mapped.

• The image object is not used by any command-queue until the write command
has finished execution.

To enqueue a command to copy image objects, call the function

cl_int clEnqueueCopyImage(
    cl_command_queue command_queue,
    cl_mem src_image,
    cl_mem dst_image,
    const size_t* src_origin,
    const size_t* dst_origin,
    const size_t* region,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• src_image and dst_image can be 1D, 2D, 3D image or a 1D, 2D image array objects. It is possible
to copy subregions between any combinations of source and destination types, provided that
the dimensions of the subregions are the same e.g., one can copy a rectangular region from a 2D
image to a slice of a 3D image.

• command_queue refers to the host command-queue in which the copy command will be queued.
The OpenCL context associated with command_queue, src_image and dst_image must be the
same.

• src_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If

188



image is a 2D image object, src_origin[2] must be 0. If src_image is a 1D image object,
src_origin[1] and src_origin[2] must be 0. If src_image is a 1D image array object, src_origin[2]
must be 0. If src_image is a 1D image array object, src_origin[1] describes the image index in the
1D image array. If src_image is a 2D image array object, src_origin[2] describes the image index
in the 2D image array. If src_image is a mipmapped image, the mip level to read is determined
from src_origin as described in Specifying Mipmap Levels to Image Operations

• dst_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
dst_image is a 2D image object, dst_origin[2] must be 0. If dst_image is a 1D image or 1D image
buffer object, dst_origin[1] and dst_origin[2] must be 0. If dst_image is a 1D image array object,
dst_origin[2] must be 0. If dst_image is a 1D image array object, dst_origin[1] describes the image
index in the 1D image array. If dst_image is a 2D image array object, dst_origin[2] describes the
image index in the 2D image array. If dst_image is a mipmapped image, the mip level to write is
determined from dst_origin as described in Specifying Mipmap Levels to Image Operations

• region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If src_image
or dst_image is a 2D image object, region[2] must be 1. If src_image or dst_image is a 1D image or
1D image buffer object, region[1] and region[2] must be 1. If src_image or dst_image is a 1D
image array object, region[2] must be 1. The values in region cannot be 0.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this copy command and can be used to query or
queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no
event will be created and therefore it will not be possible to query the status of this command or
to wait for this command to complete. If event_wait_list and event are not NULL, event must not
refer to an element of the event_wait_list array.

It is currently a requirement that the src_image and dst_image image memory objects for
clEnqueueCopyImage must have the exact same image format (i.e. the cl_image_format descriptor
specified when src_image and dst_image are created must match).

clEnqueueCopyImage returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue, src_image and dst_image are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_MEM_OBJECT if src_image and dst_image are not valid image objects.

189



• CL_IMAGE_FORMAT_MISMATCH if src_image and dst_image do not use the same image format.

• CL_INVALID_VALUE if src_origin, dst_origin, or region is NULL.

• CL_INVALID_VALUE if the 2D or 3D rectangular region specified by src_origin and src_origin +
region refers to a region outside src_image, or if the 2D or 3D rectangular region specified by
dst_origin and dst_origin + region refers to a region outside dst_image.

• CL_INVALID_VALUE if values in src_origin, dst_origin and region do not follow rules described in
the argument description for src_origin, dst_origin and region.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for src_image or dst_image are not supported by device associated with
queue.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for
src_image or dst_image are not supported by device associated with queue.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_image or dst_image.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_MEM_COPY_OVERLAP if src_image and dst_image are the same image object and the source and
destination regions overlap.

• CL_INVALID_MIP_LEVEL if the cl_khr_mipmap_image extension is supported, and the mip level
specified in src_origin or dst_origin is not a valid level for the corresponding src_image or
dst_image,

5.3.5. Filling Image Objects

 Filling image objects is missing before version 1.2.

To enqueue a command to fill an image object with a specified color, call the function

190



cl_int clEnqueueFillImage(
    cl_command_queue command_queue,
    cl_mem image,
    const void* fill_color,
    const size_t* origin,
    const size_t* region,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueFillImage is missing before version 1.2.

• command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and image must be the same.

• image is a valid image object.

• fill_color is the color used to fill the image. The fill color is a single floating-point value if the
channel order is CL_DEPTH. Otherwise, the fill color is a four component RGBA floating-point
color value if the image channel data type is not an unnormalized signed or unsigned integer
type, is a four component signed integer value if the image channel data type is an
unnormalized signed integer type and is a four component unsigned integer value if the image
channel data type is an unnormalized unsigned integer type. The fill color will be converted to
the appropriate image channel format and order associated with image.

• origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer object,
origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be 0. If
image is a 1D image array object, origin[1] describes the image index in the 1D image array. If
image is a 2D image array object, origin[2] describes the image index in the 2D image array. If
image is a mipmapped image, the mip level to fill is determined from origin as described in
Specifying Mipmap Levels to Image Operations

• region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is a
2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object, region[1]
and region[2] must be 1. If image is a 1D image array object, region[2] must be 1. The values in
region cannot be 0.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

191



• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

The usage information which indicates whether the memory object can be read or written by a
kernel and/or the host and is given by the cl_mem_flags argument value specified when image is
created is ignored by clEnqueueFillImage.

clEnqueueFillImage returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue and image are not the same
or if the context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_MEM_OBJECT if image is not a valid image object.

• CL_INVALID_VALUE if fill_color is NULL.

• CL_INVALID_VALUE if origin or region is NULL.

• CL_INVALID_VALUE if the region being filled as specified by origin and region is out of bounds.

• CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
description for origin and region.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for image are not supported by device associated with queue.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image
are not supported by device associated with queue.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_MIP_LEVEL if the cl_khr_mipmap_image extension is supported, and the mip level
specified in origin is not a valid level for image,

5.3.6. Copying Between Image and Buffer Objects

To enqueue a command to copy an image object to a buffer object, call the function

192



cl_int clEnqueueCopyImageToBuffer(
    cl_command_queue command_queue,
    cl_mem src_image,
    cl_mem dst_buffer,
    const size_t* src_origin,
    const size_t* region,
    size_t dst_offset,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• command_queue must be a valid host command-queue. The OpenCL context associated with
command_queue, src_image and dst_buffer must be the same.

• src_image is a valid image object.

• dst_buffer is a valid buffer object.

• src_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
src_image is a 2D image object, src_origin[2] must be 0. If src_image is a 1D image or 1D image
buffer object, src_origin[1] and src_origin[2] must be 0. If src_image is a 1D image array object,
src_origin[2] must be 0. If src_image is a 1D image array object, src_origin[1] describes the image
index in the 1D image array. If src_image is a 2D image array object, src_origin[2] describes the
image index in the 2D image array. If src_image is a mipmapped image, the mip level to read is
determined from src_origin as described in Specifying Mipmap Levels to Image Operations

• region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If src_image
is a 2D image object, region[2] must be 1. If src_image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If src_image is a 1D image array object, region[2] must be 1.
The values in region cannot be 0.

• dst_offset refers to the offset where to begin copying data into dst_buffer. The size in bytes of the
region to be copied referred to as dst_cb is computed as width × height × depth × bytes/image
element if src_image is a 3D image object, is computed as width × height × bytes/image element if
src_image is a 2D image, is computed as width × height × arraysize × bytes/image element if
src_image is a 2D image array object, is computed as width × bytes/image element if src_image is
a 1D image or 1D image buffer object and is computed as width × arraysize × bytes/image
element if src_image is a 1D image array object.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

193



• event returns an event object that identifies this copy command and can be used to query or
queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no
event will be created and therefore it will not be possible to query the status of this command or
to wait for this command to complete. If event_wait_list and event are not NULL, event must not
refer to an element of the event_wait_list array.

clEnqueueCopyImageToBuffer returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue, src_image and dst_buffer are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_MEM_OBJECT if src_image is not a valid image object or dst_buffer is not a valid buffer
object or if src_image is a 1D image buffer object created from dst_buffer.

• CL_INVALID_VALUE if src_origin or region is NULL.

• CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by src_origin and src_origin +
region refers to a region outside src_image, or if the region specified by dst_offset and dst_offset
+ dst_cb to a region outside dst_buffer.

• CL_INVALID_VALUE if values in src_origin and region do not follow rules described in the
argument description for src_origin and region.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if dst_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for src_image are not supported by device associated with queue.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for
src_image are not supported by device associated with queue.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_image or dst_buffer.

• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_MIP_LEVEL if the cl_khr_mipmap_image extension is supported, and the mip level
specified in src_origin is not a valid level for src_image,

To enqueue a command to copy a buffer object to an image object, call the function

194



cl_int clEnqueueCopyBufferToImage(
    cl_command_queue command_queue,
    cl_mem src_buffer,
    cl_mem dst_image,
    size_t src_offset,
    const size_t* dst_origin,
    const size_t* region,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• command_queue must be a valid host command-queue. The OpenCL context associated with
command_queue, src_buffer and dst_image must be the same.

• src_buffer is a valid buffer object.

• dst_image is a valid image object.

• src_offset refers to the offset where to begin copying data from src_buffer.

• dst_origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
dst_image is a 2D image object, dst_origin[2] must be 0. If dst_image is a 1D image or 1D image
buffer object, dst_origin[1] and dst_origin[2] must be 0. If dst_image is a 1D image array object,
dst_origin[2] must be 0. If dst_image is a 1D image array object, dst_origin[1] describes the image
index in the 1D image array. If dst_image is a 2D image array object, dst_origin[2] describes the
image index in the 2D image array. If dst_image is a mipmapped image, the mip level to write is
determined from dst_origin as described in Specifying Mipmap Levels to Image Operations

• region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If dst_image
is a 2D image object, region[2] must be 1. If dst_image is a 1D image or 1D image buffer object,
region[1] and region[2] must be 1. If dst_image is a 1D image array object, region[2] must be 1.
The values in region cannot be 0.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this copy command and can be used to query or
queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no
event will be created and therefore it will not be possible to query the status of this command or
to wait for this command to complete. If event_wait_list and event are not NULL, event must not
refer to an element of the event_wait_list array.

The size in bytes of the region to be copied from src_buffer referred to as src_cb is computed as

195



width × height × depth × bytes/image element if dst_image is a 3D image object, is computed as width
× height × bytes/image element if dst_image is a 2D image, is computed as width × height × arraysize ×
bytes/image element if dst_image is a 2D image array object, is computed as width × bytes/image
element if dst_image is a 1D image or 1D image buffer object and is computed as width × arraysize ×
bytes/image element if dst_image is a 1D image array object.

clEnqueueCopyBufferToImage returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue, src_buffer and dst_image are
not the same or if the context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_MEM_OBJECT if src_buffer is not a valid buffer object or dst_image is not a valid image
object or if dst_image is a 1D image buffer object created from src_buffer.

• CL_INVALID_VALUE if dst_origin or region is NULL.

• CL_INVALID_VALUE if the 1D, 2D or 3D rectangular region specified by dst_origin and dst_origin +
region refer to a region outside dst_image, or if the region specified by src_offset and src_offset +
src_cb refer to a region outside src_buffer.

• CL_INVALID_VALUE if values in dst_origin and region do not follow rules described in the
argument description for dst_origin and region.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MISALIGNED_SUB_BUFFER_OFFSET if src_buffer is a sub-buffer object and offset specified when the
sub-buffer object is created is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device
associated with queue. This error code is missing before version 1.1.

• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for dst_image are not supported by device associated with queue.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for
dst_image are not supported by device associated with queue.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with src_buffer or dst_image.

• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_MIP_LEVEL if the cl_khr_mipmap_image extension is supported, and the mip level
specified in dst_origin is not a valid level for dst_image,

196



5.3.7. Mapping Image Objects

To enqueue a command to map a region in the image object given by image into the host address
space and returns a pointer to this mapped region, call the function

void* clEnqueueMapImage(
    cl_command_queue command_queue,
    cl_mem image,
    cl_bool blocking_map,
    cl_map_flags map_flags,
    const size_t* origin,
    const size_t* region,
    size_t* image_row_pitch,
    size_t* image_slice_pitch,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event,
    cl_int* errcode_ret);

• command_queue must be a valid host command-queue.

• image is a valid image object. The OpenCL context associated with command_queue and image
must be the same.

• blocking_map indicates if the map operation is blocking or non-blocking.

• map_flags is a bit-field and is described in the Memory Map Flags table.

• origin defines the (x, y, z) offset in pixels in the 1D, 2D or 3D image, the (x, y) offset and the
image index in the 2D image array or the (x) offset and the image index in the 1D image array. If
image is a 2D image object, origin[2] must be 0. If image is a 1D image or 1D image buffer object,
origin[1] and origin[2] must be 0. If image is a 1D image array object, origin[2] must be 0. If
image is a 1D image array object, origin[1] describes the image index in the 1D image array. If
image is a 2D image array object, origin[2] describes the image index in the 2D image array.

• region defines the (width, height, depth) in pixels of the 1D, 2D or 3D rectangle, the (width,
height) in pixels of the 2D rectangle and the number of images of a 2D image array or the (
width) in pixels of the 1D rectangle and the number of images of a 1D image array. If image is a
2D image object, region[2] must be 1. If image is a 1D image or 1D image buffer object, region[1]
and region[2] must be 1. If image is a 1D image array object, region[2] must be 1. The values in
region cannot be 0.

• image_row_pitch returns the scan-line pitch in bytes for the mapped region. This must be a non-
NULL value.

• image_slice_pitch returns the size in bytes of each 2D slice of a 3D image or the size of each 1D
or 2D image in a 1D or 2D image array for the mapped region. For a 1D and 2D image, zero is
returned if this argument is not NULL. For a 3D image, 1D and 2D image array, image_slice_pitch
must be a non-NULL value.

• event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueMapImage can be executed. If event_wait_list is NULL, then clEnqueueMapImage
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must

197



be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

If blocking_map is CL_TRUE, clEnqueueMapImage does not return until the specified region in image
is mapped into the host address space and the application can access the contents of the mapped
region using the pointer returned by clEnqueueMapImage.

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the pointer to the mapped region
returned by clEnqueueMapImage cannot be used until the map command has completed. The
event argument returns an event object which can be used to query the execution status of the map
command. When the map command is completed, the application can access the contents of the
mapped region using the pointer returned by clEnqueueMapImage.

clEnqueueMapImage will return a pointer to the mapped region. The errcode_ret is set to
CL_SUCCESS.

A NULL pointer is returned otherwise with one of the following error values returned in errcode_ret:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue and image are not the same or if
context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_MEM_OBJECT if image is not a valid image object.

• CL_INVALID_VALUE if origin or region is NULL.

• CL_INVALID_VALUE if region being mapped given by (origin, origin + region) is out of bounds or if
values specified in map_flags are not valid.

• CL_INVALID_VALUE if values in origin and region do not follow rules described in the argument
description for origin and region.

• CL_INVALID_VALUE if image_row_pitch is NULL.

• CL_INVALID_VALUE if image is a 3D image, 1D or 2D image array object and image_slice_pitch is
NULL.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_INVALID_IMAGE_SIZE if image dimensions (image width, height, specified or compute row
and/or slice pitch) for image are not supported by device associated with queue.

198



• CL_IMAGE_FORMAT_NOT_SUPPORTED if image format (image channel order and data type) for image
are not supported by device associated with queue.

• CL_MAP_FAILURE if there is a failure to map the requested region into the host address space. This
error cannot occur for image objects created with CL_MEM_USE_HOST_PTR or CL_MEM_ALLOC_HOST_PTR.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is blocking and the
execution status of any of the events in event_wait_list is a negative integer value. This error
code is missing before version 1.1.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image.

• CL_INVALID_OPERATION if the device associated with command_queue does not support images (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_INVALID_OPERATION if image has been created with CL_MEM_HOST_WRITE_ONLY or CL_MEM_HOST_NO_
ACCESS and CL_MAP_READ is set in map_flags or if image has been created with CL_MEM_HOST_READ_
ONLY or CL_MEM_HOST_NO_ACCESS and CL_MAP_WRITE or CL_MAP_WRITE_INVALIDATE_REGION is set in
map_flags.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_OPERATION if mapping would lead to overlapping regions being mapped for writing.

The pointer returned maps a 1D, 2D or 3D region starting at origin and is at least region[0] pixels in
size for a 1D image, 1D image buffer or 1D image array, (image_row_pitch × region[1]) pixels in size
for a 2D image or 2D image array, and (image_slice_pitch × region[2]) pixels in size for a 3D image.
The result of a memory access outside this region is undefined.

If the image object is created with CL_MEM_USE_HOST_PTR set in mem_flags, the following will be true:

• The host_ptr specified in clCreateImage, clCreateImageWithProperties, clCreateImage2D, or
clCreateImage3D is guaranteed to contain the latest bits in the region being mapped when the
clEnqueueMapImage command has completed.

• The pointer value returned by clEnqueueMapImage will be derived from the host_ptr specified
when the image object is created.

Mapped image objects are unmapped using clEnqueueUnmapMemObject. This is described in
Unmapping Mapped Memory Objects.

5.3.8. Specifying Mipmap Levels to Image Operations

When the cl_khr_mipmap_image extension is supported, the clEnqueueReadImage,
clEnqueueWriteImage, clEnqueueMapImage, clEnqueueCopyImage,
clEnqueueCopyImageToBuffer, clEnqueueCopyBufferToImage, and clEnqueueFillImage
functions described above can operate on mipmapped images.

The mipmap image level(s) to access for each command are determined from the origin parameter

199



when accessing a single image (non-copy functions), or from the src_origin and dst_origin
parameters when accessing two src_image and dst_image images (copy functions). The logic below
applies to each of these parameters, with image and origin replaced by src_image and src_origin, or
dst_image and dst_origin as appropriate:

• If image is a 1D image, origin[1] specifies the mip level to use.

• If image is a 1D image array, origin[2] specifies the mip level to use.

• If image is a 2D image, origin[2] specifies the mip level to use.

• If image is a 2D image array or a 3D image, origin[3] specifies the mip level to use.

5.3.9. Image Object Queries

To get information that is common to all memory objects, use the clGetMemObjectInfo function
described in Memory Object Queries.

To get information specific to an image object created with clCreateImage,
clCreateImageWithProperties, clCreateImage2D, or clCreateImage3D call the function

cl_int clGetImageInfo(
    cl_mem image,
    cl_image_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• image specifies the image object being queried.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetImageInfo is described in the Image Object
Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Image Object Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 35. List of supported param_names by clGetImageInfo

Image Info Return type Description

CL_IMAGE_FORMAT cl_image_format Return the image format descriptor specified
when image is created with clCreateImage,
clCreateImageWithProperties,
clCreateImage2D or clCreateImage3D.

CL_IMAGE_ELEMENT_SIZE size_t Return size of each element of the image
memory object given by image in bytes.

200



Image Info Return type Description

CL_IMAGE_ROW_PITCH size_t Returns the row pitch in bytes of a row of
elements of the image object given by image.
If image was created with a non-zero value for
image_row_pitch, then the value provided for
image_row_pitch by the application is returned,
otherwise the returned value is calculated as
CL_IMAGE_WIDTH × CL_IMAGE_ELEMENT_SIZE.

CL_IMAGE_SLICE_PITCH size_t Returns the slice pitch in bytes of a 2D slice for
the 3D image object or size of each image in a 1D
or 2D image array given by image.
If image was created with a non-zero value for
image_slice_pitch then the value provided for
image_slice_pitch by the application is returned,
otherwise the returned value is calculated as:
- CL_IMAGE_ROW_PITCH for 1D image arrays.
- CL_IMAGE_HEIGHT × CL_IMAGE_ROW_PITCH for 3D
images and 2D image arrays.
For a 1D image, 1D image buffer and 2D image
object return 0.

CL_IMAGE_WIDTH size_t Return width of the image in pixels.

CL_IMAGE_HEIGHT size_t Return height of the image in pixels. For a 1D
image, 1D image buffer and 1D image array
object, height = 0.

CL_IMAGE_DEPTH size_t Return depth of the image in pixels. For a 1D
image, 1D image buffer, 2D image or 1D and 2D
image array object, depth = 0.

CL_IMAGE_ARRAY_SIZE

missing before version 1.2.

size_t Return number of images in the image array. If
image is not an image array, 0 is returned.

CL_IMAGE_BUFFER

missing before version 1.2 and
deprecated by version 2.0.

cl_mem Return buffer object associated with image.

CL_IMAGE_NUM_MIP_LEVELS

missing before version 1.2.

cl_uint Return num_mip_levels associated with image.

CL_IMAGE_NUM_SAMPLES

missing before version 1.2.

cl_uint Return num_samples associated with image.

201



Image Info Return type Description

CL_IMAGE_DX9_MEDIA_PLANE_KHR

provided by the
cl_khr_dx9_media_sharing
extension.

cl_uint If image was created using
clCreateFromDX9MediaSurfaceKHR, returns
the plane argument specified when image was
created.

CL_IMAGE_D3D10_SUBRESOURCE_KHR

provided by the
cl_khr_d3d10_sharing extension.

cl_uint If image was created using
clCreateFromD3D10Texture2DKHR, or
clCreateFromD3D10Texture3DKHR, returns
the subresource argument specified when image
was created.

CL_IMAGE_D3D11_SUBRESOURCE_KHR

provided by the
cl_khr_d3d11_sharing extension.

cl_uint If image was created using
clCreateFromD3D11Texture2DKHR, or
clCreateFromD3D11Texture3DKHR, returns
the subresource argument specified when image
was created.

clGetImageInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Image Object Queries table and param_value is not NULL.

• CL_INVALID_MEM_OBJECT if image is a not a valid image object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The following errors may be returned if the cl_khr_dx9_media_sharing extension is supported:

• CL_INVALID_DX9_MEDIA_SURFACE_KHR if param_name is CL_IMAGE_DX9_MEDIA_PLANE_KHR and image
was not created by calling clCreateFromDX9MediaSurfaceKHR.

The following errors may be returned if the cl_khr_d3d10_sharing extension is supported:

• CL_INVALID_D3D10_RESOURCE_KHR if param_name is CL_IMAGE_D3D10_SUBRESOURCE_KHR and image was
not created by the function clCreateFromD3D10Texture2DKHR, or
clCreateFromD3D10Texture3DKHR.

The following errors may be returned if the cl_khr_d3d11_sharing extension is supported:

• CL_INVALID_D3D11_RESOURCE_KHR if param_name is CL_IMAGE_D3D11_SUBRESOURCE_KHR and image was
not created by the function clCreateFromD3D11Texture2DKHR, or
clCreateFromD3D11Texture3DKHR.

202



5.3.10. Creating OpenCL Image Objects From DirectX 9 Media Resources

To create an OpenCL image object from a media surface, call the function

cl_mem clCreateFromDX9MediaSurfaceKHR(
    cl_context context,
    cl_mem_flags flags,
    cl_dx9_media_adapter_type_khr adapter_type,
    void* surface_info,
    cl_uint plane,
    cl_int* errcode_ret);


clCreateFromDX9MediaSurfaceKHR is provided by the cl_khr_dx9_media_sharing
extension.

• context is a valid OpenCL context created from a media adapter.

• flags is a bit-field that is used to specify usage information. Refer to the List of supported
memory flag values table for a description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY
and CL_MEM_READ_WRITE flags specified in that table can be used.

• adapter_type is a value from enumeration of supported adapters described in the
cl_dx9_media_adapter_type_khr values table. The type of surface_info is determined by the
adapter type. The implementation does not need to support all adapter types. This approach
provides flexibility to support additional adapter types in the future. Supported adapter types
are CL_ADAPTER_D3D9_KHR, CL_ADAPTER_D3D9EX_KHR and CL_ADAPTER_DXVA_KHR.

• surface_info is a pointer to one of the structures defined in the adapter_type description above,
passed in as a void *. If adapter_type is CL_ADAPTER_D3D9_KHR, CL_ADAPTER_D3D9EX_KHR and
CL_ADAPTER_DXVA_KHR, surface_info points to a [cl_dx9_surface_info_khr] structure describing the
surface.

• plane is the plane of resource to share for planar surface formats. For planar formats, we use
the plane parameter to obtain a handle to thie specific plane (Y, U or V for example). For non-
planar formats used by media, plane must be 0.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The width and height of the returned OpenCL 2D image object are determined by the width and
height of the plane of the resource (surface_info→_resource_). The channel type and order of the
returned image object is determined by the format and plane of the resource, and are described in
the YUV FourCC Codes and Corresponding OpenCL Image Formats and Direct3D 9 Formats and
Corresponding OpenCL Image Formats tables.

This call will increment the internal media surface count on the resource. The internal media
surface reference count on the resource will be decremented when the OpenCL reference count on
the returned OpenCL memory object drops to zero.

clCreateFromDX9MediaSurfaceKHR returns a valid non-zero 2D image object and errcode_ret is
set to CL_SUCCESS if the 2D image object is created successfully. Otherwise it returns a NULL value

203



with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if values specified in flags are not valid or if plane is not a valid plane of
resource specified in surface_info.

• CL_INVALID_DX9_MEDIA_SURFACE_KHR if resource specified in surface_info is not a valid resource or
is not associated with adapter_type (e.g., adapter_type is set to CL_ADAPTER_D3D9_KHR and resource
is not a Direct3D 9 surface created in D3DPOOL_DEFAULT).

• CL_INVALID_DX9_MEDIA_SURFACE_KHR if shared_handle specified in surface_info is not NULL or a valid
handle value.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the texture format of resource is not listed in the YUV
FourCC Codes and Corresponding OpenCL Image Formats or Direct3D 9 Formats and
Corresponding OpenCL Image Formats tables.

• CL_INVALID_OPERATION if there are no devices in context that support adapter_type.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The cl_dx9_surface_info_khr structure is passed to clCreateFromDX9MediaSurfaceKHR to
describe a DX9 surface, and is defined as:

typedef struct cl_dx9_surface_info_khr {
    IDirect3DSurface9*    resource;
    HANDLE                shared_handle;
} cl_dx9_surface_info_khr;

• resource is a pointer to a IDirect3DSurface9 surface interface.

• shared_handle is a HANDLE to the resource.

For DX9 surfaces, we need both the handle to the resource and the resource itself to have a
sufficient amount of information to eliminate a copy of the surface for sharing in cases where this
is possible. Elimination of the copy is driver dependent. shared_handle may be NULL and this may
result in sub-optimal performance.

5.3.11. Creating OpenCL Image Objects From Direct3D 10 Textures and
Resources

To create an OpenCL 2D image object from a subresource of a Direct3D 10 2D texture, call the
function

204



cl_mem clCreateFromD3D10Texture2DKHR(
    cl_context context,
    cl_mem_flags flags,
    ID3D10Texture2D* resource,
    UINT subresource,
    cl_int* errcode_ret);


clCreateFromD3D10Texture2DKHR is provided by the cl_khr_d3d10_sharing
extension.

• context is a valid OpenCL context created from a Direct3D 10 device.

• flags is a bit-field that is used to specify usage information. Refer to the List of supported
memory flag values table for a description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY
and CL_MEM_READ_WRITE flags specified in that table can be used.

• resource is a pointer to the Direct3D 10 2D texture to share.

• subresource is the subresource of resource to share.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The width and height of the returned OpenCL 2D image object are determined by the width and
height of subresource subresource of resource. The channel type and order of the returned OpenCL
2D image object is determined by the format of resource and the DXGI Formats and Corresponding
OpenCL Image Formats table.

This call will increment the internal Direct3D 10 reference count on resource. The internal Direct3D
10 reference count on resource will be decremented when the OpenCL reference count on the
returned OpenCL memory object drops to zero.


Refer to the Lifetime of Shared Direct3D Memory Objects and Acquiring, Releasing,
and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects sections for
more information.

clCreateFromD3D10Texture2DKHR returns a valid non-zero OpenCL image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, it returns a
NULL value with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if values specified in flags are not valid or if subresource is not a valid
subresource index for resource.

• CL_INVALID_D3D10_RESOURCE_KHR if resource is not a Direct3D 10 texture resource, if resource was
created with the D3D10_USAGE flag D3D10_USAGE_IMMUTABLE, if resource is a multisampled
texture, if a cl_mem from subresource subresource of resource has already been created using
clCreateFromD3D10Texture2DKHR, or if context was not created against the same Direct3D 10
device from which resource was created.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the Direct3D 10 texture format of resource is not listed in

205



the DXGI Formats and Corresponding OpenCL Image Formats table or if the Direct3D 10 texture
format of resource does not map to a supported OpenCL image format.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create an OpenCL 3D image object from a subresource of a Direct3D 10 3D texture, call the
function

cl_mem clCreateFromD3D10Texture3DKHR(
    cl_context context,
    cl_mem_flags flags,
    ID3D10Texture3D* resource,
    UINT subresource,
    cl_int* errcode_ret);


clCreateFromD3D10Texture3DKHR is provided by the cl_khr_d3d10_sharing
extension.

• context is a valid OpenCL context created from a Direct3D 10 device.

• flags is a bit-field that is used to specify usage information. Refer to the List of supported
memory flag values table for a description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY
and CL_MEM_READ_WRITE flags specified in that table can be used.

• resource is a pointer to the Direct3D 10 3D texture to share.

• subresource is the subresource of resource to share.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The width, height and depth of the returned OpenCL 3D image object are determined by the width,
height and depth of subresource subresource of resource. The channel type and order of the
returned OpenCL 3D image object is determined by the format of resource and the DXGI Formats
and Corresponding OpenCL Image Formats table.

This call will increment the internal Direct3D 10 reference count on resource. The internal Direct3D
10 reference count on resource will be decremented when the OpenCL reference count on the
returned OpenCL memory object drops to zero.


Refer to the Lifetime of Shared Direct3D Memory Objects and Acquiring, Releasing,
and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects sections for
more information.

clCreateFromD3D10Texture3DKHR returns a valid non-zero OpenCL image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, it returns a
NULL value with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

206



• CL_INVALID_VALUE if values specified in flags are not valid or if subresource is not a valid
subresource index for resource.

• CL_INVALID_D3D10_RESOURCE_KHR if resource is not a Direct3D 10 texture resource, if resource was
created with the D3D10_USAGE flag D3D10_USAGE_IMMUTABLE, if resource is a multisampled
texture, if a cl_mem from subresource subresource of resource has already been created using
clCreateFromD3D10Texture3DKHR, or if context was not created against the same Direct3D 10
device from which resource was created.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the Direct3D 10 texture format of resource is not listed in
the DXGI Formats and Corresponding OpenCL Image Formats table or if the Direct3D 10 texture
format of resource does not map to a supported OpenCL image format.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.3.12. Creating OpenCL Image Objects From Direct3D 11 Textures and
Resources

To create an OpenCL 2D image object from a subresource of a Direct3D 11 2D texture, call the
function

cl_mem clCreateFromD3D11Texture2DKHR(
    cl_context context,
    cl_mem_flags flags,
    ID3D11Texture2D* resource,
    UINT subresource,
    cl_int* errcode_ret);


clCreateFromD3D11Texture2DKHR is provided by the cl_khr_d3d11_sharing
extension.

• context is a valid OpenCL context created from a Direct3D 11 device.

• flags is a bit-field that is used to specify usage information. Refer to the List of supported
memory flag values table for a description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY
and CL_MEM_READ_WRITE flags specified in that table can be used.

• resource is a pointer to the Direct3D 11 2D texture to share.

• subresource is the subresource of resource to share.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The width and height of the returned OpenCL 2D image object are determined by the width and
height of subresource subresource of resource. The channel type and order of the returned OpenCL
2D image object is determined by the format of resource and the DXGI Formats and Corresponding
OpenCL Image Formats table.

This call will increment the internal Direct3D 11 reference count on resource. The internal Direct3D
11 reference count on resource will be decremented when the OpenCL reference count on the

207



returned OpenCL memory object drops to zero.


Refer to the Lifetime of Shared Direct3D Memory Objects and Acquiring, Releasing,
and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects sections for
more information.

clCreateFromD3D11Texture2DKHR returns a valid non-zero OpenCL image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, it returns a
NULL value with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if values specified in flags are not valid or if subresource is not a valid
subresource index for resource.

• CL_INVALID_D3D11_RESOURCE_KHR if resource is not a Direct3D 11 texture resource, if resource was
created with the D3D11_USAGE flag D3D11_USAGE_IMMUTABLE, if resource is a multisampled
texture, if a cl_mem from subresource subresource of resource has already been created using
clCreateFromD3D11Texture2DKHR, or if context was not created against the same Direct3D 11
device from which resource was created.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the Direct3D 11 texture format of resource is not listed in
the DXGI Formats and Corresponding OpenCL Image Formats table or if the Direct3D 11 texture
format of resource does not map to a supported OpenCL image format.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create an OpenCL 3D image object from a subresource of a Direct3D 11 3D texture, call the
function

cl_mem clCreateFromD3D11Texture3DKHR(
    cl_context context,
    cl_mem_flags flags,
    ID3D11Texture3D* resource,
    UINT subresource,
    cl_int* errcode_ret);


clCreateFromD3D11Texture3DKHR is provided by the cl_khr_d3d11_sharing
extension.

• context is a valid OpenCL context created from a Direct3D 11 device.

• flags is a bit-field that is used to specify usage information. Refer to the List of supported
memory flag values table for a description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY
and CL_MEM_READ_WRITE flags specified in that table can be used.

• resource is a pointer to the Direct3D 11 3D texture to share.

• subresource is the subresource of resource to share.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is

208



returned.

The width, height and depth of the returned OpenCL 3D image object are determined by the width,
height and depth of subresource subresource of resource. The channel type and order of the
returned OpenCL 3D image object is determined by the format of resource and the DXGI Formats
and Corresponding OpenCL Image Formats table.

This call will increment the internal Direct3D 11 reference count on resource. The internal Direct3D
11 reference count on resource will be decremented when the OpenCL reference count on the
returned OpenCL memory object drops to zero.


Refer to the Lifetime of Shared Direct3D Memory Objects and Acquiring, Releasing,
and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects sections for
more information.

clCreateFromD3D11Texture3DKHR returns a valid non-zero OpenCL image object and
errcode_ret is set to CL_SUCCESS if the image object is created successfully. Otherwise, it returns a
NULL value with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if values specified in flags are not valid or if subresource is not a valid
subresource index for resource.

• CL_INVALID_D3D11_RESOURCE_KHR if resource is not a Direct3D 11 texture resource, if resource was
created with the D3D11_USAGE flag D3D11_USAGE_IMMUTABLE, if resource is a multisampled
texture, if a cl_mem from subresource subresource of resource has already been created using
clCreateFromD3D11Texture3DKHR, or if context was not created against the same Direct3D 11
device from which resource was created.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the Direct3D 11 texture format of resource is not listed in
the DXGI Formats and Corresponding OpenCL Image Formats table or if the Direct3D 11 texture
format of resource does not map to a supported OpenCL image format.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.3.13. Creating OpenCL Image Objects From EGL Images

To create an EGLImage target of type cl_mem from the EGLImage source provided as image, call the
function

cl_mem clCreateFromEGLImageKHR(
    cl_context context,
    CLeglDisplayKHR egldisplay,
    CLeglImageKHR eglimage,
    cl_mem_flags flags,
    const cl_egl_image_properties_khr* properties,
    cl_int* errcode_ret);

209



 clCreateFromEGLImageKHR is provided by the cl_khr_egl_image extension.

• display should be of type EGLDisplay, cast into the type CLeglDisplayKHR.

• image should be of type EGLImageKHR, cast into the type CLeglImageKHR. Assuming no errors are
generated in this function, the resulting image object will be an EGLImage target of the specified
EGLImage image. The resulting cl_mem is an image object which may be used normally by all
OpenCL operations. This maps to an image2d_t type in OpenCL kernel code.

• flags is a bit-field that is used to specify usage information about the memory object being
created. Refer to the Memory Flags table for a description of flags. Accepted values in flags are
described below.

• properties specifies a list of property names and their corresponding values. Each property
name is immediately followed by the corresponding desired value. The list is terminated with 0.
No properties are currently supported with this version of the extension. properties can be NULL.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Accepted for flags are CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE. If OpenCL
1.2 is supported, flags also accepts CL_MEM_HOST_WRITE_ONLY, CL_MEM_HOST_READ_ONLY, and CL_MEM_HOST_
NO_ACCESS.

cl_khr_egl_image only requires support for CL_MEM_READ_ONLY, and for CL_MEM_HOST_NO_ACCESS if
OpenCL 1.2 or later is supported. For OpenCL 1.1, a CL_INVALID_OPERATION will be returned for
images which do not support host mapping.

If the value passed in flags is not supported by the OpenCL implementation, it will return
CL_INVALID_VALUE. The accepted flags may be dependent upon the texture format used.

clCreateFromEGLImageKHR returns a valid non-zero OpenCL image object and errcode_ret is set
to CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value with one
of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid OpenCL context.

• CL_INVALID_VALUE if properties contains invalid values, if display is not a valid display object or if
flags are not in the set defined above.

• CL_INVALID_EGL_OBJECT_KHR if image is not a valid EGLImage object.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if the OpenCL implementation is not able to create a cl_mem
compatible with the provided CLeglImageKHR for an implementation-dependent reason (this
could be caused by, but not limited to, reasons such as unsupported texture formats, etc).

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_INVALID_OPERATION if there are no devices in context that support images (i.e. CL_DEVICE_IMAGE_
SUPPORT specified in table 4.3 is CL_FALSE) or if the flags passed are not supported for that image
type.

210



5.3.14. Creating OpenCL Image Objects From OpenGL Textures and
Renderbuffers

To create an OpenCL image object from an OpenGL texture object, call the function

cl_mem clCreateFromGLTexture(
    cl_context context,
    cl_mem_flags flags,
    cl_GLenum target,
    cl_GLint miplevel,
    cl_GLuint texture,
    cl_int* errcode_ret);

 clCreateFromGLTexture is provided by the cl_khr_gl_sharing extension.

• context is a valid OpenCL context created from an OpenGL context.

• flags is a bit-field that is used to specify usage information. Refer to the Memory Flags table for a
description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE flags
specified in that table can be used.

• texture_target must be one of GL_TEXTURE_1D, GL_TEXTURE_1D_ARRAY, GL_TEXTURE_BUFFER,
GL_TEXTURE_2D, GL_TEXTURE_2D_ARRAY, GL_TEXTURE_3D, GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_POSITIVE_Y, GL_TEXTURE_CUBE_MAP_POSITIVE_Z,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, GL_TEXTURE_CUBE_MAP_NEGATIVE_Y,
GL_TEXTURE_CUBE_MAP_NEGATIVE_Z. GL_TEXTURE_RECTANGLE or the equivalent
GL_TEXTURE_RECTANGLE_ARB may be specified if an OpenGL implementation supporting
rectangular textures is supported. GL_TEXTURE_2D_MULTISAMPLE and
GL_TEXTURE_2D_MULTISAMPLE_ARRAY may be specified if an OpenGL implementation supporting
multi-sample two-dimensional textures is supported, and the cl_khr_gl_msaa_sharing extension
is supported. Refer to the Restrictions on Multi-Sample Images section for more information on
multi-sample images. texture_target is used only to define the image type of texture. No
reference to a bound OpenGL texture object is made or implied by this parameter.

• miplevel is the mipmap level to be used. If texture_target is GL_TEXTURE_BUFFER, miplevel must be
0. Note: Implementations may return CL_INVALID_OPERATION for miplevel values > 0.

• texture is the name of an OpenGL 1D, 2D, 3D, 1D array, 2D array, cubemap, rectangle or buffer
texture object. The texture object must be a complete texture as per OpenGL rules on texture
completeness. The texture format and dimensions defined by OpenGL for the specified miplevel
of the texture will be used to create the OpenCL image memory object. Only OpenGL texture
objects with an internal format that maps to an appropriate Image Channel Order and Image
Channel Data Type may be used to create the OpenCL image memory object.

• errcode_ret will return an appropriate error code as described below. If errcode_ret is NULL, no
error code is returned.

clCreateFromGLTexture may create any of the following:

• an OpenCL 2D image object from an OpenGL 2D texture object or a single face of an OpenGL

211



cubemap texture object,

• an OpenCL 2D image array object from an OpenGL 2D texture array object,

• an OpenCL 2D multi-sample image object from an OpenGL 2D multi-sample texture.

• an OpenCL 2D multi-sample array image object from an OpenGL 2D multi-sample texture.

• an OpenCL 1D image object from an OpenGL 1D texture object,

• an OpenCL 1D image buffer object from an OpenGL texture buffer object,

• an OpenCL 1D image array object from an OpenGL 1D texture array object,

• an OpenCL 3D image object from an OpenGL 3D texture object.

If both the cl_khr_mipmap_image and cl_khr_gl_sharing extensions are supported by the OpenCL
device, clCreateFromGLTexture may also be used to create a mipmapped OpenCL image from a
mipmapped OpenGL texture by specify a negative value for miplevel. In this case, then an OpenCL
mipmapped image object is created from a mipmapped OpenGL texture object, instead of an
OpenCL image object for a specific miplevel of the OpenGL texture.


For a detailed description of how the level of detail is computed, please refer to the
“Scale Factor and Level-of-Detail” section of the OpenGL 4.6 Specification.

If the state of an OpenGL texture object is modified through the OpenGL API (e.g. glTexImage2D,
glTexImage3D or the values of the texture parameters GL_TEXTURE_BASE_LEVEL or GL_TEXTURE_MAX_LEVEL
are modified) while there exists a corresponding OpenCL image object, subsequent use of the
OpenCL image object will result in undefined behavior.

The clRetainMemObject and clReleaseMemObject functions can be used to retain and release the
image objects.


Refer to the Lifetime of Shared OpenCL/OpenGL Memory Objects and Acquiring,
Releasing, and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects
sections for more information.

clCreateFromGLTexture returns a valid non-zero OpenCL image object and errcode_ret is set to
CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context or was not created from an OpenGL context.

• CL_INVALID_VALUE if values specified in flags are not valid or if value specified in texture_target is
not one of the values specified in the description of texture_target.

• CL_INVALID_MIP_LEVEL if miplevel is less than the value of levelbase (for OpenGL implementations)
or zero (for OpenGL ES implementations); or greater than the value of q (for both OpenGL and
OpenGL ES). levelbase and q are defined for the texture in section 3.8.10 (Texture Completeness) of
the OpenGL 2.1 Specification and section 3.7.10 of the OpenGL ES 2.0 Specification.

• CL_INVALID_MIP_LEVEL if miplevel is greather than zero and the OpenGL implementation does not
support creating from non-zero mipmap levels.

• CL_INVALID_GL_OBJECT if texture is not an OpenGL texture object whose type matches

212



texture_target, if the specified miplevel of texture is not defined, or if the width or height of the
specified miplevel is zero or if the OpenGL texture object is incomplete.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the internal format of texture is not listed in the OpenGL
Internal Formats and Corresponding OpenCL Internal Formats table.

• CL_INVALID_OPERATION if texture is an OpenGL texture object created with a border width value
greater than zero.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.3.14.1. Restrictions on Depth/Stencil Images

Depth images with an image channel order of CL_DEPTH_STENCIL can only be created using the
clCreateFromGLTexture API, and only when the cl_khr_gl_depth_images extension is supported.

For the image format given by channel order of CL_DEPTH_STENCIL and channel data type of
CL_UNORM_INT24, the depth is stored as an unsigned normalized 24-bit value.

For the image format given by channel order of CL_DEPTH_STENCIL and channel data type of CL_FLOAT,
each pixel is two 32-bit values. The depth is stored as a single precision floating-point value
followed by the stencil which is stored as a 8-bit integer value.

Such images appear in the ] Minimum List of Supported Image Formats, but only require read
support, not write support.

The stencil value cannot be read or written using the read_imagef and write_imagef built-in
functions in an OpenCL kernel.

Depth image objects with an image channel order of CL_DEPTH_STENCIL cannot be used as arguments
to clEnqueueReadImage, clEnqueueWriteImage, clEnqueueCopyImage,
clEnqueueCopyImageToBuffer, clEnqueueCopyBufferToImage, clEnqueueMapImage, and
clEnqueueFillImage. Such use will return a CL_INVALID_OPERATION error.

5.3.14.2. Restrictions on Multi-Sample Images

The formats described in the Image Channel Order Values and Image Channel Data Types tables of
the OpenCL 3.0 specification, specification and the additional formats described in the Minimum
list of supported image formats for reading or writing table also support OpenCL images created
from a OpenGL multi-sampled color or depth texture.

Multi-sample OpenCL image objects can only be read from a kernel. Multi-sample OpenCL image
objects cannot be used as arguments to clEnqueueReadImage, clEnqueueWriteImage,
clEnqueueCopyImage, clEnqueueCopyImageToBuffer, clEnqueueCopyBufferToImage,
clEnqueueMapImage, and clEnqueueFillImage. Such use will return a CL_INVALID_OPERATION
error.

To create an OpenCL 2D image object from an OpenGL renderbuffer object, call the function

213



cl_mem clCreateFromGLRenderbuffer(
    cl_context context,
    cl_mem_flags flags,
    cl_GLuint renderbuffer,
    cl_int* errcode_ret);

 clCreateFromGLRenderbuffer is provided by the cl_khr_gl_sharing extension.

• context is a valid OpenCL context created from an OpenGL context.

• flags is a bit-field that is used to specify usage information. Refer to the Memory Flags table for a
description of flags. Only the CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY and CL_MEM_READ_WRITE flags
specified in that table can be used.

• renderbuffer is the name of an OpenGL renderbuffer object. The renderbuffer storage must be
specified before the image object can be created. The renderbuffer format and dimensions
defined by OpenGL will be used to create the 2D image object. Only OpenGL renderbuffers with
an internal format that maps to an appropriate Image Channel Order and Image Channel Data
Type may be used to create the 2D image object.

• errcode_ret will return an appropriate error code as described below. If errcode_ret is NULL, no
error code is returned.

If the state of an OpenGL renderbuffer object is modified through the OpenGL API (i.e. changes to
the dimensions or format used to represent pixels of the OpenGL renderbuffer using appropriate
OpenGL API calls such as glRenderbufferStorage) while there exists a corresponding OpenCL image
object, subsequent use of the OpenCL image object will result in undefined behavior.

The clRetainMemObject and clReleaseMemObject functions can be used to retain and release the
image objects.

The OpenGL Internal Formats and Corresponding OpenCL Internal Formats table describes the list
of OpenGL renderbuffer internal formats and the Corresponding OpenCL Image Formats. If an
OpenGL renderbuffer object with an internal format from the table is successfully created by
OpenGL, then there is guaranteed to be a mapping to one of the corresponding OpenCL image
format(s) in that table. Renderbuffer objects created with other OpenGL internal formats may (but
are not guaranteed to) have a mapping to an OpenCL image format; if such mappings exist, they are
guaranteed to preserve all color components, data types, and at least the number of bits/component
actually allocated by OpenGL for that format.


Refer to the Lifetime of Shared OpenCL/OpenGL Memory Objects and Acquiring,
Releasing, and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects
sections for more information.

clCreateFromGLRenderbuffer returns a valid non-zero OpenCL image object and errcode_ret is
set to CL_SUCCESS if the image object is created successfully. Otherwise, it returns a NULL value with
one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context or was not created from an OpenGL context.

214



• CL_INVALID_VALUE if values specified in flags are not valid.

• CL_INVALID_GL_OBJECT if renderbuffer is not an OpenGL renderbuffer object, or if the width or
height of renderbuffer is zero.

• CL_INVALID_IMAGE_FORMAT_DESCRIPTOR if the internal format of renderbuffer is not listed in the
OpenGL Internal Formats and Corresponding OpenCL Internal Formats table.

• CL_INVALID_OPERATION if renderbuffer is a multi-sample OpenGL renderbuffer object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.4. Pipes

 Pipes are missing before version 2.0.

A pipe is a memory object that stores data organized as a FIFO. Pipe objects can only be accessed
using built-in functions that read from and write to a pipe. Pipe objects are not accessible from the
host. A pipe object encapsulates the following information:

• Packet size in bytes

• Maximum capacity in packets

• Information about the number of packets currently in the pipe

• Data packets

5.4.1. Creating Pipe Objects

To create a pipe object, call the function

cl_mem clCreatePipe(
    cl_context context,
    cl_mem_flags flags,
    cl_uint pipe_packet_size,
    cl_uint pipe_max_packets,
    const cl_pipe_properties* properties,
    cl_int* errcode_ret);

 clCreatePipe is missing before version 2.0.

• context is a valid OpenCL context used to create the pipe object.

• flags is a bit-field that is used to specify allocation and usage information such as the memory
arena that should be used to allocate the pipe object and how it will be used. The Memory Flags
table describes the possible values for flags. Only CL_MEM_READ_WRITE and CL_MEM_HOST_NO_ACCESS
can be specified when creating a pipe object. If the value specified for flags is 0, the default is

215



used which is CL_MEM_READ_WRITE | CL_MEM_HOST_NO_ACCESS.

• pipe_packet_size is the size in bytes of a pipe packet.

• pipe_max_packets specifies the pipe capacity by specifying the maximum number of packets the
pipe can hold.

• properties specifies a list of properties for the pipe and their corresponding values. Each
property name is immediately followed by the corresponding desired value. The list is
terminated with 0. Currently, in all OpenCL versions, properties must be NULL.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreatePipe returns a valid non-zero pipe object and errcode_ret is set to CL_SUCCESS if the pipe
object is created successfully. Otherwise, it returns a NULL value with one of the following error
values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_OPERATION if no devices in context support pipes.

• CL_INVALID_VALUE if values specified in flags are not as defined above.

• CL_INVALID_VALUE if properties is not NULL.

• CL_INVALID_PIPE_SIZE if pipe_packet_size is 0 or the pipe_packet_size exceeds CL_DEVICE_PIPE_MAX_
PACKET_SIZE value specified in the Device Queries table for all devices in context or if
pipe_max_packets is 0.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for the pipe object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Pipes follow the same memory consistency model as defined for buffer and image objects. The pipe
state i.e. contents of the pipe across kernel-instances (on the same or different devices) is enforced
at a synchronization point.

5.4.2. Pipe Object Queries

To get information that is common to all memory objects, use the clGetMemObjectInfo function
described in Memory Object Queries.

To get information specific to a pipe object created with clCreatePipe, call the function

cl_int clGetPipeInfo(
    cl_mem pipe,
    cl_pipe_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

216



 clGetPipeInfo is missing before version 2.0.

• pipe specifies the pipe object being queried.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetPipeInfo is described in the Pipe Object Queries
table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Pipe Object Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

clGetPipeInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns one
of the following errors:

• CL_INVALID_MEM_OBJECT if pipe is a not a valid pipe object.

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Pipe Object Queries table and param_value is not NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Table 36. List of supported param_names by clGetPipeInfo

Pipe Info Return type Description

CL_PIPE_PACKET_SIZE

missing before version 2.0.

cl_uint Return pipe packet size specified when pipe is
created with clCreatePipe.

CL_PIPE_MAX_PACKETS

missing before version 2.0.

cl_uint Return max. number of packets specified when
pipe is created with clCreatePipe.

217



Pipe Info Return type Description

CL_PIPE_PROPERTIES

missing before version 3.0.

cl_pipe_
properties[]

Return the properties argument specified in
clCreatePipe.

If the properties argument specified in
clCreatePipe used to create pipe was not NULL,
the implementation must return the values
specified in the properties argument in the same
order and without including additional
properties.

If the properties argument specified in
clCreatePipe used to create pipe was NULL, the
implementation must return
param_value_size_ret equal to 0, indicating that
there are no properties to be returned.

5.5. Querying, Unmapping, Migrating, Retaining and
Releasing Memory Objects

5.5.1. Retaining and Releasing Memory Objects

To retain a memory object, call the function

cl_int clRetainMemObject(
    cl_mem memobj);

• memobj specifies the memory object to be retained.

The memobj reference count is incremented.

clRetainMemObject returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_MEM_OBJECT if memobj is not a valid memory object (buffer or image object).

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

clCreateBuffer, clCreateBufferWithProperties, clCreateSubBuffer, clCreateImage,
clCreateImageWithProperties, clCreateImage2D, clCreateImage3D and clCreatePipe perform
an implicit retain.

To release a memory object, call the function

218



cl_int clReleaseMemObject(
    cl_mem memobj);

• memobj specifies the memory object to be released.

The memobj reference count is decremented.

clReleaseMemObject returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

After the memobj reference count becomes zero and commands queued for execution on a
command-queue(s) that use memobj have finished, the memory object is deleted. If memobj is a
buffer object, memobj cannot be deleted until all sub-buffer objects associated with memobj are
deleted. Using this function to release a reference that was not obtained by creating the object or by
calling clRetainMemObject causes undefined behavior.

To register a callback function with a memory object that is called when the memory object is
destroyed, call the function

cl_int clSetMemObjectDestructorCallback(
    cl_mem memobj,
    void (CL_CALLBACK* pfn_notify)(cl_mem memobj, void* user_data),
    void* user_data);

 clSetMemObjectDestructorCallback is missing before version 1.1.

• memobj specifies the memory object to register the callback to.

• pfn_notify is the callback function to register. This callback function may be called
asynchronously by the OpenCL implementation. It is the application’s responsibility to ensure
that the callback function is thread-safe. The parameters to this callback function are:

◦ memobj is the memory object being deleted. When the callback function is called by the
implementation, this memory object is not longer valid. memobj is only provided for
reference purposes.

◦ user_data is a pointer to user-supplied data.

• user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

Each call to clSetMemObjectDestructorCallback registers the specified callback function on a
destructor callback stack associated with memobj. The registered callback functions are called in

219



the reverse order in which they were registered. The registered callback functions are called and
then the memory object’s resources are freed and the memory object is deleted. Therefore, the
memory object destructor callback provides a mechanism for an application to safely re-use or free
a host_ptr that was specified when memobj was created and used as the storage bits for the memory
object.

clSetMemObjectDestructorCallback returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_MEM_OBJECT if memobj is not a valid memory object.

• CL_INVALID_VALUE if pfn_notify is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.



When the user callback function is called by the implementation, the contents of
the memory region pointed to by host_ptr (if the memory object is created with
CL_MEM_USE_HOST_PTR) are undefined. The callback function is typically used by the
application to either free or reuse the memory region pointed to by host_ptr.

The behavior of calling expensive system routines, OpenCL API calls to create
contexts or command-queues, or blocking OpenCL operations from the following
list below, in a callback is undefined.

• clFinish,

• clWaitForEvents,

• blocking calls to clEnqueueReadBuffer, clEnqueueReadBufferRect,
clEnqueueWriteBuffer, clEnqueueWriteBufferRect,

• blocking calls to clEnqueueReadImage and clEnqueueWriteImage,

• blocking calls to clEnqueueMapBuffer, clEnqueueMapImage,

• blocking calls to clBuildProgram, clCompileProgram or clLinkProgram

If an application needs to wait for completion of a routine from the above list in a
callback, please use the non-blocking form of the function, and assign a
completion callback to it to do the remainder of your work. Note that when a
callback (or other code) enqueues commands to a command-queue, the commands
are not required to begin execution until the queue is flushed. In standard usage,
blocking enqueue calls serve this role by implicitly flushing the queue. Since
blocking calls are not permitted in callbacks, those callbacks that enqueue
commands on a command-queue should either call clFlush on the queue before
returning or arrange for clFlush to be called later on another thread.

The user callback function may not call OpenCL APIs with the memory object for
which the callback function is invoked and for such cases the behavior of OpenCL
APIs is considered to be undefined.

220



5.5.1.1. Acquiring and Releasing External Memory Objects

To enqueue a command to acquire OpenCL memory objects created from external memory
handles, call the function

cl_int clEnqueueAcquireExternalMemObjectsKHR(
    cl_command_queue command_queue,
    cl_uint num_mem_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);


clEnqueueAcquireExternalMemObjectsKHR is provided by the
cl_khr_external_memory extension.

• command_queue specifies a valid command-queue.

• num_mem_objects specifies the number of memory objects to acquire.

• mem_objects points to a list of valid memory objects.

• num_events_in_wait_list specifies the number of events in event_wait_list.

• event_wait_list points to the list of events that need to complete before
clEnqueueAcquireExternalMemObjectsKHR can be executed. If event_wait_list is NULL, then
clEnqueueAcquireExternalMemObjectsKHR does not explicitly wait on any event to
complete. If event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not
NULL, the list of events pointed to by event_wait_list must be valid and num_events_in_wait_list
must be greater than 0. The events specified in event_wait_list act as synchronization points.
The context associated with events in event_wait_list and that of command_queue must be the
same.

• event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete.

Applications must acquire the memory objects that are created using external handles before they
can be used by any OpenCL commands queued to a command-queue. Behavior is undefined if a
memory object created from an external memory handle is used by an OpenCL command queued
to a command-queue without being acquired. This is to guarantee that the state of the memory
objects is up-to-date and they are accessible to OpenCL. See “Example with Acquire / Release” for
more details on how to use this API.

If num_mem_objects is 0 and mem_objects is NULL, the command will trivially succeed after its event
dependencies are satisfied and will update its completion event.

clEnqueueAcquireExternalMemObjectsKHR returns CL_SUCCESS if the function is executed
successfully. Otherwise, it returns one of the following errors:

221



• CL_INVALID_VALUE if num_mem_objects is zero and mem_objects is not a NULL value, or if
num_mem_objects is greater than 0 and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if any of the memory objects in mem_objects is not a valid OpenCL
memory object created using an external memory handle.

• CL_INVALID_COMMAND_QUEUE

◦ if command_queue is not a valid command-queue, or

◦ if device associated with command_queue is not one of the devices specified by CL_MEM_
DEVICE_HANDLE_LIST_KHR at the time of creating one or more of mem_objects, or ** if one or
more of mem_objects belong to a context that does not contain a device associated with
command_queue.

• CL_INVALID_EVENT_WAIT_LIST

◦ if event_wait_list is NULL and num_events_in_wait_list is not 0, or

◦ if event_wait_list is not NULL and num_events_in_wait_list is 0, or

◦ if event objects in event_wait_list are not valid events.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the execution status of any of the events in
event_wait_list is a negative integer value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to release OpenCL memory objects created from external memory handles,
call the function

cl_int clEnqueueReleaseExternalMemObjectsKHR(
    cl_command_queue command_queue,
    cl_uint num_mem_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• command_queue specifies a valid command-queue.

• num_mem_objects specifies the number of memory objects to release.

• mem_objects points to a list of valid memory objects.

• num_events_in_wait_list specifies the number of events in event_wait_list.

• event_wait_list points to the list of events that need to complete before
clEnqueueReleaseExternalMemObjectsKHR can be executed. If event_wait_list is NULL, then
clEnqueueReleaseExternalMemObjectsKHR does not wait on any event to complete. If
event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of
events pointed to by event_wait_list must be valid and num_events_in_wait_list must be greater
than 0. The events specified in event_wait_list act as synchronization points. The context

222



associated with events in event_wait_list and that of command_queue must be the same.

• event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete.

Applications must release the memory objects that are acquired using
clEnqueueReleaseExternalMemObjectsKHR before using them through any commands in the
other API. This is to guarantee that the state of memory objects is up-to-date and they are accessible
to the other API. See “Example with Acquire / Release” provided in Sample Code for more details on
how to use this API.

If num_mem_objects is 0 and mem_objects is NULL, the command will trivially succeed after its event
dependencies are satisfied and will update its completion event.

clEnqueueReleaseExternalMemObjectsKHR returns CL_SUCCESS if the function is executed
successfully. Otherwise, it returns one of the following errors:

• CL_INVALID_VALUE if num_mem_objects is zero and mem_objects is not a NULL value, or if
num_mem_objects is greater than 0 and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if any of the memory objects in mem_objects is not a valid OpenCL
memory object created using an external memory handle.

• CL_INVALID_COMMAND_QUEUE

◦ if command_queue is not a valid command-queue, or

◦ if device associated with command_queue is not one of the devices specified by CL_MEM_
DEVICE_HANDLE_LIST_KHR at the time of creating one or more of mem_objects, or

◦ if one or more of mem_objects belong to a context that does not contain a device associated
with command_queue.

• CL_INVALID_EVENT_WAIT_LIST

◦ if event_wait_list is NULL and num_events_in_wait_list is not 0, or

◦ if event_wait_list is not NULL and num_events_in_wait_list is 0, or

◦ if event objects in event_wait_list are not valid events.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the execution status of any of the events in
event_wait_list is a negative integer value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.5.2. Descriptions of External Memory Handle Types

This section describes external memory handle types that are added by extensions.

Applications can import the same payload into multiple OpenCL contexts and multiple times into a

223



given OpenCL context. In all cases, each import operation must create a distinct memory object.

5.5.2.1. File Descriptor Handle Types

The cl_khr_external_memory_opaque_fd extension extends cl_external_memory_handle_type_khr to
support the following new types of handles, and adds as a property that may be specified when
creating a buffer or an image memory object from an external handle:

• CL_EXTERNAL_MEMORY_HANDLE_OPAQUE_FD_KHR specifies a POSIX file descriptor handle that has only
limited valid usage outside of OpenCL and other compatible APIs. It must be compatible with
the POSIX system calls dup, dup2, close, and the non-standard system call dup3. Additionally, it
must be transportable over a socket using a SCM_RIGHTS control message. It owns a reference to
the underlying memory resource represented by its memory object.

The cl_khr_external_memory_dma_buf extension extends cl_external_memory_handle_type_khr to
support the following types of handles, and adds as a property that may be specified when creating
a buffer or an image memory object from an external handle:

• CL_EXTERNAL_MEMORY_HANDLE_DMA_BUF_KHR is a file descriptor for a Linux dma_buf. It owns a
reference to the underlying memory resource represented by its memory object.

For these extensions, importing memory from a file descriptor transfers ownership of the file
descriptor from the application to the OpenCL implementation. The application must not perform
any operations on the file descriptor after a successful import. The imported memory object holds a
reference to its payload.

5.5.2.2. NT Handle Types

The cl_khr_external_memory_dx extension extends cl_external_memory_handle_type_khr to support
the following new types of handles, and adds as a property that may be specified when creating a
buffer or an image memory object from an external handle:

• CL_EXTERNAL_MEMORY_HANDLE_D3D11_TEXTURE_KHR specifies an NT handle returned by
IDXGIResource1::CreateSharedHandle referring to a Direct3D 10 or 11 texture resource. It owns a
reference to the memory used by the Direct3D resource.

• CL_EXTERNAL_MEMORY_HANDLE_D3D11_TEXTURE_KMT_KHR specifies a global share handle returned by
IDXGIResource::GetSharedHandle referring to a Direct3D 10 or 11 texture resource. It does not
own a reference to the underlying Direct3D resource, and will therefore become invalid when
all memory objects and Direct3D resources associated with it are destroyed.

• CL_EXTERNAL_MEMORY_HANDLE_D3D12_HEAP_KHR specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 heap resource. It owns a reference
to the resources used by the Direct3D heap.

• CL_EXTERNAL_MEMORY_HANDLE_D3D12_RESOURCE_KHR specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 committed resource. It owns a
reference to the memory used by the Direct3D resource.

The cl_khr_external_memory_win32 extension extends cl_external_memory_handle_type_khr to support
the following new types of handles, and adds as a property that may be specified when creating a
buffer or an image memory object from an external handle:

224



• CL_EXTERNAL_MEMORY_HANDLE_OPAQUE_WIN32_KHR specifies an NT handle that has only limited valid
usage outside of OpenCL and other compatible APIs. It must be compatible with the functions
DuplicateHandle, CloseHandle, CompareObjectHandles, GetHandleInformation, and
SetHandleInformation. It owns a reference to the underlying memory resource represented by its
memory object.

• CL_EXTERNAL_MEMORY_HANDLE_OPAQUE_WIN32_KMT_KHR specifies a global share handle that has only
limited valid usage outside of OpenCL and other compatible APIs. It is not compatible with any
native APIs. It does not own a reference to the underlying memory resource represented by its
memory object, and will therefore become invalid when all memory objects associated with it
are destroyed.

For these extensions, importing memory object payloads from Windows handles does not transfer
ownership of the handle to the OpenCL implementation. For handle types defined as NT handles,
the application must release handle ownership using the CloseHandle system call when the handle
is no longer needed. For handle types defined as NT handles, the imported memory object holds a
reference to its payload.

Note: Non-NT handle import operations do not add a reference to their associated payload. If the
original object owning the payload is destroyed, all resources and handles sharing that payload will
become invalid.

5.5.3. Unmapping Mapped Memory Objects

To enqueue a command to unmap a previously mapped region of a memory object, call the
function

cl_int clEnqueueUnmapMemObject(
    cl_command_queue command_queue,
    cl_mem memobj,
    void* mapped_ptr,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• command_queue must be a valid host command-queue.

• memobj is a valid memory (buffer or image) object. The OpenCL context associated with
command_queue and memobj must be the same.

• mapped_ptr is the host address returned by a previous call to clEnqueueMapBuffer, or
clEnqueueMapImage for memobj.

• event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueUnmapMemObject can be executed. If event_wait_list is NULL, then
clEnqueueUnmapMemObject does not wait on any event to complete. If event_wait_list is NULL,
num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of events pointed to by
event_wait_list must be valid and num_events_in_wait_list must be greater than 0. The events
specified in event_wait_list act as synchronization points. The context associated with events in
event_wait_list and command_queue must be the same. The memory associated with

225



event_wait_list can be reused or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

Reads or writes from the host using the pointer returned by clEnqueueMapBuffer or
clEnqueueMapImage are considered to be complete.

clEnqueueMapBuffer and clEnqueueMapImage increment the mapped count of the memory
object. The initial mapped count value of the memory object is zero. Multiple calls to
clEnqueueMapBuffer, or clEnqueueMapImage on the same memory object will increment this
mapped count by appropriate number of calls. clEnqueueUnmapMemObject decrements the
mapped count of the memory object.

clEnqueueMapBuffer, and clEnqueueMapImage act as synchronization points for a region of the
buffer object being mapped.

clEnqueueUnmapMemObject returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_MEM_OBJECT if memobj is not a valid memory object or is a pipe object.

• CL_INVALID_VALUE if mapped_ptr is not a valid pointer returned by clEnqueueMapBuffer or
clEnqueueMapImage for memobj.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or if
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_CONTEXT if context associated with command_queue and memobj are not the same or
if the context associated with command_queue and events in event_wait_list are not the same.

5.5.4. Accessing Mapped Regions of a Memory Object

This section describes the behavior of OpenCL commands that access mapped regions of a memory
object.

The contents of the region of a memory object and associated memory objects (sub-buffer objects or
1D image buffer objects that overlap this region) mapped for writing (i.e. CL_MAP_WRITE or CL_MAP_
WRITE_INVALIDATE_REGION is set in map_flags argument to clEnqueueMapBuffer, or
clEnqueueMapImage) are considered to be undefined until this region is unmapped.

Multiple commands in command-queues can map a region or overlapping regions of a memory

226



object and associated memory objects (sub-buffer objects or 1D image buffer objects that overlap
this region) for reading (i.e. map_flags = CL_MAP_READ). The contents of the regions of a memory
object mapped for reading can also be read by kernels and other OpenCL commands (such as
clEnqueueCopyBuffer) executing on a device(s).

Mapping (and unmapping) overlapped regions in a memory object and/or associated memory
objects (sub-buffer objects or 1D image buffer objects that overlap this region) for writing is an
error and will result in CL_INVALID_OPERATION error returned by clEnqueueMapBuffer, or
clEnqueueMapImage.

If a memory object is currently mapped for writing, the application must ensure that the memory
object is unmapped before any enqueued kernels or commands that read from or write to this
memory object or any of its associated memory objects (sub-buffer or 1D image buffer objects) or
its parent object (if the memory object is a sub-buffer or 1D image buffer object) begin execution;
otherwise the behavior is undefined.

If a memory object is currently mapped for reading, the application must ensure that the memory
object is unmapped before any enqueued kernels or commands that write to this memory object or
any of its associated memory objects (sub-buffer or 1D image buffer objects) or its parent object (if
the memory object is a sub-buffer or 1D image buffer object) begin execution; otherwise the
behavior is undefined.

A memory object is considered as mapped if there are one or more active mappings for the
memory object irrespective of whether the mapped regions span the entire memory object.

Accessing the contents of the memory region referred to by the mapped pointer that has been
unmapped is undefined.

The mapped pointer returned by clEnqueueMapBuffer or clEnqueueMapImage can be used as
the ptr argument value to clEnqueueReadBuffer, clEnqueueWriteBuffer,
clEnqueueReadBufferRect, clEnqueueWriteBufferRect, clEnqueueReadImage, or
clEnqueueWriteImage provided the rules described above are adhered to.

5.5.5. Migrating Memory Objects

 Migrating memory objects is missing before version 1.2.

This section describes a mechanism for assigning which device an OpenCL memory object resides.
A user may wish to have more explicit control over the location of their memory objects on
creation. This could be used to:

• Ensure that an object is allocated on a specific device prior to usage.

• Preemptively migrate an object from one device to another.

To enqueue a command to indicate which device a set of memory objects should be associated with,
call the function

227



cl_int clEnqueueMigrateMemObjects(
    cl_command_queue command_queue,
    cl_uint num_mem_objects,
    const cl_mem* mem_objects,
    cl_mem_migration_flags flags,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueMigrateMemObjects is missing before version 1.2.

• command_queue is a valid host command-queue. The specified set of memory objects in
mem_objects will be migrated to the OpenCL device associated with command_queue or to the
host if the CL_MIGRATE_MEM_OBJECT_HOST has been specified.

• num_mem_objects is the number of memory objects specified in mem_objects.

• mem_objects is a pointer to a list of memory objects.

• flags is a bit-field that is used to specify migration options. The Memory Migration Flags
describes the possible values for flags.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

Table 37. List of supported migration flags by clEnqueueMigrateMemObjects

Memory Migration Flags Description

CL_MIGRATE_MEM_OBJECT_HOST

missing before version 1.2.

This flag indicates that the specified set of
memory objects are to be migrated to the host,
regardless of the target command-queue.

CL_MIGRATE_MEM_OBJECT_CONTENT_UNDEFINED

missing before version 1.2.

This flag indicates that the contents of the set of
memory objects are undefined after migration.
The specified set of memory objects are
migrated to the device associated with
command_queue without incurring the overhead
of migrating their contents.

228



Typically, memory objects are implicitly migrated to a device for which enqueued commands, using
the memory object, are targeted. clEnqueueMigrateMemObjects allows this migration to be
explicitly performed ahead of the dependent commands. This allows a user to preemptively change
the association of a memory object, through regular command-queue scheduling, in order to
prepare for another upcoming command. This also permits an application to overlap the placement
of memory objects with other unrelated operations before these memory objects are needed
potentially hiding transfer latencies. Once the event, returned from
clEnqueueMigrateMemObjects, has been marked CL_COMPLETE the memory objects specified in
mem_objects have been successfully migrated to the device associated with command_queue. The
migrated memory object shall remain resident on the device until another command is enqueued
that either implicitly or explicitly migrates it away.

clEnqueueMigrateMemObjects can also be used to direct the initial placement of a memory
object, after creation, possibly avoiding the initial overhead of instantiating the object on the first
enqueued command to use it.

The user is responsible for managing the event dependencies, associated with this command, in
order to avoid overlapping access to memory objects. Improperly specified event dependencies
passed to clEnqueueMigrateMemObjects could result in undefined results.

clEnqueueMigrateMemObjects return CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if the context associated with command_queue and memory objects in
mem_objects are not the same or if the context associated with command_queue and events in
event_wait_list are not the same.

• CL_INVALID_MEM_OBJECT if any of the memory objects in mem_objects is not a valid memory object.

• CL_INVALID_VALUE if num_mem_objects is zero or if mem_objects is NULL.

• CL_INVALID_VALUE if flags is not 0 or is not any of the values described in the table above.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for the specified set of
memory objects in mem_objects.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.5.6. Memory Object Queries

To get information that is common to all memory objects (buffer and image objects), call the
function

229



cl_int clGetMemObjectInfo(
    cl_mem memobj,
    cl_mem_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• memobj specifies the memory object being queried.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetMemObjectInfo is described in the Memory
Object Info table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Memory Object Info table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 38. List of supported param_names by clGetMemObjectInfo

Memory Object Info Return type Description

CL_MEM_TYPE cl_mem_object_
type

Returns one of the following values:

CL_MEM_OBJECT_BUFFER if memobj is created with
clCreateBuffer,
clCreateBufferWithProperties, or
clCreateSubBuffer.

CL_MEM_OBJECT_IMAGE2D if memobj is created with
clCreateImage2D.

CL_MEM_OBJECT_IMAGE3D if memobj is created with
clCreateImage3D.

The value of image_desc→image_type if memobj
is created with clCreateImage or
clCreateImageWithProperties.

CL_MEM_OBJECT_PIPE if memobj is created with
clCreatePipe.

230



Memory Object Info Return type Description

CL_MEM_FLAGS cl_mem_flags Return the flags argument value specified when
memobj is created with clCreateBuffer,
clCreateBufferWithProperties,
clCreateSubBuffer,
clCreateImage,
clCreateImageWithProperties,
clCreateImage2D,
clCreateImage3D, or
clCreatePipe.

If memobj is a sub-buffer the memory access
qualifiers inherited from parent buffer is also
returned.

CL_MEM_SIZE size_t Return actual size of the data store associated
with memobj in bytes.

CL_MEM_HOST_PTR void* If memobj is created with clCreateBuffer,
clCreateBufferWithProperties,
clCreateImage, clCreateImageWithProperties,
clCreateImage2D, or clCreateImage3D, and
CL_MEM_USE_HOST_PTR is specified in mem_flags,
return the host_ptr argument value specified
when memobj is created.

Otherwise, if memobj is created with
clCreateSubBuffer, and memobj is created from
a buffer that was created with CL_MEM_USE_HOST_
PTR specified in mem_flags, return the host_ptr
passed to clCreateBuffer or
clCreateBufferWithProperties, plus the origin
value specified in buffer_create_info when
memobj is created.

Otherwise, returns NULL.

CL_MEM_MAP_COUNT [9] cl_uint Map count.

CL_MEM_REFERENCE_COUNT [10] cl_uint Return memobj reference count.

CL_MEM_CONTEXT cl_context Return context specified when memory object is
created. If memobj is created using
clCreateSubBuffer, the context associated with
the memory object specified as the buffer
argument to clCreateSubBuffer is returned.

231



Memory Object Info Return type Description

CL_MEM_ASSOCIATED_MEMOBJECT

missing before version 1.1.

cl_mem Return memory object from which memobj is
created.

This returns the memory object specified as
buffer argument to clCreateSubBuffer if
memobj is a subbuffer object created using
clCreateSubBuffer.

This returns image_desc→mem_object if memobj
is an image object created using clCreateImage
or clCreateImageWithProperties.

Otherwise, returns NULL.

CL_MEM_OFFSET

missing before version 1.1.

size_t Return offset if memobj is a sub-buffer object
created using clCreateSubBuffer.

This return 0 if memobj is not a subbuffer object.

CL_MEM_USES_SVM_POINTER

missing before version 2.0.

cl_bool Return CL_TRUE if memobj is a buffer object that
was created with CL_MEM_USE_HOST_PTR or is a
sub-buffer object of a buffer object that was
created with CL_MEM_USE_HOST_PTR and the
host_ptr specified when the buffer object was
created is a SVM pointer; otherwise returns
CL_FALSE.

CL_MEM_PROPERTIES

missing before version 3.0.

cl_mem_
properties[]

Return the properties argument specified in
clCreateBufferWithProperties or
clCreateImageWithProperties.

If the properties argument specified in
clCreateBufferWithProperties or
clCreateImageWithProperties used to create
memobj was not NULL, the implementation must
return the values specified in the properties
argument in the same order and without
including additional properties.

If memobj was created using clCreateBuffer,
clCreateSubBuffer, clCreateImage,
clCreateImage2D, or clCreateImage3D, or if
the properties argument specified in
clCreateBufferWithProperties or
clCreateImageWithProperties was NULL, the
implementation must return
param_value_size_ret equal to 0, indicating that
there are no properties to be returned.

232



Memory Object Info Return type Description

CL_MEM_DX9_MEDIA_ADAPTER_TYPE_
KHR

provided by the
cl_khr_dx9_media_sharing
extension.

cl_dx9_media_
adapter_type_
khr

If memobj was created using
clCreateFromDX9MediaSurfaceKHR, returns
the adapter_type argument specified when
memobj was created.

CL_MEM_DX9_MEDIA_SURFACE_INFO_
KHR

provided by the
cl_khr_dx9_media_sharing
extension.

cl_dx9_surface_
info_khr

If memobj was created using
clCreateFromDX9MediaSurfaceKHR, returns
the surface_info argument specified when
memobj was created.

CL_MEM_D3D10_RESOURCE_KHR

provided by the
cl_khr_d3d10_sharing extension.

ID3D10Resource
*

If memobj was created using
clCreateFromD3D10BufferKHR,
clCreateFromD3D10Texture2DKHR, or
clCreateFromD3D10Texture3DKHR, returns
the resource argument specified when memobj
was created.

CL_MEM_D3D11_RESOURCE_KHR

provided by the
cl_khr_d3d11_sharing extension.

ID3D11Resource
*

If memobj was created using
clCreateFromD3D11BufferKHR,
clCreateFromD3D11Texture2DKHR, or
clCreateFromD3D11Texture3DKHR, returns
the resource argument specified when memobj
was created.

clGetMemObjectInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_MEM_OBJECT if memobj is a not a valid memory object.

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Memory Object Info table and param_value is not NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The following errors may be returned if the cl_khr_dx9_media_sharing extension is supported:

• CL_INVALID_DX9_MEDIA_SURFACE_KHR if param_name is CL_MEM_DX9_MEDIA_SURFACE_INFO_KHR and
memobj was not created by calling clCreateFromDX9MediaSurfaceKHR from a Direct3D9
surface.

The following errors may be returned if the cl_khr_d3d10_sharing extension is supported:

• CL_INVALID_D3D10_RESOURCE_KHR if param_name is CL_MEM_D3D10_RESOURCE_KHR and memobj was not

233



created by calling clCreateFromD3D10BufferKHR, clCreateFromD3D10Texture2DKHR, or
clCreateFromD3D10Texture3DKHR.

The following errors may be returned if the cl_khr_d3d11_sharing extension is supported:

• CL_INVALID_D3D11_RESOURCE_KHR if param_name is CL_MEM_D3D11_RESOURCE_KHR and memobj was not
created by calling clCreateFromD3D11BufferKHR, clCreateFromD3D11Texture2DKHR, or
clCreateFromD3D11Texture3DKHR.

5.5.7. Querying Media Surface Properties of Memory Objects Created From
DirectX 9 Media Surfaces

Properties of media surface objects may be queried using clGetMemObjectInfo and
clGetImageInfo with param_name CL_MEM_DX9_MEDIA_ADAPTER_TYPE_KHR, CL_MEM_DX9_MEDIA_SURFACE_
INFO_KHR and CL_IMAGE_DX9_MEDIA_PLANE_KHR.

5.5.8. Querying Direct3D Properties of Memory Objects Created From
Direct3D 10 Resources

Properties of Direct3D 10 objects may be queried using clGetMemObjectInfo and clGetImageInfo
with param_name CL_MEM_D3D10_RESOURCE_KHR and CL_IMAGE_D3D10_SUBRESOURCE_KHR respectively.

5.5.9. Querying Direct3D Properties of Memory Objects Created From
Direct3D 11 Resources

Properties of Direct3D 11 objects may be queried using clGetMemObjectInfo and clGetImageInfo
with param_name CL_MEM_D3D11_RESOURCE_KHR and CL_IMAGE_D3D11_SUBRESOURCE_KHR respectively.

5.5.10. Querying OpenGL Object Information From an OpenCL Memory
Object

To query the OpenGL object and object type used to create an OpenCL memory object, call the
function

cl_int clGetGLObjectInfo(
    cl_mem memobj,
    cl_gl_object_type* gl_object_type,
    cl_GLuint* gl_object_name);

 clGetGLObjectInfo is provided by the cl_khr_gl_sharing extension.

• memobj is the memory object to query.

• gl_object_type returns the type of OpenGL object attached to memobj and can be CL_GL_OBJECT_
BUFFER, CL_GL_OBJECT_TEXTURE2D, CL_GL_OBJECT_TEXTURE3D, CL_GL_OBJECT_TEXTURE2D_ARRAY, CL_GL_
OBJECT_TEXTURE1D, CL_GL_OBJECT_TEXTURE1D_ARRAY, CL_GL_OBJECT_TEXTURE_BUFFER, or CL_GL_OBJECT_
RENDERBUFFER. If gl_object_type is NULL, it is ignored

234



• gl_object_name returns the OpenGL object name used to create memobj. If gl_object_name is
NULL, it is ignored.

clGetGLObjectInfo returns CL_SUCCESS if the call was executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_MEM_OBJECT if memobj is not a valid OpenCL memory object.

• CL_INVALID_GL_OBJECT if there is no OpenGL object associated with memobj.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To query additional information about the OpenGL texture object associated with an OpenCL
memory object, call the function

cl_int clGetGLTextureInfo(
    cl_mem memobj,
    cl_gl_texture_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

 clGetGLTextureInfo is provided by the cl_khr_gl_sharing extension.

• memobj is the memory object to query.

• param_name specifies what additional information about the OpenGL texture object associated
with memobj to query. The list of supported param_name types and the information returned in
param_value by clGetGLTextureInfo is described in the table below.

• param_value is a pointer to memory where the result being queried is returned. If param_value
is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be >= size of return type as described in the table below.

• param_value_size_ret returns the actual size in bytes of data copied to param_value. If
param_value_size_ret is NULL, it is ignored.

Table 39. OpenGL texture info that may be queried with clGetGLTextureInfo

cl_gl_texture_info Return Type Info. Returned in param_value

CL_GL_TEXTURE_TARGET

provided by the
cl_khr_gl_sharing extension.

GLenum The texture_target argument
specified in
clCreateFromGLTexture.

235



cl_gl_texture_info Return Type Info. Returned in param_value

CL_GL_MIPMAP_LEVEL

provided by the
cl_khr_gl_sharing extension.

GLint The miplevel argument
specified in
clCreateFromGLTexture.

CL_GL_NUM_SAMPLES

provided by the
cl_khr_gl_msaa_sharing
extension.

GLsizei The samples argument passed
to glTexImage2DMultisample or
glTexImage3DMultisample.

If image is not a MSAA texture,
1 is returned.

clGetGLTextureInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_MEM_OBJECT if memobj is not a valid OpenCL memory object.

• CL_INVALID_GL_OBJECT if there is no OpenGL texture object associated with memobj.

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is
less than the size of the return type as described in the table above and param_value is not NULL,
or if param_value and param_value_size_ret are NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.5.11. Sharing Memory Objects Created From Media Surfaces Between a
Media Adapter and OpenCL

To acquire OpenCL memory objects that have been created from a media surface, call the function

cl_int clEnqueueAcquireDX9MediaSurfacesKHR(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);


clEnqueueAcquireDX9MediaSurfacesKHR is provided by the
cl_khr_dx9_media_sharing extension.

• command_queue is a valid command-queue.

• num_objects is the number of memory objects to be acquired in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that were created from media

236



surfaces.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The media surfaces are acquired by the OpenCL context associated with command_queue and can
therefore be used by all command-queues associated with the OpenCL context.

OpenCL memory objects created from media surfaces must be acquired before they can be used by
any OpenCL commands queued to a command-queue. If an OpenCL memory object created from a
media surface is used while it is not currently acquired by OpenCL, the call attempting to use that
OpenCL memory object will return CL_DX9_MEDIA_SURFACE_NOT_ACQUIRED_KHR.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueAcquireDX9MediaSurfacesKHR provides the synchronization guarantee that any
media adapter API calls involving the interop device(s) used in the OpenCL context made before
clEnqueueAcquireDX9MediaSurfacesKHR is called will complete executing before event reports
completion and before the execution of any subsequent OpenCL work issued in command_queue
begins. If the context was created with properties specifying CL_CONTEXT_INTEROP_USER_SYNC as
CL_TRUE, the user is responsible for guaranteeing that any media adapter API calls involving the
interop device(s) used in the OpenCL context made before
clEnqueueAcquireDX9MediaSurfacesKHR is called have completed before calling
clEnqueueAcquireDX9MediaSurfacesKHR .

clEnqueueAcquireDX9MediaSurfacesKHR returns CL_SUCCESS if the function is executed
successfully. If num_objects is 0 and mem_objects is NULL then the function does nothing and returns
CL_SUCCESS. Otherwise it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects
or if memory objects in mem_objects have not been created from media surfaces.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue was not created from a device
that can share the media surface referenced by mem_objects.

• CL_DX9_MEDIA_SURFACE_ALREADY_ACQUIRED_KHR if memory objects in mem_objects have previously
been acquired using clEnqueueAcquireDX9MediaSurfacesKHR but have not been released
using clEnqueueReleaseDX9MediaSurfacesKHR.

237



• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release OpenCL memory objects that have been created from media surfaces, call the function

cl_int clEnqueueReleaseDX9MediaSurfacesKHR(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);


clEnqueueReleaseDX9MediaSurfacesKHR is provided by the
cl_khr_dx9_media_sharing extension.

• num_objects is the number of memory objects to be released in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that were created from media
surfaces.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The media surfaces are released by the OpenCL context associated with command_queue.

OpenCL memory objects created from media surfaces which have been acquired by OpenCL must
be released by OpenCL before they may be accessed by the media adapter API. Accessing a media
surface while its corresponding OpenCL memory object is acquired is in error and will result in
undefined behavior, including but not limited to possible OpenCL errors, data corruption, and
program termination.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueReleaseDX9MediaSurfacesKHR provides the synchronization guarantee that any calls
to media adapter APIs involving the interop device(s) used in the OpenCL context made after the
call to clEnqueueReleaseDX9MediaSurfacesKHR will not start executing until after all events in
event_wait_list are complete and all work already submitted to command_queue completes

238



execution. If the context was created with properties specifying CL_CONTEXT_INTEROP_USER_SYNC as
CL_TRUE, the user is responsible for guaranteeing that any media adapter API calls involving the
interop device(s) used in the OpenCL context made after
clEnqueueReleaseDX9MediaSurfacesKHR will not start executing until after event returned by
clEnqueueReleaseDX9MediaSurfacesKHR reports completion.

clEnqueueReleaseDX9MediaSurfacesKHR returns CL_SUCCESS if the function is executed
successfully. If num_objects is 0 and <mem_objects> is NULL the function does nothing and returns
CL_SUCCESS. Otherwise it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects
or if memory objects in mem_objects have not been created from valid media surfaces.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue was not created from a media
object.

• CL_DX9_MEDIA_SURFACE_NOT_ACQUIRED_KHR if memory objects in mem_objects have not previously
been acquired using clEnqueueAcquireDX9MediaSurfacesKHR, or have been released using
clEnqueueReleaseDX9MediaSurfacesKHR since the last time that they were acquired.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list> is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.5.12. Sharing Memory Objects Created From Direct3D 10 Resources
Between Direct3D 10 and OpenCL Contexts

To acquire OpenCL memory objects that have been created from Direct3D 10 resources, call the
function

cl_int clEnqueueAcquireD3D10ObjectsKHR(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);


clEnqueueAcquireD3D10ObjectsKHR is provided by the cl_khr_d3d10_sharing
extension.

• command_queue is a valid command-queue.

• num_objects is the number of memory objects to be acquired in mem_objects.

239



• mem_objects is a pointer to a list of OpenCL memory objects that were created from Direct3D 10
resources.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The Direct3D 10 objects are acquired by the OpenCL context associated with command_queue and
can therefore be used by all command-queues associated with the OpenCL context.

OpenCL memory objects created from Direct3D 10 resources must be acquired before they can be
used by any OpenCL commands queued to a command-queue. If an OpenCL memory object created
from a Direct3D 10 resource is used while it is not currently acquired by OpenCL, the behavior is
undefined. Implementations may fail the execution of commands attempting to use that OpenCL
memory object and set their associated event’s execution status to CL_D3D10_RESOURCE_NOT_ACQUIRED_
KHR.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueAcquireD3D10ObjectsKHR provides the synchronization guarantee that any Direct3D
10 calls involving the interop device(s) used in the OpenCL context made before
clEnqueueAcquireD3D10ObjectsKHR is called will complete executing before event reports
completion and before the execution of any subsequent OpenCL work issued in command_queue
begins. If the context was created with properties specifying CL_CONTEXT_INTEROP_USER_SYNC as
CL_TRUE, the user is responsible for guaranteeing that any Direct3D 10 calls involving the interop
device(s) used in the OpenCL context made before clEnqueueAcquireD3D10ObjectsKHR is called
have completed before calling clEnqueueAcquireD3D10ObjectsKHR.

clEnqueueAcquireD3D10ObjectsKHR returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL then the function does nothing and returns CL_SUCCESS.
Otherwise it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects
or if memory objects in mem_objects have not been created from Direct3D 10 resources.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue was not created from an Direct3D
10 context.

• CL_D3D10_RESOURCE_ALREADY_ACQUIRED_KHR if memory objects in mem_objects have previously been

240



acquired using clEnqueueAcquireD3D10ObjectsKHR but have not been released using
clEnqueueReleaseD3D10ObjectsKHR.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release OpenCL memory objects that have been created from Direct3D 10 resources, call the
function

cl_int clEnqueueReleaseD3D10ObjectsKHR(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);


clEnqueueReleaseD3D10ObjectsKHR is provided by the cl_khr_d3d10_sharing
extension.

• num_objects is the number of memory objects to be released in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that were created from Direct3D 10
resources.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The Direct3D 10 objects are released by the OpenCL context associated with command_queue.

OpenCL memory objects created from Direct3D 10 resources which have been acquired by OpenCL
must be released by OpenCL before they may be accessed by Direct3D 10. Accessing a Direct3D 10
resource while its corresponding OpenCL memory object is acquired is in error and will result in
undefined behavior, including but not limited to possible OpenCL errors, data corruption, and
program termination.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueReleaseD3D10ObjectsKHR provides the synchronization guarantee that any calls to

241



Direct3D 10 calls involving the interop device(s) used in the OpenCL context made after the call to
clEnqueueReleaseD3D10ObjectsKHR will not start executing until after all events in
event_wait_list are complete and all work already submitted to command_queue completes
execution. If the context was created with properties specifying CL_CONTEXT_INTEROP_USER_SYNC as
CL_TRUE, the user is responsible for guaranteeing that any Direct3D 10 calls involving the interop
device(s) used in the OpenCL context made after clEnqueueReleaseD3D10ObjectsKHR will not
start executing until after event returned by clEnqueueReleaseD3D10ObjectsKHR reports
completion.

clEnqueueReleaseD3D10ObjectsKHR returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL the function does nothing and returns CL_SUCCESS.
Otherwise it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects
or if memory objects in mem_objects have not been created from Direct3D 10 resources.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue was not created from a Direct3D
10 device.

• CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR if memory objects in mem_objects have not previously been
acquired using clEnqueueAcquireD3D10ObjectsKHR, or have been released using
clEnqueueReleaseD3D10ObjectsKHR since the last time that they were acquired.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list> is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.5.13. Sharing Memory Objects Created From Direct3D 11 Resources
Between Direct3D 11 and OpenCL Contexts

To acquire OpenCL memory objects that have been created from Direct3D 11 resources, call the
function

cl_int clEnqueueAcquireD3D11ObjectsKHR(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);


clEnqueueAcquireD3D11ObjectsKHR is provided by the cl_khr_d3d11_sharing
extension.

242



• command_queue is a valid command-queue.

• num_objects is the number of memory objects to be acquired in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that were created from Direct3D 11
resources.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The Direct3D 11 objects are acquired by the OpenCL context associated with command_queue and
can therefore be used by all command-queues associated with the OpenCL context.

OpenCL memory objects created from Direct3D 11 resources must be acquired before they can be
used by any OpenCL commands queued to a command-queue. If an OpenCL memory object created
from a Direct3D 11 resource is used while it is not currently acquired by OpenCL, the behavior is
undefined. Implementations may fail the execution of commands attempting to use that OpenCL
memory object and set their associated event’s execution status to CL_D3D11_RESOURCE_NOT_ACQUIRED_
KHR.

If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueAcquireD3D11ObjectsKHR provides the synchronization guarantee that any Direct3D
11 calls involving the interop device(s) used in the OpenCL context made before
clEnqueueAcquireD3D11ObjectsKHR is called will complete executing before event reports
completion and before the execution of any subsequent OpenCL work issued in command_queue
begins. If the context was created with properties specifying CL_CONTEXT_INTEROP_USER_SYNC as
CL_TRUE, the user is responsible for guaranteeing that any Direct3D 11 calls involving the interop
device(s) used in the OpenCL context made before clEnqueueAcquireD3D11ObjectsKHR is called
have completed before calling clEnqueueAcquireD3D11ObjectsKHR.

clEnqueueAcquireD3D11ObjectsKHR returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL then the function does nothing and returns CL_SUCCESS.
Otherwise it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects
or if memory objects in mem_objects have not been created from Direct3D 11 resources.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue was not created from an Direct3D

243



11 context.

• CL_D3D11_RESOURCE_ALREADY_ACQUIRED_KHR if memory objects in mem_objects have previously been
acquired using clEnqueueAcquireD3D11ObjectsKHR but have not been released using
clEnqueueReleaseD3D11ObjectsKHR.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release OpenCL memory objects that have been created from Direct3D 11 resources, call the
function

cl_int clEnqueueReleaseD3D11ObjectsKHR(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);


clEnqueueReleaseD3D11ObjectsKHR is provided by the cl_khr_d3d11_sharing
extension.

• num_objects is the number of memory objects to be released in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that were created from Direct3D 11
resources.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The Direct3D 11 objects are released by the OpenCL context associated with command_queue.

OpenCL memory objects created from Direct3D 11 resources which have been acquired by OpenCL
must be released by OpenCL before they may be accessed by Direct3D 11. Accessing a Direct3D 11
resource while its corresponding OpenCL memory object is acquired is in error and will result in
undefined behavior, including but not limited to possible OpenCL errors, data corruption, and
program termination.

244



If CL_CONTEXT_INTEROP_USER_SYNC is not specified as CL_TRUE during context creation,
clEnqueueReleaseD3D11ObjectsKHR provides the synchronization guarantee that any calls to
Direct3D 11 calls involving the interop device(s) used in the OpenCL context made after the call to
clEnqueueReleaseD3D11ObjectsKHR will not start executing until after all events in
event_wait_list are complete and all work already submitted to command_queue completes
execution. If the context was created with properties specifying CL_CONTEXT_INTEROP_USER_SYNC as
CL_TRUE, the user is responsible for guaranteeing that any Direct3D 11 calls involving the interop
device(s) used in the OpenCL context made after clEnqueueReleaseD3D11ObjectsKHR will not
start executing until after event returned by clEnqueueReleaseD3D11ObjectsKHR reports
completion.

clEnqueueReleaseD3D11ObjectsKHR returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL the function does nothing and returns CL_SUCCESS.
Otherwise it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects
or if memory objects in mem_objects have not been created from Direct3D 11 resources.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue was not created from a Direct3D
11 device.

• CL_D3D11_RESOURCE_NOT_ACQUIRED_KHR if memory objects in mem_objects have not previously been
acquired using clEnqueueAcquireD3D11ObjectsKHR, or have been released using
clEnqueueReleaseD3D11ObjectsKHR since the last time that they were acquired.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list> is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.5.14. Sharing Memory Objects Created From EGL Resources Between EGL
and OpenCL Contexts

To acquire OpenCL memory objects that have been created from EGL resources, call the function

cl_int clEnqueueAcquireEGLObjectsKHR(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueAcquireEGLObjectsKHR is provided by the cl_khr_egl_image

245



extension.

• command_queue is a valid command-queue.

• num_objects is the number of memory objects to be acquired in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that were created from EGL
resources, within the context associate with command_queue.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The EGL objects are acquired by the OpenCL context associated with command_queue and can
therefore be used by all command-queues associated with the OpenCL context.

OpenCL memory objects created from EGL resources must be acquired before they can be used by
any OpenCL commands queued to a command-queue. If an OpenCL memory object created from a
EGL resource is used while it is not currently acquired by OpenCL, the behavior is undefined.
Implementations may fail the execution of commands attempting to use that OpenCL memory
object and set their associated event’s execution status to CL_EGL_RESOURCE_NOT_ACQUIRED_KHR.

clEnqueueAcquireEGLObjectsKHR returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL then the function does nothing and returns CL_SUCCESS.
Otherwise it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects
in the context associated with command_queue.

• CL_INVALID_EGL_OBJECT_KHR if memory objects in mem_objects have not been created from EGL
resources.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

246



To release OpenCL memory objects that have been created from EGL resources, call the function

cl_int clEnqueueReleaseEGLObjectsKHR(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueReleaseEGLObjectsKHR is provided by the cl_khr_egl_image extension.

• command_queue is a valid command-queue.

• num_objects is the number of memory objects to be acquired in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that were created from EGL
resources, within the context associate with command_queue.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The EGL objects are released by the OpenCL context associated with <command_queue>.

OpenCL memory objects created from EGL resources which have been acquired by OpenCL must
be released by OpenCL before they may be accessed by EGL or by EGL client APIs. Accessing a EGL
resource while its corresponding OpenCL memory object is acquired is in error and will result in
undefined behavior, including but not limited to possible OpenCL errors, data corruption, and
program termination.

clEnqueueReleaseEGLObjectsKHR returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL then the function does nothing and returns CL_SUCCESS.
Otherwise it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects
in the context associated with command_queue.

• CL_INVALID_EGL_OBJECT_KHR if memory objects in mem_objects have not been created from EGL
resources.

247



• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.5.15. Acquiring, Releasing, and Synchronizing Access to Shared
OpenCL/OpenGL Memory Objects

To acquire OpenCL memory objects that have been created from OpenGL objects, call the function

cl_int clEnqueueAcquireGLObjects(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueAcquireGLObjects is provided by the cl_khr_gl_sharing extension.

• command_queue is a valid command-queue. All devices used to create the OpenCL context
associated with command_queue must support acquiring shared OpenCL/OpenGL objects. This
constraint is enforced at context creation time.

• num_objects is the number of memory objects to be acquired in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that correspond to OpenGL objects.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points.

• event returns an event object that identifies this command and can be used to query wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

If an OpenGL context is bound to the current thread, then any OpenGL commands which

1. affect or access the contents of a memory object listed in the mem_objects list, and

248



2. were issued on that OpenGL context prior to the call to clEnqueueAcquireGLObjects

will complete before execution of any OpenCL commands following the
clEnqueueAcquireGLObjects which affect or access any of those memory objects. If a non-NULL
event object is returned, it will report completion only after completion of such OpenGL commands.

These objects need to be acquired before they can be used by any OpenCL commands queued to a
command-queue or the behaviour is undefined. The OpenGL objects are acquired by the OpenCL
context associated with command_queue and can therefore be used by all command-queues
associated with the OpenCL context.

clEnqueueAcquireGLObjects returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL the function does nothing and returns CL_SUCCESS.
Otherwise, it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue was not created from an OpenGL
context

• CL_INVALID_GL_OBJECT if memory objects in mem_objects have not been created from an OpenGL
object(s).

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release OpenCL memory objects that have been created from OpenGL objects, call the function

cl_int clEnqueueReleaseGLObjects(
    cl_command_queue command_queue,
    cl_uint num_objects,
    const cl_mem* mem_objects,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueReleaseGLObjects is provided by the cl_khr_gl_sharing extension.

• num_objects is the number of memory objects to be released in mem_objects.

• mem_objects is a pointer to a list of OpenCL memory objects that correspond to OpenGL objects.

249



• event_wait_list and num_events_in_wait_list specify events that need to complete before this
command can be executed. If event_wait_list is NULL, then this particular command does not wait
on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must be 0. If
event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid and
num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act as
synchronization points.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

If an OpenGL context is bound to the current thread, then then any OpenGL commands which

1. affect or access the contents of the memory objects listed in the mem_objects list, and

2. are issued on that context after the call to clEnqueueReleaseGLObjects

will not execute until after execution of any OpenCL commands preceding the

clEnqueueReleaseGLObjects which affect or access any of those memory objects. If a non-NULL
event object is returned, it will report completion before execution of such OpenGL commands.

These objects need to be released before they can be used by OpenGL. The OpenGL objects are
released by the OpenCL context associated with command_queue.

clEnqueueReleaseGLObjects returns CL_SUCCESS if the function is executed successfully. If
num_objects is 0 and mem_objects is NULL the function does nothing and returns CL_SUCCESS.
Otherwise, it returns one of the following errors:

• CL_INVALID_VALUE if num_objects is zero and mem_objects is not a NULL value or if num_objects > 0
and mem_objects is NULL.

• CL_INVALID_MEM_OBJECT if memory objects in mem_objects are not valid OpenCL memory objects.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue was not created from an OpenGL
context

• CL_INVALID_GL_OBJECT if memory objects in mem_objects have not been created from an OpenGL
object(s).

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

250



5.5.15.1. Synchronizing Access to Memory Objects Shared With EGL or OpenGL

When sharing objects such as EGL images (if the cl_khr_egl_image extension is supported) or
OpenGL buffers, textures, and renderbuffers (if the cl_khr_gl_sharing extension is supported), in
order to ensure data integrity, the application is responsible for synchronizing access to shared
memory objects through the other API with which such objects are shared.

Failure to provide such synchronization may result in race conditions and other undefined
behavior including non-portability between implementations.

Prior to acquiring objects shared with the other API, the application must ensure that any pending
operations in that API which accesses the objects specified in mem_objects have completed.

Depending on the application and the implementation, there are two extensions which may be used
to synchronize with other APIs:

5.5.15.1.1. Synchronization With EGL and EGL Client APIs

When sharing with an EGL context via the cl_khr_egl_image extension, if the cl_khr_egl_event
extension is supported, and the EGL context in question supports fence sync objects, explicit
synchronization with EGL or EGL client APIs can be achieved as described in the Explicit
Synchronization Using EGL Fence Sync Objects section.

If the cl_khr_egl_event extension is not supported, completion of EGL client API commands may be
determined by issuing and waiting for completion of commands such as glFinish or vgFinish on all
client API contexts with pending references to these objects.

5.5.15.1.2. Synchronization With OpenGL

When sharing with an OpenGL context via the cl_khr_gl_sharing extension, the OpenCL
implementation will ensure that any such pending OpenGL operations are complete for an OpenGL
context bound to the same thread as the OpenCL context. This is referred to as implicit
synchronization.

If the cl_khr_gl_event extension is supported, and the OpenGL context in question supports fence
sync objects, explicit synchronization with OpenGL can be achieved as described in the Explicit
Synchronization Using OpenGL Fence Sync Objects section.

If the cl_khr_gl_event extension is not supported, completion of OpenGL commands may be
determined by issuing and waiting for completion of a glFinish command on all OpenGL contexts
with pending references to these objects.

5.5.15.1.3. General Considerations for Synchronization With Other APIs

Some implementations may offer other efficient synchronization methods. If such methods exist
they will be described in platform-specific documentation.

Note that no synchronization method other than glFinish is portable between all OpenGL
implementations and all OpenCL implementations. While this is the only way to ensure completion
that is portable to all platforms, glFinish is an expensive operation and its use should be avoided if
the cl_khr_egl_event or cl_khr_gl_event extensions are supported on a platform.

251



5.5.15.1.4. Synchronizing OpenCL Operations With Other APIs

After releasing a shared memory object, the application is responsible for ensuring that any
pending OpenCL operations which access the objects specified in mem_objects have completed
prior to executing subsequent commands in the other API which reference these objects.

This may be accomplished portably by calling clWaitForEvents with the event object returned by
clEnqueueReleaseGLObjects, or by calling clFinish. As above, some implementations may offer
more efficient methods.

The application is responsible for maintaining the proper order of operations if the OpenCL context
and the other API context are in separate threads.

If an OpenGL context is bound to a thread other than the one in which
clEnqueueReleaseGLObjects is called, changes to any of the objects in mem_objects may not be
visible to that context without additional steps being taken by the application. For an OpenGL 3.1
(or later) context, the requirements are described in Appendix D (“Shared Objects and Multiple
Contexts”) of the OpenGL 3.1 Specification. For prior versions of OpenGL, the requirements are
implementation-dependent.

Attempting to access the data store of an OpenGL object after it has been acquired by OpenCL and
before it has been released will result in undefined behavior. Similarly, attempting to access a
shared OpenCL/OpenGL object from OpenCL before it has been acquired by the OpenCL command-
queue, or after it has been released, will result in undefined behavior.

5.6. Shared Virtual Memory

 Shared virtual memory is missing before version 2.0.

Shared virtual memory (a.k.a. SVM) allows the host and kernels executing on devices to directly
share complex, pointer-containing data structures such as trees and linked lists. It also eliminates
the need to marshal data between the host and devices. As a result, SVM substantially simplifies
OpenCL programming and may improve performance.

5.6.1. SVM Sharing Granularity: Coarse- and Fine- Grained Sharing

OpenCL maintains memory consistency in a coarse-grained fashion in regions of buffers. We call
this coarse-grained sharing. Many platforms such as those with integrated CPU-GPU processors and
ones using the SVM-related PCI-SIG IOMMU services can do better, and can support sharing at a
granularity smaller than a buffer. We call this fine-grained sharing.

• Coarse-grained sharing: Coarse-grain sharing may be used for memory and virtual pointer
sharing between multiple devices as well as between the host and one or more devices. The
shared memory region is a memory buffer allocated using clSVMAlloc. Memory consistency is
guaranteed at synchronization points and the host can use calls to clEnqueueSVMMap and
clEnqueueSVMUnmap or create a cl_mem buffer object using the SVM pointer and use OpenCL’s
existing host API functions clEnqueueMapBuffer and clEnqueueUnmapMemObject to update
regions of the buffer. What coarse-grain buffer SVM adds to OpenCL’s earlier buffer support are
the ability to share virtual memory pointers and a guarantee that concurrent access to the same

252



memory allocation from multiple kernels on a single device is valid. The coarse-grain buffer
SVM provides a memory consistency model similar to the global memory consistency model
described in sections 3.3.1 and 3.4.3 of the OpenCL 1.2 specification. This memory consistency
applies to the regions of buffers being shared in a coarse-grained fashion. It is enforced at the
synchronization points between commands enqueued to command-queues in a single context
with the additional consideration that multiple kernels concurrently running on the same
device may safely share the data.

• Fine-grained sharing: Shared virtual memory where memory consistency is maintained at a
granularity smaller than a buffer. How fine-grained SVM is used depends on whether the device
supports SVM atomic operations.

◦ If SVM atomic operations are supported, they provide memory consistency for loads and
stores by the host and kernels executing on devices supporting SVM. This means that the
host and devices can concurrently read and update the same memory. The consistency
provided by SVM atomics is in addition to the consistency provided at synchronization
points. There is no need for explicit calls to clEnqueueSVMMap and clEnqueueSVMUnmap
or clEnqueueMapBuffer and clEnqueueUnmapMemObject on a cl_mem buffer object
created using the SVM pointer.

◦ If SVM atomic operations are not supported, the host and devices can concurrently read the
same memory locations and can concurrently update non-overlapping memory regions, but
attempts to update the same memory locations are undefined. Memory consistency is
guaranteed at synchronization points without the need for explicit calls to
clEnqueueSVMMap and clEnqueueSVMUnmap or clEnqueueMapBuffer and
clEnqueueUnmapMemObject on a cl_mem buffer object created using the SVM pointer.

• There are two kinds of fine-grain sharing support. Devices may support either fine-grain buffer
sharing or fine-grain system sharing.

◦ Fine-grain buffer sharing provides fine-grain SVM only within buffers and is an extension of
coarse-grain sharing. To support fine-grain buffer sharing in an OpenCL context, all devices
in the context must support CL_DEVICE_SVM_FINE_GRAIN_BUFFER.

◦ Fine-grain system sharing enables fine-grain sharing of the host’s entire virtual memory,
including memory regions allocated by the system malloc API. OpenCL buffer objects are
unnecessary and programmers can pass pointers allocated using malloc to OpenCL kernels.

As an illustration of fine-grain SVM using SVM atomic operations to maintain memory consistency,
consider the following example. The host and a set of devices can simultaneously access and update
a shared work-queue data structure holding work-items to be done. The host can use atomic
operations to insert new work-items into the queue at the same time as the devices using similar
atomic operations to remove work-items for processing.

It is the programmer’s responsibility to ensure that no host code or executing kernels attempt to
access a shared memory region after that memory is freed. We require the SVM implementation to
work with either 32- or 64- bit host applications subject to the following requirement: the address
space size must be the same for the host and all OpenCL devices in the context.

To allocate a shared virtual memory buffer (referred to as a SVM buffer) that can be shared by the
host and all devices in an OpenCL context that support shared virtual memory, call the function

253



void* clSVMAlloc(
    cl_context context,
    cl_svm_mem_flags flags,
    size_t size,
    cl_uint alignment);

 clSVMAlloc is missing before version 2.0.

• context is a valid OpenCL context used to create the SVM buffer.

• flags is a bit-field that is used to specify allocation and usage information. The SVM Memory
Flags table describes the possible values for flags.

• size is the size in bytes of the SVM buffer to be allocated.

• alignment is the minimum alignment in bytes that is required for the newly created buffers
memory region. It must be a power of two up to the largest data type supported by the OpenCL
device. For the full profile, the largest data type is long16. For the embedded profile, it is long16
if the device supports 64-bit integers; otherwise it is int16. If alignment is 0, a default alignment
will be used that is equal to the size of largest data type supported by the OpenCL
implementation.

Table 40. List of supported SVM memory flag values

SVM Memory Flags Description

CL_MEM_READ_WRITE This flag specifies that the SVM buffer will be
read and written by a kernel. This is the default.

CL_MEM_WRITE_ONLY This flag specifies that the SVM buffer will be
written but not read by a kernel.

Reading from a SVM buffer created with CL_MEM_
WRITE_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE and CL_MEM_WRITE_ONLY are
mutually exclusive.

CL_MEM_READ_ONLY This flag specifies that the SVM buffer object is a
read-only memory object when used inside a
kernel.

Writing to a SVM buffer created with CL_MEM_
READ_ONLY inside a kernel is undefined.

CL_MEM_READ_WRITE or CL_MEM_WRITE_ONLY and
CL_MEM_READ_ONLY are mutually exclusive.

CL_MEM_SVM_FINE_GRAIN_BUFFER

missing before version 2.0.

This specifies that the application wants the
OpenCL implementation to do a fine-grained
allocation.

254



SVM Memory Flags Description

CL_MEM_SVM_ATOMICS

missing before version 2.0.

This flag is valid only if CL_MEM_SVM_FINE_GRAIN_
BUFFER is specified in flags. It is used to indicate
that SVM atomic operations can control visibility
of memory accesses in this SVM buffer.

If CL_MEM_SVM_FINE_GRAIN_BUFFER is not specified, the buffer can be created as a coarse grained SVM
allocation. Similarly, if CL_MEM_SVM_ATOMICS is not specified, the buffer can be created without
support for SVM atomic operations (refer to an OpenCL kernel language specifications).

Calling clSVMAlloc does not itself provide consistency for the shared memory region. When the
host cannot use the SVM atomic operations, it must rely on OpenCL’s guaranteed memory
consistency at synchronization points.

For SVM to be used efficiently, the host and any devices sharing a buffer containing virtual memory
pointers should have the same endianness. If the context passed to clSVMAlloc has devices with
mixed endianness and the OpenCL implementation is unable to implement SVM because of that
mixed endianness, clSVMAlloc will fail and return NULL.

Although SVM is generally not supported for image objects, clCreateImage and
clCreateImageWithProperties may create an image from a buffer (a 1D image from a buffer or a
2D image from buffer) if the buffer specified in its image description parameter is a SVM buffer.
Such images have a linear memory representation so their memory can be shared using SVM.
However, fine grained sharing and atomics are not supported for image reads and writes in a
kernel.

clSVMAlloc returns a valid non-NULL shared virtual memory address if the SVM buffer is
successfully allocated. Otherwise, like malloc, it returns a NULL pointer value. clSVMAlloc will fail if

• context is not a valid context, or no devices in context support SVM.

• flags does not contain CL_MEM_SVM_FINE_GRAIN_BUFFER but does contain CL_MEM_SVM_ATOMICS.

• Values specified in flags do not follow rules described for supported values in the SVM Memory
Flags table.

• CL_MEM_SVM_FINE_GRAIN_BUFFER or CL_MEM_SVM_ATOMICS is specified in flags and these are not
supported by at least one device in context.

• The values specified in flags are not valid, i.e. do not match those defined in the SVM Memory
Flags table.

• size is 0 or > CL_DEVICE_MAX_MEM_ALLOC_SIZE value for any device in context.

• alignment is not a power of two or the OpenCL implementation cannot support the specified
alignment for at least one device in context.

• There was a failure to allocate resources.

To free a shared virtual memory buffer allocated using clSVMAlloc, call the function

255



void clSVMFree(
    cl_context context,
    void* svm_pointer);

 clSVMFree is missing before version 2.0.

• context is a valid OpenCL context used to create the SVM buffer. If no devices in context support
SVM, no action occurs.

• svm_pointer must be the value returned by a call to clSVMAlloc. If a NULL pointer is passed in
svm_pointer, no action occurs.

Note that clSVMFree does not wait for previously enqueued commands that may be using
svm_pointer to finish before freeing svm_pointer. It is the responsibility of the application to make
sure that enqueued commands that use svm_pointer have finished before freeing svm_pointer. This
can be done by enqueuing a blocking operation such as clFinish, clWaitForEvents,
clEnqueueReadBuffer or by registering a callback with the events associated with enqueued
commands and when the last enqueued command has finished freeing svm_pointer.

The behavior of using svm_pointer after it has been freed is undefined. In addition, if a buffer object
is created using clCreateBuffer or clCreateBufferWithProperties with svm_pointer, the buffer
object must first be released before the svm_pointer is freed.

The clEnqueueSVMFree API can also be used to enqueue a callback to free the shared virtual
memory buffer allocated using clSVMAlloc or a shared system memory pointer.

To enqueue a command to free the shared virtual memory allocated using clSVMAlloc or a shared
system memory pointer, call the function

cl_int clEnqueueSVMFree(
    cl_command_queue command_queue,
    cl_uint num_svm_pointers,
    void* svm_pointers[],
    void (CL_CALLBACK* pfn_free_func)(cl_command_queue queue, cl_uint
num_svm_pointers, void* svm_pointers[], void* user_data),
    void* user_data,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueSVMFree is missing before version 2.0.

• command_queue is a valid host command-queue.

• svm_pointers and num_svm_pointers specify shared virtual memory pointers to be freed. Each
pointer in svm_pointers that was allocated using clSVMAlloc must have been allocated from the
same context from which command_queue was created. The memory associated with
svm_pointers can be reused or freed after the function returns.

256



• pfn_free_func specifies the callback function to be called to free the SVM pointers. This callback
function may be called asynchronously by the OpenCL implementation. It is the application’s
responsibility to ensure that the callback function is thread-safe. pfn_free_func takes four
arguments: queue which is the command-queue in which clEnqueueSVMFree was enqueued,
the count and list of SVM pointers to free and user_data which is a pointer to user specified
data. If pfn_free_func is NULL, all pointers specified in svm_pointers must be allocated using
clSVMAlloc and the OpenCL implementation will free these SVM pointers. pfn_free_func must
be a valid callback function if any SVM pointer to be freed is a shared system memory pointer
i.e. not allocated using clSVMAlloc. If pfn_free_func is a valid callback function, the OpenCL
implementation will call pfn_free_func to free all the SVM pointers specified in svm_pointers.

• user_data will be passed as the user_data argument when pfn_free_func is called. user_data can
be NULL.

• event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueSVMFree can be executed. If event_wait_list is NULL, then clEnqueueSVMFree does
not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must be 0. If
event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid and
num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act as
synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

clEnqueueSVMFree returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_OPERATION if the device associated with command_queue does not support SVM.

• CL_INVALID_VALUE if num_svm_pointers is 0 and svm_pointers is non-NULL, or if svm_pointers is
NULL and num_svm_pointers is not 0.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to do a memcpy operation, call the function

257



cl_int clEnqueueSVMMemcpy(
    cl_command_queue command_queue,
    cl_bool blocking_copy,
    void* dst_ptr,
    const void* src_ptr,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueSVMMemcpy is missing before version 2.0.

• command_queue refers to the host command-queue in which the read / write command will be
queued. If either dst_ptr or src_ptr is allocated using clSVMAlloc then the OpenCL context
allocated against must match that of command_queue.

• blocking_copy indicates if the copy operation is blocking or non-blocking.

• If blocking_copy is CL_TRUE i.e. the copy command is blocking, clEnqueueSVMMemcpy does not
return until the buffer data has been copied into memory pointed to by dst_ptr.

• size is the size in bytes of data being copied.

• dst_ptr is the pointer to a host or SVM memory allocation where data is copied to.

• src_ptr is the pointer to a host or SVM memory allocation where data is copied from.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this read / write command and can be used to query
or queue a wait for this command to complete. If event is NULL or the enqueue is unsuccessful,
no event will be created and therefore it will not be possible to query the status of this
command or to wait for this command to complete. If event_wait_list and event are not NULL,
event must not refer to an element of the event_wait_list array.

If blocking_copy is CL_FALSE i.e. the copy command is non-blocking, clEnqueueSVMMemcpy queues
a non-blocking copy command and returns. The contents of the buffer that dst_ptr points to cannot
be used until the copy command has completed. The event argument returns an event object which
can be used to query the execution status of the read command. When the copy command has
completed, the contents of the buffer that dst_ptr points to can be used by the application.

If the memory allocation(s) containing dst_ptr and/or src_ptr are allocated using clSVMAlloc and
either is not allocated from the same context from which command_queue was created the behavior
is undefined.

258



clEnqueueSVMMemcpy returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_OPERATION if the device associated with command_queue does not support SVM.

• CL_INVALID_CONTEXT if the context associated with command_queue and events in event_wait_list
are not the same.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the copy operation is blocking and the
execution status of any of the events in event_wait_list is a negative integer value.

• CL_INVALID_VALUE if dst_ptr or src_ptr is NULL.

• CL_MEM_COPY_OVERLAP if the values specified for dst_ptr, src_ptr and size result in an overlapping
copy.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to fill a region in memory with a pattern of a given pattern size, call the
function

cl_int clEnqueueSVMMemFill(
    cl_command_queue command_queue,
    void* svm_ptr,
    const void* pattern,
    size_t pattern_size,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueSVMMemFill is missing before version 2.0.

• command_queue refers to the host command-queue in which the fill command will be queued.
The OpenCL context associated with command_queue and SVM pointer referred to by svm_ptr
must be the same.

• svm_ptr is a pointer to a memory region that will be filled with pattern. It must be aligned to
pattern_size bytes. If svm_ptr is allocated using clSVMAlloc then it must be allocated from the
same context from which command_queue was created. Otherwise the behavior is undefined.

• pattern is a pointer to the data pattern of size pattern_size in bytes. pattern will be used to fill a
region in buffer starting at svm_ptr and is size bytes in size. The data pattern must be a scalar or
vector integer or floating-point data type supported by OpenCL as described in Shared

259



Application Scalar Data Types and Supported Application Vector Data Types. For example, if
region pointed to by svm_ptr is to be filled with a pattern of float4 values, then pattern will be a
pointer to a cl_float4 value and pattern_size will be sizeof(cl_float4). The maximum value of
pattern_size is the size of the largest integer or floating-point vector data type supported by the
OpenCL device. The memory associated with pattern can be reused or freed after the function
returns.

• size is the size in bytes of region being filled starting with svm_ptr and must be a multiple of
pattern_size.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

clEnqueueSVMMemFill returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_OPERATION if the device associated with command_queue does not support SVM.

• CL_INVALID_CONTEXT if the context associated with command_queue and events in event_wait_list
are not the same.

• CL_INVALID_VALUE if svm_ptr is NULL.

• CL_INVALID_VALUE if svm_ptr is not aligned to pattern_size bytes.

• CL_INVALID_VALUE if pattern is NULL or if pattern_size is 0 or if pattern_size is not one of {1, 2, 4, 8,
16, 32, 64, 128}.

• CL_INVALID_VALUE if size is not a multiple of pattern_size.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command that will allow the host to update a region of a SVM buffer, call the function

260



cl_int clEnqueueSVMMap(
    cl_command_queue command_queue,
    cl_bool blocking_map,
    cl_map_flags flags,
    void* svm_ptr,
    size_t size,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueSVMMap is missing before version 2.0.

• command_queue must be a valid host command-queue.

• blocking_map indicates if the map operation is blocking or non-blocking.

• map_flags is a bit-field and is described in the Memory Map Flags table.

• svm_ptr and size are a pointer to a memory region and size in bytes that will be updated by the
host. If svm_ptr is allocated using clSVMAlloc then it must be allocated from the same context
from which command_queue was created. Otherwise the behavior is undefined.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

If blocking_map is CL_TRUE, clEnqueueSVMMap does not return until the application can access the
contents of the SVM region specified by svm_ptr and size on the host.

If blocking_map is CL_FALSE i.e. map operation is non-blocking, the region specified by svm_ptr and
size cannot be used until the map command has completed. The event argument returns an event
object which can be used to query the execution status of the map command. When the map
command is completed, the application can access the contents of the region specified by svm_ptr
and size.

Note that since we are enqueuing a command with a SVM buffer, the region is already mapped in
the host address space.

clEnqueueSVMMap returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

261



• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_OPERATION if the device associated with command_queue does not support SVM.

• CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_VALUE if svm_ptr is NULL.

• CL_INVALID_VALUE if size is 0 or if values specified in map_flags are not valid.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the map operation is blocking and the
execution status of any of the events in event_wait_list is a negative integer value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to indicate that the host has completed updating the region given by
svm_ptr and which was specified in a previous call to clEnqueueSVMMap, call the function

cl_int clEnqueueSVMUnmap(
    cl_command_queue command_queue,
    void* svm_ptr,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueSVMUnmap is missing before version 2.0.

• command_queue must be a valid host command-queue.

• svm_ptr is a pointer that was specified in a previous call to clEnqueueSVMMap. If svm_ptr is
allocated using clSVMAlloc then it must be allocated from the same context from which
command_queue was created. Otherwise the behavior is undefined.

• event_wait_list and num_events_in_wait_list specify events that need to complete before
clEnqueueSVMUnmap can be executed. If event_wait_list is NULL, then clEnqueueSVMUnmap
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait

262



for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

clEnqueueSVMMap and clEnqueueSVMUnmap act as synchronization points for the region of the
SVM buffer specified in these calls.

clEnqueueSVMUnmap returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_OPERATION if the device associated with command_queue does not support SVM.

• CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_VALUE if svm_ptr is NULL.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or if
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.



If a coarse-grained SVM buffer is currently mapped for writing, the application
must ensure that the SVM buffer is unmapped before any enqueued kernels or
commands that read from or write to this SVM buffer or any of its associated
cl_mem buffer objects begin execution; otherwise the behavior is undefined.

If a coarse-grained SVM buffer is currently mapped for reading, the application
must ensure that the SVM buffer is unmapped before any enqueued kernels or
commands that write to this memory object or any of its associated cl_mem buffer
objects begin execution; otherwise the behavior is undefined.

A SVM buffer is considered as mapped if there are one or more active mappings
for the SVM buffer irrespective of whether the mapped regions span the entire
SVM buffer.

The above note does not apply to fine-grained SVM buffers (fine-grained buffers
allocated using clSVMAlloc or fine-grained system allocations).

To enqueue a command to indicate which device a set of ranges of SVM allocations should be
associated with, call the function

263



cl_int clEnqueueSVMMigrateMem(
    cl_command_queue command_queue,
    cl_uint num_svm_pointers,
    const void** svm_pointers,
    const size_t* sizes,
    cl_mem_migration_flags flags,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueSVMMigrateMem is missing before version 2.1.

• command_queue is a valid host command-queue. The specified set of allocation ranges will be
migrated to the OpenCL device associated with command_queue.

• num_svm_pointers is the number of pointers in the specified svm_pointers array, and the
number of sizes in the sizes array, if sizes is not NULL.

• svm_pointers is a pointer to an array of pointers. Each pointer in this array must be within an
allocation produced by a call to clSVMAlloc.

• sizes is an array of sizes. The pair svm_pointers[i] and sizes[i] together define the starting
address and number of bytes in a range to be migrated. sizes may be NULL indicating that every
allocation containing any svm_pointer[i] is to be migrated. Also, if sizes[i] is zero, then the entire
allocation containing svm_pointer[i] is migrated.

• flags is a bit-field that is used to specify migration options. The Memory Migration Flags
describes the possible values for flags.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or queue a
wait for this command to complete. If event is NULL or the enqueue is unsuccessful, no event will
be created and therefore it will not be possible to query the status of this command or to wait
for this command to complete. If event_wait_list and event are not NULL, event must not refer to
an element of the event_wait_list array.

Once the event returned by clEnqueueSVMMigrateMem has become CL_COMPLETE, the ranges
specified by svm pointers and sizes have been successfully migrated to the device associated with
command-queue.

The user is responsible for managing the event dependencies associated with this command in
order to avoid overlapping access to SVM allocations. Improperly specified event dependencies
passed to clEnqueueSVMMigrateMem could result in undefined results.

264



clEnqueueSVMMigrateMem returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_OPERATION if the device associated with command_queue does not support SVM.

• CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_VALUE if num_svm_pointers is zero or svm_pointers is NULL.

• CL_INVALID_VALUE if sizes[i] is non-zero range [svm_pointers[i], svm_pointers[i]+sizes[i]) is not
contained within an existing clSVMAlloc allocation.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or if
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.6.2. Memory Consistency for SVM Allocations

To ensure memory consistency in SVM allocations, the program can rely on the guaranteed
memory consistency at synchronization points. This consistency support already exists in OpenCL
1.x and can be used for coarse-grained SVM allocations or for fine-grained buffer SVM allocations;
what SVM adds is the ability to share pointers between the host and all SVM devices.

In addition, sub-buffers can also be used to ensure that each device gets a consistent view of a SVM
buffers memory when it is shared by multiple devices. For example, assume that two devices share
a SVM pointer. The host can create a cl_mem buffer object using clCreateBuffer or
clCreateBufferWithProperties with CL_MEM_USE_HOST_PTR and host_ptr set to the SVM pointer and
then create two disjoint sub-buffers with starting virtual addresses sb1_ptr and sb2_ptr. These
pointers (sb1_ptr and sb2_ptr) can be passed to kernels executing on the two devices.
clEnqueueMapBuffer and clEnqueueUnmapMemObject and the existing access rules for
memory objects ensure consistency for buffer regions (sb1_ptr and sb2_ptr) read and written by
these kernels.

When the host and devices are able to use SVM atomic operations (i.e. CL_DEVICE_SVM_ATOMICS is set
in CL_DEVICE_SVM_CAPABILITIES), these atomic operations can be used to provide memory
consistency at a fine grain in a shared memory region. The effect of these operations is visible to
the host and all devices with which that memory is shared.

5.7. Sampler Objects
A sampler object describes how to sample an image when the image is read in the kernel. The built-
in functions to read from an image in a kernel take a sampler as an argument. The sampler
arguments to the image read function can be sampler objects created using OpenCL functions and

265



passed as argument values to the kernel or can be samplers declared inside a kernel. In this section
we discuss how sampler objects are created using OpenCL functions.

5.7.1. Creating Sampler Objects

To create a sampler object, call the function

cl_sampler clCreateSamplerWithProperties(
    cl_context context,
    const cl_sampler_properties* sampler_properties,
    cl_int* errcode_ret);

 clCreateSamplerWithProperties is missing before version 2.0.

• context must be a valid OpenCL context.

• sampler_properties specifies a list of sampler property names and their corresponding values.
Each sampler property name is immediately followed by the corresponding desired value. The
list is terminated with 0. The list of supported properties is described in the Sampler Properties
table. If a supported property and its value is not specified in sampler_properties, its default
value will be used. sampler_properties can be NULL in which case the default values for
supported sampler properties will be used.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Table 41. List of supported sampler creation properties by clCreateSamplerWithProperties

Sampler Property Property Value Description

CL_SAMPLER_NORMALIZED_COORDS cl_bool A boolean value that specifies whether the
image coordinates specified are normalized or
not.

The default value (i.e. the value used if this
property is not specified in sampler_properties)
is CL_TRUE.

266



Sampler Property Property Value Description

CL_SAMPLER_ADDRESSING_MODE cl_addressing_
mode

Specifies how out-of-range image coordinates
are handled when reading from an image. Valid
values are:

CL_ADDRESS_NONE - Behavior is undefined for out-
of-range image coordinates.

CL_ADDRESS_CLAMP_TO_EDGE - Out-of-range image
coordinates are clamped to the edge of the
image.

CL_ADDRESS_CLAMP - Out-of-range image
coordinates are assigned a border color value.

CL_ADDRESS_REPEAT - Out-of-range image
coordinates read from the image as if the image
data were replicated in all dimensions.

CL_ADDRESS_MIRRORED_REPEAT - Out-of-range image
coordinates read from the image as if the image
data were replicated in all dimensions,
mirroring the image contents at the edge of each
replication.

The default is CL_ADDRESS_CLAMP.

CL_SAMPLER_FILTER_MODE cl_filter_mode Specifies the type of filter that is applied when
reading an image. Valid values are:

CL_FILTER_NEAREST - Returns the image element
nearest to the image coordinate.

CL_FILTER_LINEAR - Returns a weighted average of
the four image elements nearest to the image
coordinate.

The default value is CL_FILTER_NEAREST.

267



Sampler Property Property Value Description

CL_SAMPLER_MIP_FILTER_MODE_KHR

provided by the
cl_khr_mipmap_image extension.

cl_filter_mode Specifies the mipmap filter used when sampling
from a mipmapped image. The available filter
are:

CL_FILTER_NEAREST - Use the nearest mipmap
level to the image coordinate.

CL_FILTER_LINEAR - Use a weighted average of the
two mipmap levels nearest to the image
coordinate.

The default is CL_FILTER_NEAREST.

CL_SAMPLER_LOD_MIN_KHR

provided by the
cl_khr_mipmap_image extension.

cl_float Specifies the minimum value to which the
computed level of detail lambda is clamped
when sampling from a mipmapped image.

The default is 0.0f.

CL_SAMPLER_LOD_MAX_KHR

provided by the
cl_khr_mipmap_image extension.

cl_float Specifies the maximum value to which the
computed level of detail lambda is clamped
when sampling from a mipmapped image.

The default is MAXFLOAT.



When the cl_khr_mipmap_image extension is supported, the sampler properties
CL_SAMPLER_MIP_FILTER_MODE_KHR, CL_SAMPLER_LOD_MIN_KHR and CL_SAMPLER_LOD_MAX_
KHR cannot be specified with any samplers initialized in the OpenCL program
source. Only the default values for these properties will be used. To create a
sampler with specific values for these properties, a sampler object must be created
with clCreateSamplerWithProperties and passed as an argument to a kernel.

clCreateSamplerWithProperties returns a valid non-zero sampler object and errcode_ret is set to
CL_SUCCESS if the sampler object is created successfully. Otherwise, it returns a NULL value with one
of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if the property name in sampler_properties is not a supported property name,
if the value specified for a supported property name is not valid, or if the same property name
is specified more than once.

• CL_INVALID_OPERATION if images are not supported by any device associated with context (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

268



To create a sampler object, call the function

cl_sampler clCreateSampler(
    cl_context context,
    cl_bool normalized_coords,
    cl_addressing_mode addressing_mode,
    cl_filter_mode filter_mode,
    cl_int* errcode_ret);

 clCreateSampler is deprecated by version 2.0.

• context must be a valid OpenCL context.

• normalized_coords has the same interpretation as CL_SAMPLER_NORMALIZED_COORDS in the sampler
creation properties table.

• addressing_mode has the same interpretation as CL_SAMPLER_ADDRESSING_MODE in the sampler
creation properties table.

• filter_mode has the same interpretation as CL_SAMPLER_FILTER_MODE in the sampler creation
properties table.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateSampler returns a valid non-zero sampler object and errcode_ret is set to CL_SUCCESS if the
sampler object is created successfully. Otherwise, it returns a NULL value with one of the following
error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if addressing_mode, filter_mode, normalized_coords or a combination of these
arguements are not valid.

• CL_INVALID_OPERATION if images are not supported by any device associated with context (i.e.
CL_DEVICE_IMAGE_SUPPORT specified in the Device Queries table is CL_FALSE).

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To retain a sampler object, call the function

cl_int clRetainSampler(
    cl_sampler sampler);

• sampler specifies the sampler to be released.

The sampler reference count is incremented. clCreateSamplerWithProperties and
clCreateSampler perform an implicit retain.

269



clRetainSampler returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_SAMPLER if sampler is not a valid sampler object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release a sampler object, call the function

cl_int clReleaseSampler(
    cl_sampler sampler);

• sampler specifies the sampler to be released.

The sampler reference count is decremented. The sampler object is deleted after the reference
count becomes zero and commands queued for execution on a command-queue(s) that use sampler
have finished.

clReleaseSampler returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_SAMPLER if sampler is not a valid sampler object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Using this function to release a reference that was not obtained by creating the object or by calling
clRetainSampler causes undefined behavior.

5.7.2. Sampler Object Queries

To return information about a sampler object, call the function

cl_int clGetSamplerInfo(
    cl_sampler sampler,
    cl_sampler_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• sampler specifies the sampler being queried.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetSamplerInfo is described in the Sampler Object

270



Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Sampler Object Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 42. List of supported param_names by clGetSamplerInfo

Sampler Info Return Type Description

CL_SAMPLER_REFERENCE_COUNT [11] cl_uint Return the sampler reference count.

CL_SAMPLER_CONTEXT cl_context Return the context specified when the sampler is
created.

CL_SAMPLER_NORMALIZED_COORDS cl_bool Return the normalized coords value associated
with sampler.

CL_SAMPLER_ADDRESSING_MODE cl_addressing_
mode

Return the addressing mode value associated
with sampler.

CL_SAMPLER_FILTER_MODE cl_filter_mode Return the filter mode value associated with
sampler.

CL_SAMPLER_PROPERTIES

missing before version 3.0.

cl_sampler_
properties[]

Return the properties argument specified in
clCreateSamplerWithProperties.

If the properties argument specified in
clCreateSamplerWithProperties used to create
sampler was not NULL, the implementation must
return the values specified in the properties
argument in the same order and without
including additional properties.

If sampler was created using clCreateSampler,
or if the properties argument specified in
clCreateSamplerWithProperties was NULL, the
implementation must return
param_value_size_ret equal to 0, indicating that
there are no properties to be returned.

clGetSamplerInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Sampler Object Queries table and param_value is not NULL.

• CL_INVALID_SAMPLER if sampler is a not a valid sampler object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

271



• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8. Program Objects
An OpenCL program consists of a set of kernels that are identified as functions declared with the
__kernel qualifier in the program source. OpenCL programs may also contain auxiliary functions
and constant data that can be used by kernel functions. The program executable can be generated
online or offline by the OpenCL compiler for the appropriate target device(s).

A program object encapsulates the following information:

• An associated context.

• A program source or binary.

• The latest successfully built program executable, library or compiled binary, the list of devices
for which the program executable, library or compiled binary is built, the build options used
and a build log.

• The number of kernel objects currently attached.

5.8.1. Creating Program Objects

To creates a program object for a context and load source code into that object, call the function

cl_program clCreateProgramWithSource(
    cl_context context,
    cl_uint count,
    const char** strings,
    const size_t* lengths,
    cl_int* errcode_ret);

• context must be a valid OpenCL context.

• strings is an array of count pointers to optionally null-terminated character strings that make up
the source code.

• lengths argument is an array with the number of chars in each string (the string length). If an
element in lengths is zero, its accompanying string is null-terminated. If lengths is NULL, all
strings in the strings argument are considered null-terminated. Any length value passed in that
is greater than zero excludes the null terminator in its count.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The source code specified by strings will be loaded into the program object.

The devices associated with the program object are the devices associated with context. The source
code specified by strings is either an OpenCL C program source, header or implementation-defined
source for custom devices that support an online compiler. OpenCL C++ is not supported as an
online-compiled kernel language through this interface.

272



clCreateProgramWithSource returns a valid non-zero program object and errcode_ret is set to
CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value with one
of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if count is zero or if strings or any entry in strings is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create a program object for a context and load code in an intermediate language into that object,
call the function

cl_program clCreateProgramWithIL(
    cl_context context,
    const void* il,
    size_t length,
    cl_int* errcode_ret);

 clCreateProgramWithIL is missing before version 2.1.

or the equivalent

cl_program clCreateProgramWithILKHR(
    cl_context context,
    const void* il,
    size_t length,
    cl_int* errcode_ret);

 clCreateProgramWithILKHR is provided by the cl_khr_il_program extension.

• context must be a valid OpenCL context.

• il is a pointer to a block of memory containing SPIR-V or an implementation-defined
intermediate language.

• length is the length of the block pointed to by il.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The intermediate language pointed to by il and with length in bytes length will be loaded into the
program object. The devices associated with the program object are the devices associated with
context.

clCreateProgramWithIL returns a valid non-zero program object and errcode_ret is set to
CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value with one

273



of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_OPERATION if no devices in context support intermediate language programs.

• CL_INVALID_VALUE if il is NULL or if length is zero.

• CL_INVALID_VALUE if the length-byte block of memory pointed to by il does not contain well-
formed intermediate language input that can be consumed by the OpenCL runtime.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create a program object for a context and load binary bits into that object, call the function

cl_program clCreateProgramWithBinary(
    cl_context context,
    cl_uint num_devices,
    const cl_device_id* device_list,
    const size_t* lengths,
    const unsigned char** binaries,
    cl_int* binary_status,
    cl_int* errcode_ret);

• context must be a valid OpenCL context.

• device_list is a pointer to a list of devices that are in context. device_list must be a non-NULL value.
The binaries are loaded for devices specified in this list.

• num_devices is the number of devices listed in device_list.

• lengths is an array of the size in bytes of the program binaries to be loaded for devices specified
by device_list.

• binaries is an array of pointers to program binaries to be loaded for devices specified by
device_list. For each device given by device_list[i], the pointer to the program binary for that
device is given by binaries[i] and the length of this corresponding binary is given by lengths[i].
lengths[i] cannot be zero and binaries[i] cannot be a NULL pointer.

• binary_status returns whether the program binary for each device specified in device_list was
loaded successfully or not. It is an array of num_devices entries and returns CL_SUCCESS in
binary_status[i] if binary was successfully loaded for device specified by device_list[i]; otherwise
returns CL_INVALID_VALUE if lengths[i] is zero or if binaries[i] is a NULL value or CL_INVALID_BINARY
in binary_status[i] if program binary is not a valid binary for the specified device. If
binary_status is NULL, it is ignored.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

The devices associated with the program object will be the list of devices specified by device_list.
The list of devices specified by device_list must be devices associated with context.

274



The program binaries specified by binaries will be loaded into the program object. They contain bits
that describe one of the following:

• a program executable to be run on the device(s) associated with context,

• a compiled program for device(s) associated with context, or

• a library of compiled programs for device(s) associated with context.

The program binary can consist of either or both:

• Device-specific code and/or,

• Implementation-specific intermediate representation (IR) which will be converted to the device-
specific code.

OpenCL allows applications to create a program object using the program source or binary and
build appropriate program executables. This can be very useful as it allows applications to load
program source and then compile and link to generate a program executable online on its first
instance for appropriate OpenCL devices in the system. These executables can now be queried and
cached by the application. The cached executables can be read and loaded by the application, which
can help significantly reduce the application initialization time.

If the cl_khr_spir extension is supported, clCreateProgramWithBinary can be used to load a SPIR
binary. Once a program object has been created from a SPIR binary, clBuildProgram can be called
to build a program executable or clCompileProgram can be called to compile the SPIR binary.

clCreateProgramWithBinary returns a valid non-zero program object and errcode_ret is set to
CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value with one
of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if device_list is NULL or num_devices is zero.

• CL_INVALID_DEVICE if any device in device_list is not in the list of devices associated with context.

• CL_INVALID_VALUE if lengths or binaries is NULL or if any entry in lengths[i] is zero or binaries[i] is
NULL.

• CL_INVALID_BINARY if an invalid program binary was encountered for any device. binary_status
will return specific status for each device.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create a program object for a context and loads the information related to the built-in kernels
into that object, call the function

275



cl_program clCreateProgramWithBuiltInKernels(
    cl_context context,
    cl_uint num_devices,
    const cl_device_id* device_list,
    const char* kernel_names,
    cl_int* errcode_ret);

 clCreateProgramWithBuiltInKernels is missing before version 1.2.

• context must be a valid OpenCL context.

• num_devices is the number of devices listed in device_list.

• device_list is a pointer to a list of devices that are in context. device_list must be a non-NULL value.
The built-in kernels are loaded for devices specified in this list.

• kernel_names is a semi-colon separated list of built-in kernel names.

The devices associated with the program object will be the list of devices specified by device_list.
The list of devices specified by device_list must be devices associated with context.

clCreateProgramWithBuiltInKernels returns a valid non-zero program object and errcode_ret is
set to CL_SUCCESS if the program object is created successfully. Otherwise, it returns a NULL value
with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if device_list is NULL or num_devices is zero.

• CL_INVALID_VALUE if kernel_names is NULL or kernel_names contains a kernel name that is not
supported by any of the devices in device_list.

• CL_INVALID_DEVICE if any device in device_list is not in the list of devices associated with context.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.2. Retaining and Releasing Program Objects

To retain a program object, call the function

cl_int clRetainProgram(
    cl_program program);

• program is the program object to be retained.

The program reference count is incremented. All APIs that create a program do an implicit retain.

clRetainProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns

276



one of the following errors:

• CL_INVALID_PROGRAM if program is not a valid program object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release a program object, call the function

cl_int clReleaseProgram(
    cl_program program);

• program is the program object to be released.

The program reference count is decremented. The program object is deleted after all kernel objects
associated with program have been deleted and the program reference count becomes zero.

clReleaseProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_PROGRAM if program is not a valid program object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Using this function to release a reference that was not obtained by creating the object or by calling
clRetainProgram causes undefined behavior.

To register a callback function with a program object that is called when the program object is
destroyed, call the function

cl_int clSetProgramReleaseCallback(
    cl_program program,
    void (CL_CALLBACK* pfn_notify)(cl_program program, void* user_data),
    void* user_data);


clSetProgramReleaseCallback is missing before version 2.2 and deprecated by
version 3.0.

• program specifies the memory object to register the callback to.

• pfn_notify is the callback function to register. This callback function may be called
asynchronously by the OpenCL implementation. It is the application’s responsibility to ensure
that the callback function is thread-safe. The parameters to this callback function are:

277



◦ program is the program being deleted. When the callback function is called by the
implementation, this program object is not longer valid. program is only provided for
reference purposes.

◦ user_data is a pointer to user supplied data.

• user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

Each call to clSetProgramReleaseCallback registers the specified callback function on a callback
stack associated with program. The registered callback functions are called in the reverse order in
which they were registered. The registered callback functions are called after destructors (if any)
for program scope global variables (if any) are called and before the program object is deleted. This
provides a mechanism for an application to be notified when destructors for program scope global
variables are complete.

clSetProgramReleaseCallback may unconditionally return an error if no devices in the context
associated with program support destructors for program scope global variables. Support for
constructors and destructors for program scope global variables is required only for OpenCL 2.2
devices.

clSetProgramReleaseCallback returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_PROGRAM if program is not a valid program object.

• CL_INVALID_OPERATION if no devices in the context associated with program support destructors
for program scope global variables.

• CL_INVALID_VALUE if pfn_notify is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.3. Setting SPIR-V Specialization Constants

 Specialization constants are missing before version 2.2.

To set the value of a specialization constant, call the function

cl_int clSetProgramSpecializationConstant(
    cl_program program,
    cl_uint spec_id,
    size_t spec_size,
    const void* spec_value);

 clSetProgramSpecializationConstant is missing before version 2.2.

278



• program must be a valid OpenCL program created from an intermediate language (e.g. SPIR-V).

• spec_id identifies the specialization constant whose value will be set.

• spec_size specifies the size in bytes of the data pointed to by spec_value. This should be 1 for
boolean constants. For all other constant types this should match the size of the specialization
constant in the module.

• spec_value is a pointer to the memory location that contains the value of the specialization
constant. The data pointed to by spec_value are copied and can be safely reused by the
application after clSetProgramSpecializationConstant returns. This specialization value will
be used by subsequent calls to clBuildProgram until another call to
clSetProgramSpecializationConstant changes it. If a specialization constant is a boolean
constant, spec_value should be a pointer to a cl_uchar value. A value of zero will set the
specialization constant to false; any other value will set it to true.

Calling this function multiple times for the same specialization constant shall cause the last
provided value to override any previously specified value. The values are used by a subsequent
clBuildProgram call for the program.

Application is not required to provide values for every specialization constant contained in the
module. If the value is not set by this API call, default values will be used during the build.

clSetProgramSpecializationConstant returns CL_SUCCESS if the function is executed successfully.

Otherwise, it returns one of the following errors:

• CL_INVALID_PROGRAM if program is not a valid program object created from an intermediate
language (e.g. SPIR-V), or if the intermediate language does not support specialization constants.

• CL_INVALID_OPERATION if no devices associated with program support intermediate language
programs.

• CL_COMPILER_NOT_AVAILABLE if program is created with clCreateProgramWithIL and a compiler
is not available, i.e. CL_DEVICE_COMPILER_AVAILABLE specified in the Device Queries table is set to
CL_FALSE.

• CL_INVALID_SPEC_ID if spec_id is not a valid specialization constant identifier.

• CL_INVALID_VALUE if spec_size does not match the size of the specialization constant in the
module, or if spec_value is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.4. Building Program Executables

To build (compile & link) a program executable, call the function

279



cl_int clBuildProgram(
    cl_program program,
    cl_uint num_devices,
    const cl_device_id* device_list,
    const char* options,
    void (CL_CALLBACK* pfn_notify)(cl_program program, void* user_data),
    void* user_data);

• program is the program object.

• device_list is a pointer to a list of devices associated with program. If device_list is a NULL value,
the program executable is built for all devices associated with program for which a source or
binary has been loaded. If device_list is a non-NULL value, the program executable is built for
devices specified in this list for which a source or binary has been loaded.

• num_devices is the number of devices listed in device_list.

• options is a pointer to a null-terminated string of characters that describes the build options to
be used for building the program executable. The list of supported options is described in
Compiler Options. If the program was created using clCreateProgramWithBinary and options
is a NULL pointer, the program will be built as if options were the same as when the program
binary was originally built. If the program was created using clCreateProgramWithBinary and
options string contains anything other than the same options in the same order (whitespace
ignored) as when the program binary was originally built, then the behavior is implementation-
defined. Otherwise, if options is a NULL pointer then it will have the same result as the empty
string.

• pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully). If pfn_notify is not NULL, clBuildProgram does
not need to wait for the build to complete and can return immediately once the build operation
can begin. Any state changes of the program object that result from calling clBuildProgram
(e.g. build status or log) will be observable from this callback function. The build operation can
begin if the context, program whose sources are being compiled and linked, list of devices and
build options specified are all valid and appropriate host and device resources needed to
perform the build are available. If pfn_notify is NULL, clBuildProgram does not return until the
build has completed. This callback function may be called asynchronously by the OpenCL
implementation. It is the application’s responsibility to ensure that the callback function is
thread-safe.

• user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

The program executable is built from the program source or binary for all the devices, or a specific
device(s) in the OpenCL context associated with program. OpenCL allows program executables to be
built using the source or the binary. clBuildProgram must be called for program created using
clCreateProgramWithSource, clCreateProgramWithIL or clCreateProgramWithBinary to build
the program executable for one or more devices associated with program. If program is created
with clCreateProgramWithBinary, then the program binary must be an executable binary (not a
compiled binary or library).

280



The executable binary can be queried using clGetProgramInfo(program, CL_PROGRAM_BINARIES, …)
and can be specified to clCreateProgramWithBinary to create a new program object.

clBuildProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_PROGRAM if program is not a valid program object.

• CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if device_list is not
NULL and num_devices is zero.

• CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

• CL_INVALID_DEVICE if any device in device_list is not in the list of devices associated with
program.

• CL_INVALID_BINARY if program is created with clCreateProgramWithBinary and devices listed in
device_list do not have a valid program binary loaded.

• CL_INVALID_BUILD_OPTIONS if the build options specified by options are invalid.

• CL_COMPILER_NOT_AVAILABLE if program is created with clCreateProgramWithILKHR,
clCreateProgramWithSource or clCreateProgramWithIL and a compiler is not available, i.e.
CL_DEVICE_COMPILER_AVAILABLE specified in the Device Queries table is set to CL_FALSE.

• CL_BUILD_PROGRAM_FAILURE if there is a failure to build the program executable. This error will be
returned if clBuildProgram does not return until the build has completed.

• CL_INVALID_OPERATION if the build of a program executable for any of the devices listed in
device_list by a previous call to clBuildProgram for program has not completed.

• CL_INVALID_OPERATION if there are kernel objects attached to program.

• CL_INVALID_OPERATION if program was not created with clCreateProgramWithSource,
clCreateProgramWithIL or clCreateProgramWithBinary.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.5. Separate Compilation and Linking of Programs

 Separate compilation and linking are missing before version 1.2.

OpenCL programs are compiled and linked to support the following:

• Separate compilation and link stages. Program sources can be compiled to generate a compiled
binary object and linked in a separate stage with other compiled program objects to the
program executable.

• Embedded headers. In OpenCL 1.0 and 1.1, the I build option could be used to specify the list of
directories to be searched for headers files that are included by a program source(s). OpenCL 1.2
extends this by allowing the header sources to come from program objects instead of just
header files.

281



• Libraries. The linker can be used to link compiled objects and libraries into a program
executable or to create a library of compiled binaries.

To compile a program’s source for all the devices or a specific device(s) in the OpenCL context
associated with the program, call the function

cl_int clCompileProgram(
    cl_program program,
    cl_uint num_devices,
    const cl_device_id* device_list,
    const char* options,
    cl_uint num_input_headers,
    const cl_program* input_headers,
    const char** header_include_names,
    void (CL_CALLBACK* pfn_notify)(cl_program program, void* user_data),
    void* user_data);

 clCompileProgram is missing before version 1.2.

• program is the program object that is the compilation target.

• device_list is a pointer to a list of devices associated with program. If device_list is a NULL value,
the compile is performed for all devices associated with program. If device_list is a non-NULL
value, the compile is performed for devices specified in this list.

• num_devices is the number of devices listed in device_list.

• options is a pointer to a null-terminated string of characters that describes the compilation
options to be used for building the program executable. If options is a NULL pointer then it will
have the same result as the empty string. Certain options are ignored when program is created
with IL. The list of supported options is as described in Compiler Options.

• num_input_headers specifies the number of programs that describe headers in the array
referenced by input_headers.

• input_headers is an array of program embedded headers created with
clCreateProgramWithSource.

• header_include_names is an array that has a one to one correspondence with input_headers.
Each entry in header_include_names specifies the include name used by source in program that
comes from an embedded header. The corresponding entry in input_headers identifies the
program object which contains the header source to be used. The embedded headers are first
searched before the headers in the list of directories specified by the -I compile option (as
described in Preprocessor options). If multiple entries in header_include_names refer to the
same header name, the first one encountered will be used.

• pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully). If pfn_notify is not NULL, clCompileProgram does
not need to wait for the compiler to complete and can return immediately once the compilation
can begin. Any state changes of the program object that result from calling clCompileProgram
(e.g. compile status or log) will be observable from this callback function. The compilation can

282



begin if the context, program whose sources are being compiled, list of devices, input headers,
programs that describe input headers and compiler options specified are all valid and
appropriate host and device resources needed to perform the compile are available. If
pfn_notify is NULL, clCompileProgram does not return until the compiler has completed. This
callback function may be called asynchronously by the OpenCL implementation. It is the
application’s responsibility to ensure that the callback function is thread-safe.

• user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

The pre-processor runs before the program sources are compiled. The compiled binary is built for
all devices associated with program or the list of devices specified. The compiled binary can be
queried using clGetProgramInfo(program, CL_PROGRAM_BINARIES, …) and can be passed to
clCreateProgramWithBinary to create a new program object.

If program was created using clCreateProgramWithIL, then num_input_headers, input_headers,
and header_include_names are ignored.

For example, consider the following program source:

#include <foo.h>
#include <mydir/myinc.h>
__kernel void
image_filter (int n, int m,
              __constant float *filter_weights,
              __read_only image2d_t src_image,
              __write_only image2d_t dst_image)
{
...
}

This kernel includes two headers foo.h and mydir/myinc.h. The following describes how these
headers can be passed as embedded headers in program objects:

cl_program foo_pg = clCreateProgramWithSource(context,
    1, &foo_header_src, NULL, &err);
cl_program myinc_pg = clCreateProgramWithSource(context,
    1, &myinc_header_src, NULL, &err);

// lets assume the program source described above is given
// by program_A and is loaded via clCreateProgramWithSource
cl_program input_headers[2] = { foo_pg, myinc_pg };
char * input_header_names[2] = { foo.h, mydir/myinc.h };
clCompileProgram(program_A,
                 0, NULL, // num_devices & device_list
                 NULL,    // compile_options
                 2,       // num_input_headers
                 input_headers,
                 input_header_names,
                 NULL, NULL); // pfn_notify & user_data

283



clCompileProgram returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_PROGRAM if program is not a valid program object.

• CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if device_list is not
NULL and num_devices is zero.

• CL_INVALID_VALUE if num_input_headers is zero and header_include_names or input_headers are
not NULL or if num_input_headers is not zero and header_include_names or input_headers are
NULL.

• CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

• CL_INVALID_DEVICE if device in device_list is not in the list of devices associated with program.

• CL_INVALID_COMPILER_OPTIONS if the compiler options specified by options are invalid.

• CL_INVALID_OPERATION if the compilation or build of a program executable for any of the devices
listed in device_list by a previous call to clCompileProgram or clBuildProgram for program
has not completed.

• CL_COMPILER_NOT_AVAILABLE if a compiler is not available, i.e. CL_DEVICE_COMPILER_AVAILABLE
specified in the Device Queries table is set to CL_FALSE.

• CL_COMPILE_PROGRAM_FAILURE if there is a failure to compile the program source. This error will be
returned if clCompileProgram does not return until the compile has completed.

• CL_INVALID_OPERATION if there are kernel objects attached to program.

• CL_INVALID_OPERATION if program has no source or IL available, i.e. it has not been created with
one of

◦ clCreateProgramWithIL or clCreateProgramWithILKHR

◦ clCreateProgramWithBinary where -x spir is present in options, if the cl_khr_spir
extension is supported.

◦ clCreateProgramWithSource

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To link a set of compiled program objects and libraries for all the devices or a specific device(s) in
the OpenCL context and create a library or executable, call the function

284



cl_program clLinkProgram(
    cl_context context,
    cl_uint num_devices,
    const cl_device_id* device_list,
    const char* options,
    cl_uint num_input_programs,
    const cl_program* input_programs,
    void (CL_CALLBACK* pfn_notify)(cl_program program, void* user_data),
    void* user_data,
    cl_int* errcode_ret);

 clLinkProgram is missing before version 1.2.

• context must be a valid OpenCL context.

• device_list is a pointer to a list of devices that are in context. If device_list is a NULL value, the link
is performed for all devices associated with context for which a compiled object is available. If
device_list is a non-NULL value, the link is performed for devices specified in this list for which a
compiled object is available.

• num_devices is the number of devices listed in device_list.

• options is a pointer to a null-terminated string of characters that describes the link options to be
used for building the program executable. The list of supported options is as described in Linker
Options. If the program was created using clCreateProgramWithBinary and options is a NULL
pointer, the program will be linked as if options were the same as when the program binary was
originally built. If the program was created using clCreateProgramWithBinary and options
string contains anything other than the same options in the same order (whitespace ignored) as
when the program binary was originally built, then the behavior is implementation-defined.
Otherwise, if options is a NULL pointer then it will have the same result as the empty string.

• num_input_programs specifies the number of programs in array referenced by input_programs.

• input_programs is an array of program objects that are compiled binaries or libraries that are to
be linked to create the program executable. For each device in device_list or if device_list is NULL
the list of devices associated with context, the following cases occur:

◦ All programs specified by input_programs contain a compiled binary or library for the
device. In this case, a link is performed to generate a program executable for this device.

◦ None of the programs contain a compiled binary or library for that device. In this case, no
link is performed and there will be no program executable generated for this device.

◦ All other cases will return a CL_INVALID_OPERATION error.

• pfn_notify is a function pointer to a notification routine. The notification routine is a callback
function that an application can register and which will be called when the program executable
has been built (successfully or unsuccessfully).

• user_data will be passed as an argument when pfn_notify is called. user_data can be NULL.

If pfn_notify is not NULL, clLinkProgram does not need to wait for the linker to complete, and can
return immediately once the linking operation can begin. Once the linker has completed, the

285



pfn_notify callback function is called which returns the program object returned by
clLinkProgram. Any state changes of the program object that result from calling clLinkProgram
(e.g. link status or log) will be observable from this callback function. This callback function may be
called asynchronously by the OpenCL implementation. It is the application’s responsibility to
ensure that the callback function is thread-safe.

If pfn_notify is NULL, clLinkProgram does not return until the linker has completed.

clLinkProgram creates a new program object which contains the library or executable. The library
or executable binary can be queried using clGetProgramInfo(program, CL_PROGRAM_BINARIES, …)
and can be specified to clCreateProgramWithBinary to create a new program object.

The devices associated with the returned program object will be the list of devices specified by
device_list or if device_list is NULL it will be the list of devices associated with context.

The linking operation can begin if the context, list of devices, input programs and linker options
specified are all valid and appropriate host and device resources needed to perform the link are
available. If the linking operation can begin, clLinkProgram returns a valid non-zero program
object.

If pfn_notify is NULL, errcode_ret will be set to CL_SUCCESS if the link operation was successful and
CL_LINK_PROGRAM_FAILURE if there is a failure to link the compiled binaries and/or libraries.

If pfn_notify is not NULL, clLinkProgram does not have to wait until the linker to complete and can
return CL_SUCCESS in errcode_ret if the linking operation can begin. The pfn_notify callback function
will return a CL_SUCCESS or CL_LINK_PROGRAM_FAILURE if the linking operation was successful or not.

Otherwise clLinkProgram returns a NULL program object with an appropriate error in errcode_ret.
The application should query the linker status of this program object to check if the link was
successful or not. The list of errors that can be returned are:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_VALUE if device_list is NULL and num_devices is greater than zero, or if device_list is not
NULL and num_devices is zero.

• CL_INVALID_VALUE if num_input_programs is zero and input_programs is NULL or if
num_input_programs is zero and input_programs is not NULL or if num_input_programs is not
zero and input_programs is NULL.

• CL_INVALID_PROGRAM if programs specified in input_programs are not valid program objects.

• CL_INVALID_VALUE if pfn_notify is NULL but user_data is not NULL.

• CL_INVALID_DEVICE if any device in device_list is not in the list of devices associated with context.

• CL_INVALID_LINKER_OPTIONS if the linker options specified by options are invalid.

• CL_INVALID_OPERATION if the compilation or build of a program executable for any of the devices
listed in device_list by a previous call to clCompileProgram or clBuildProgram for program
has not completed.

• CL_INVALID_OPERATION if the rules for devices containing compiled binaries or libraries as
described in input_programs argument above are not followed.

286



• CL_LINKER_NOT_AVAILABLE if a linker is not available, i.e. CL_DEVICE_LINKER_AVAILABLE specified in
the Device Queries table is set to CL_FALSE.

• CL_LINK_PROGRAM_FAILURE if there is a failure to link the compiled binaries and/or libraries.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.8.6. Compiler Options

The compiler options are categorized as pre-processor options, options for math intrinsics, options
that control optimization and miscellaneous options. This specification defines a standard set of
options that must be supported by the compiler when building program executables online or
offline from OpenCL C/C++ or, where relevant, from an IL. These may be extended by a set of
vendor- or platform-specific options.

5.8.6.1. Preprocessor Options

These options control the OpenCL C/C++ preprocessor which is run on each program source before
actual compilation. These options are ignored for programs created with IL.

-D name

Predefine name as a macro, with definition 1.

-D name=definition

The contents of definition are tokenized and processed as if they appeared during translation
phase three in a #define directive. In particular, the definition will be truncated by embedded
newline characters.

-D options are processed in the order they are given in the options argument to clBuildProgram
or clCompileProgram. Note that a space is required between the -D option and the symbol it
defines, otherwise behavior is implementation-defined.

-I dir

Add the directory dir to the list of directories to be searched for header files. dir can optionally
be enclosed in double quotes.

This option is not portable due to its dependency on host file system and host operating system.
It is supported for backwards compatibility with previous OpenCL versions. Developers are
encouraged to create and use explicit header objects by means of clCompileProgram followed
by clLinkProgram.

5.8.6.2. Math Intrinsics Options

These options control compiler behavior regarding floating-point arithmetic. These options trade
off between speed and correctness.

287



-cl-single-precision-constant

This option forces implicit conversions of double-precision floating-point literals to single
precision. This option is ignored for programs created with IL.

-cl-denorms-are-zero

This option controls how single precision and double precision denormalized numbers are
handled. If specified as a build option, the single precision denormalized numbers may be
flushed to zero; double precision denormalized numbers may also be flushed to zero if the
optional extension for double precision is supported. This is intended to be a performance hint
and the OpenCL compiler can choose not to flush denorms to zero if the device supports single
precision (or double precision) denormalized numbers.

This option is ignored for single precision numbers if the device does not support single
precision denormalized numbers i.e. CL_FP_DENORM bit is not set in CL_DEVICE_SINGLE_FP_CONFIG.

This option is ignored for double precision numbers if the device does not support double
precision or if it does support double precision but not double precision denormalized numbers
i.e. CL_FP_DENORM bit is not set in CL_DEVICE_DOUBLE_FP_CONFIG.

This flag only applies for scalar and vector single precision floating-point variables and
computations on these floating-point variables inside a program. It does not apply to reading
from or writing to image objects.

-cl-fp32-correctly-rounded-divide-sqrt

The -cl-fp32-correctly-rounded-divide-sqrt build option to clBuildProgram or
clCompileProgram allows an application to specify that single precision floating-point divide
(x/y and 1/x) and sqrt used in the program source are correctly rounded. If this build option is
not specified, the minimum numerical accuracy of single precision floating-point divide and sqrt
are as defined in the OpenCL C or OpenCL SPIR-V Environment specifications.

This build option can only be specified if the CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT is set in
CL_DEVICE_SINGLE_FP_CONFIG (as defined in the Device Queries table) for devices that the program
is being build. clBuildProgram or clCompileProgram will fail to compile the program for a
device if the -cl-fp32-correctly-rounded-divide-sqrt option is specified and CL_FP_CORRECTLY_
ROUNDED_DIVIDE_SQRT is not set for the device.

Note: This option is missing before version 1.2.

5.8.6.3. Optimization Options

These options control various sorts of optimizations. Turning on optimization flags makes the
compiler attempt to improve the performance and/or code size at the expense of compilation time
and possibly the ability to debug the program.

-cl-opt-disable

This option disables all optimizations. The default is optimizations are enabled.

-cl-strict-aliasing

This option allows the compiler to assume the strictest aliasing rules.

288



Note: This option is deprecated by version 1.1.

-cl-uniform-work-group-size

This requires that the global work-size be a multiple of the work-group size specified to
clEnqueueNDRangeKernel. Allow optimizations that are made possible by this restriction.

Note: This option is missing before version 2.0.

-cl-no-subgroup-ifp

This indicates that kernels in this program do not require sub-groups to make independent
forward progress. Allows optimizations that are made possible by this restriction. This option
has no effect for devices that do not support independent forward progress for sub-groups.

Note: This option is missing before version 2.1.

The following options control compiler behavior regarding floating-point arithmetic. These options
trade off between performance and correctness and must be specifically enabled. These options are
not turned on by default since it can result in incorrect output for programs which depend on an
exact implementation of IEEE 754 rules/specifications for math functions.

-cl-mad-enable

Allow a * b + c to be replaced by a mad instruction. The mad instruction may compute a * b +
c with reduced accuracy in the embedded profile. See the OpenCL C or OpenCL SPIR-V
Environment specification for accuracy details. On some hardware the mad instruction may
provide better performance than the expanded computation.

-cl-no-signed-zeros

Allow optimizations for floating-point arithmetic that ignore the signedness of zero. IEEE 754
arithmetic specifies the distinct behavior of +0.0 and -0.0 values, which then prohibits
simplification of expressions such as x + 0.0 or 0.0 * x (even with -cl-finite-math-only). This
option implies that the sign of a zero result is not significant.

-cl-unsafe-math-optimizations

Allow optimizations for floating-point arithmetic that (a) assume that arguments and results are
valid, (b) may violate the IEEE 754 standard, (c) assume relaxed OpenCL numerical compliance
requirements as defined in the unsafe math optimization section of the OpenCL C or OpenCL
SPIR-V Environment specifications, and (d) may violate edge case behavior in the OpenCL C or
OpenCL SPIR-V Environment specifications. This option includes the -cl-no-signed-zeros, -cl
-mad-enable, and -cl-denorms-are-zero [12] options.

-cl-finite-math-only

Allow optimizations for floating-point arithmetic that assume that arguments and results are not
NaNs, +Inf, -Inf. This option may violate the OpenCL numerical compliance requirements for
single precision and double precision floating-point, as well as edge case behavior.

-cl-fast-relaxed-math

Sets the optimization options -cl-finite-math-only and -cl-unsafe-math-optimizations. This
option causes the preprocessor macro __FAST_RELAXED_MATH__ to be defined in the OpenCL
program.

289



5.8.6.4. Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions which are not inherently erroneous
but which are risky or suggest there may have been an error. The following language-independent
options do not enable specific warnings but control the kinds of diagnostics produced by the
OpenCL compiler. These options are ignored for programs created with IL.

-w

Inhibit all warning messages.

-Werror

Make all warnings into errors.

5.8.6.5. Options Controlling the OpenCL C Version

The following option controls the version of OpenCL C that the compiler accepts. These options are
ignored for programs created with IL.

-cl-std=

Determine the OpenCL C language version to use. A value for this option must be provided. Valid
values are:

• CL1.1: Support OpenCL C 1.1 language features defined in section 6 of the OpenCL 1.1
specification or in the unified OpenCL C specification.

• CL1.2: Support OpenCL C 1.2 language features defined in section 6 of the OpenCL 1.2
specification or in the unified OpenCL C specification.

• CL2.0: Support OpenCL C 2.0 language features defined in the OpenCL C 2.0 specification or
in the unified OpenCL C specification.

• CL3.0: Support OpenCL C 3.0 language features defined in the unified OpenCL C specification.

Calls to clBuildProgram or clCompileProgram with the -cl-std=CL1.1 option will fail to compile
the program for any devices with CL_DEVICE_OPENCL_C_VERSION equal to OpenCL C 1.0 and when
CL_DEVICE_OPENCL_C_ALL_VERSIONS does not include OpenCL C 1.1.

Calls to clBuildProgram or clCompileProgram with the -cl-std=CL1.2 option will fail to compile
the program for any devices with CL_DEVICE_OPENCL_C_VERSION equal to OpenCL C 1.1 or earlier and
when CL_DEVICE_OPENCL_C_ALL_VERSIONS does not include OpenCL C 1.2.

Calls to clBuildProgram or clCompileProgram with the -cl-std=CL2.0 option will fail to compile
the program for any devices with CL_DEVICE_OPENCL_C_VERSION equal to OpenCL C 1.2 or earlier and
when CL_DEVICE_OPENCL_C_ALL_VERSIONS does not include OpenCL C 2.0.

Calls to clBuildProgram or clCompileProgram with the -cl-std=CL3.0 option will fail to compile
the program for any devices with CL_DEVICE_OPENCL_C_VERSION equal to OpenCL C 2.0 or earlier and
when CL_DEVICE_OPENCL_C_ALL_VERSIONS does not include OpenCL C 3.0.

If the -cl-std build option is not specified, the highest OpenCL C 1.x language version supported by
each device is used when compiling the program for each device. Applications are required to
specify the -cl-std=CL2.0 build option to compile or build programs with OpenCL C 2.0 and the -cl

290



-std=CL3.0 build option to compile or build programs with OpenCL C 3.0.

5.8.6.6. Options for Querying Kernel Argument Information

 Querying for kernel argument information is missing before version 1.2.

-cl-kernel-arg-info

This option allows the compiler to store information about the arguments of a kernel(s) in the
program executable. The argument information stored includes the argument name, its type, the
address space and access qualifiers used. Refer to description of clGetKernelArgInfo on how to
query this information.

5.8.6.7. Options for Debugging Your Program

 Debugging options are missing before version 2.0.

-g

This option can currently be used to generate additional errors for the built-in functions that
allow you to enqueue commands on a device (refer to OpenCL kernel languages specifications).

5.8.7. Linker Options

 Linker options are missing before version 1.2.

This specification defines a standard set of linker options that must be supported by the OpenCL C
compiler when linking compiled programs online or offline. These linker options are categorized as
library linking options and program linking options. These may be extended by a set of vendor- or
platform-specific options.

5.8.7.1. Library Linking Options

 Library linking options are missing before version 1.2.

The following options can be specified when creating a library of compiled binaries.

-create-library

Create a library of compiled binaries specified in input_programs argument to clLinkProgram.

-enable-link-options

Allows the linker to modify the library behavior based on one or more link options (described in
Program Linking Options) when this library is linked with a program executable. This option
must be specified with the create-library option.

5.8.7.2. Program Linking Options

The following options can be specified when linking a program executable.

-cl-denorms-are-zero

291



-cl-no-signed-zeros
-cl-unsafe-math-optimizations
-cl-finite-math-only
-cl-fast-relaxed-math
-cl-no-subgroup-ifp (missing before version 2.1)

The options are described in Math Intrinsics Options and Optimization Options. The linker may
apply these options to all compiled program objects specified to clLinkProgram. The linker may
apply these options only to libraries which were created with the option -enable-link-options.

5.8.7.3. SPIR Compilation Options

If the cl_khr_spir extension is supported, the compile option

-x spir

must be specified to indicate that the binary is in SPIR format, and the compile option

-spir-std

must be used to specify the version of the SPIR specification that describes the format and meaning
of the binary.

For example, if the binary is as described in SPIR version 1.2, then

-spir-std=1.2

must be specified. Failing to specify these compile options may result in implementation-defined
behavior.

5.8.8. Unloading the OpenCL Compiler

To unload an OpenCL compiler for a platform, call the function

cl_int clUnloadPlatformCompiler(
    cl_platform_id platform);

 clUnloadPlatformCompiler is missing before version 1.2.

• platform is the platform to unload.

This function allows the implementation to release the resources allocated by the OpenCL compiler
for platform. This is a hint from the application and does not guarantee that the compiler will not
be used in the future or that the compiler will actually be unloaded by the implementation. Calls to
clBuildProgram, clCompileProgram or clLinkProgram after clUnloadPlatformCompiler will
reload the compiler, if necessary, to build the appropriate program executable.

clUnloadPlatformCompiler returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

292



• CL_INVALID_PLATFORM if platform is not a valid platform.

Alternatively, if you are not using OpenCL via the ICD loader, you may unload the OpenCL compiler
with the function

cl_int clUnloadCompiler(void);

 clUnloadCompiler is deprecated by version 1.2.

This function allows the implementation to release the resources allocated by the OpenCL compiler.
This is a hint from the application and does not guarantee that the compiler will not be used in the
future or that the compiler will actually be unloaded by the implementation. Calls to
clBuildProgram, clCompileProgram or clLinkProgram after clUnloadCompiler will reload the
compiler, if necessary, to build the appropriate program executable.

clUnloadCompiler will always return CL_SUCCESS.

5.8.9. Program Object Queries

To return information about a program object, call the function

cl_int clGetProgramInfo(
    cl_program program,
    cl_program_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• program specifies the program object being queried.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetProgramInfo is described in the Program Object
Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Program Object Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 43. List of supported param_names by clGetProgramInfo

Program Info Return Type Description

CL_PROGRAM_REFERENCE_COUNT [13] cl_uint Return the program reference count.

CL_PROGRAM_CONTEXT cl_context Return the context specified when the program
object is created

293



Program Info Return Type Description

CL_PROGRAM_NUM_DEVICES cl_uint Return the number of devices associated with
program.

CL_PROGRAM_DEVICES cl_device_id[] Return the list of devices associated with the
program object. This can be the devices
associated with context on which the program
object has been created or can be a subset of
devices that are specified when a program
object is created using
clCreateProgramWithBinary.

CL_PROGRAM_SOURCE char[] Return the program source code specified by
clCreateProgramWithSource. The source
string returned is a concatenation of all source
strings specified to
clCreateProgramWithSource with a null
terminator. The concatenation strips any nulls
in the original source strings.

If program is created using
clCreateProgramWithBinary,
clCreateProgramWithIL,
clCreateProgramWithILKHR, or
clCreateProgramWithBuiltInKernels, a null
string or the appropriate program source code is
returned depending on whether or not the
program source code is stored in the binary.

The actual number of characters that represents
the program source code including the null
terminator is returned in param_value_size_ret.

CL_PROGRAM_IL

missing before version 2.1.

CL_PROGRAM_IL_KHR

provided by the
cl_khr_il_program extension.

char[] Returns the program IL for programs created
with clCreateProgramWithILKHR or
clCreateProgramWithIL.

If program is created with
clCreateProgramWithSource,
clCreateProgramWithBinary or
clCreateProgramWithBuiltInKernels the
memory pointed to by param_value will be
unchanged and param_value_size_ret will be set
to 0.

294



Program Info Return Type Description

CL_PROGRAM_BINARY_SIZES size_t[] Returns an array that contains the size in bytes
of the program binary (could be an executable
binary, compiled binary or library binary) for
each device associated with program. The size of
the array is the number of devices associated
with program. If a binary is not available for a
device(s), a size of zero is returned.

If program is created using
clCreateProgramWithBuiltInKernels, the
implementation may return zero in any entries
of the returned array.

295



Program Info Return Type Description

CL_PROGRAM_BINARIES unsigned
char*[]

Return the program binaries (could be an
executable binary, compiled binary or library
binary) for all devices associated with program.
For each device in program, the binary returned
can be the binary specified for the device when
program is created with
clCreateProgramWithBinary or it can be the
executable binary generated by clBuildProgram
or clLinkProgram. If program is created with
clCreateProgramWithSource or
clCreateProgramWithIL, the binary returned is
the binary generated by clBuildProgram,
clCompileProgram or clLinkProgram. The bits
returned can be an implementation-specific
intermediate representation (a.k.a. IR) or device
specific executable bits or both. The decision on
which information is returned in the binary is
up to the OpenCL implementation.

param_value points to an array of n pointers
allocated by the caller, where n is the number of
devices associated with program. The buffer
sizes needed to allocate the memory that these n
pointers refer to can be queried using the
CL_PROGRAM_BINARY_SIZES query as described in
this table.

Each entry in this array is used by the
implementation as the location in memory
where to copy the program binary for a specific
device, if there is a binary available. To find out
which device the program binary in the array
refers to, use the CL_PROGRAM_DEVICES query to get
the list of devices. There is a one-to-one
correspondence between the array of n pointers
returned by CL_PROGRAM_BINARIES and array of
devices returned by CL_PROGRAM_DEVICES.

CL_PROGRAM_NUM_KERNELS

missing before version 1.2.

size_t Returns the number of kernels declared in
program that can be created with
clCreateKernel. This information is only
available after a successful program executable
has been built for at least one device in the list
of devices associated with program.

296



Program Info Return Type Description

CL_PROGRAM_KERNEL_NAMES

missing before version 1.2.

char[] Returns a semi-colon separated list of kernel
names in program that can be created with
clCreateKernel. This information is only
available after a successful program executable
has been built for at least one device in the list
of devices associated with program.

CL_PROGRAM_SCOPE_GLOBAL_CTORS_
PRESENT

missing before version 2.2 and
deprecated by version 3.0.

cl_bool This indicates that the program object contains
non-trivial constructor(s) that will be executed
by runtime before any kernel from the program
is executed. This information is only available
after a successful program executable has been
built for at least one device in the list of devices
associated with program.

Querying CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT
may unconditionally return CL_FALSE if no
devices associated with program support
constructors for program scope global variables.
Support for constructors and destructors for
program scope global variables is required only
for OpenCL 2.2 devices.

CL_PROGRAM_SCOPE_GLOBAL_DTORS_
PRESENT

missing before version 2.2 and
deprecated by version 3.0.

cl_bool This indicates that the program object contains
non-trivial destructor(s) that will be executed by
runtime when program is destroyed. This
information is only available after a successful
program executable has been built for at least
one device in the list of devices associated with
program.

Querying CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT
may unconditionally return CL_FALSE if no
devices associated with program support
destructors for program scope global variables.
Support for constructors and destructors for
program scope global variables is required only
for OpenCL 2.2 devices.

clGetProgramInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Program Object Queries table and param_value is not
NULL.

• CL_INVALID_PROGRAM if program is a not a valid program object.

• CL_INVALID_PROGRAM_EXECUTABLE if param_name is CL_PROGRAM_NUM_KERNELS, CL_PROGRAM_KERNEL_

297



NAMES, CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT, or CL_PROGRAM_SCOPE_GLOBAL_DTORS_PRESENT and a
successful program executable has not been built for at least one device in the list of devices
associated with program.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return build information for each device in the program object, call the function

cl_int clGetProgramBuildInfo(
    cl_program program,
    cl_device_id device,
    cl_program_build_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• program specifies the program object being queried.

• device specifies the device for which build information is being queried. device must be a valid
device associated with program.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetProgramBuildInfo is described in the Program
Build Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Program Build Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 44. List of supported param_names by clGetProgramBuildInfo

298



Program Build Info Return Type Description

CL_PROGRAM_BUILD_STATUS cl_build_status Returns the build, compile or link status,
whichever was performed last on the specified
program object for device.

This can be one of the following:

CL_BUILD_NONE - The build status returned if no
clBuildProgram, clCompileProgram or
clLinkProgram has been performed on the
specified program object for device).

CL_BUILD_ERROR - The build status returned if
clBuildProgram, clCompileProgram or
clLinkProgram - whichever was performed last
on the specified program object for device -
generated an error.

CL_BUILD_SUCCESS - The build status returned if
clBuildProgram, clCompileProgram or
clLinkProgram - whichever was performed last
on the specified program object for device - was
successful.

CL_BUILD_IN_PROGRESS - The build status returned
if clBuildProgram, clCompileProgram or
clLinkProgram - whichever was performed last
on the specified program object for device - has
not finished.

CL_PROGRAM_BUILD_OPTIONS char[] Return the build, compile or link options
specified by the options argument in
clBuildProgram, clCompileProgram or
clLinkProgram, whichever was performed last
on the specified program object for device.

If build status of the specified program for device
is CL_BUILD_NONE, an empty string is returned.

CL_PROGRAM_BUILD_LOG char[] Return the build, compile or link log for
clBuildProgram, clCompileProgram or
clLinkProgram, whichever was performed last
on program for device.

If build status of the specified program for device
is CL_BUILD_NONE, an empty string is returned.

299



Program Build Info Return Type Description

CL_PROGRAM_BINARY_TYPE

missing before version 1.2.

cl_program_
binary_type

Return the program binary type for device. This
can be one of the following values:

CL_PROGRAM_BINARY_TYPE_NONE - There is no binary
associated with the specified program object for
device.

CL_PROGRAM_BINARY_TYPE_COMPILED_OBJECT - A
compiled binary is associated with device. This is
the case when the specified program object was
created using clCreateProgramWithSource
and compiled using clCompileProgram, or
when a compiled binary was loaded using
clCreateProgramWithBinary.

CL_PROGRAM_BINARY_TYPE_LIBRARY - A library
binary is associated with device. This is the case
when the specified program object was linked by
clLinkProgram using the -create-library link
option, or when a compiled library binary was
loaded using clCreateProgramWithBinary.

CL_PROGRAM_BINARY_TYPE_EXECUTABLE - An
executable binary is associated with device. This
is the case when the specified program object
was linked by clLinkProgram without the
-create-library link option, or when an
executable binary was built using
clBuildProgram.

CL_PROGRAM_BINARY_TYPE_INTERMEDIATE — An
intermediate (non-source) representation for the
program is loaded as a binary. The program
must be further processed with
clCompileProgram or clBuildProgram.

If processed with clCompileProgram, the result
will be a binary of type CL_PROGRAM_BINARY_TYPE_
COMPILED_OBJECT or CL_PROGRAM_BINARY_TYPE_
LIBRARY. If processed with clBuildProgram, the
result will be a binary of type CL_PROGRAM_BINARY_
TYPE_EXECUTABLE.

300



Program Build Info Return Type Description

CL_PROGRAM_BUILD_GLOBAL_
VARIABLE_TOTAL_SIZE

missing before version 2.0.

size_t The total amount of storage, in bytes, used by
program variables in the global address space.

clGetProgramBuildInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_DEVICE if device is not in the list of devices associated with program.

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Program Build Queries table and param_value is not NULL.

• CL_INVALID_PROGRAM if program is a not a valid program object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.



A program binary (compiled binary, library binary or executable binary) built for
a parent device can be used by all its sub-devices. If a program binary has not been
built for a sub-device, the program binary associated with the parent device will
be used.

A program binary for a device specified with clCreateProgramWithBinary or
queried using clGetProgramInfo can be used as the binary for the associated root
device, and all sub-devices created from the root-level device or sub-devices
thereof.

5.9. Kernel Objects
A kernel is a function declared in a program. A kernel is identified by the __kernel qualifier applied
to any function in a program. A kernel object encapsulates the specific __kernel function declared
in a program and the argument values to be used when executing this __kernel function.

5.9.1. Creating Kernel Objects

To create a kernel object, use the function

cl_kernel clCreateKernel(
    cl_program program,
    const char* kernel_name,
    cl_int* errcode_ret);

• program is a program object with a successfully built executable.

• kernel_name is a function name in the program declared with the __kernel qualifier.

301



• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

clCreateKernel returns a valid non-zero kernel object and errcode_ret is set to CL_SUCCESS if the
kernel object is created successfully. Otherwise, it returns a NULL value with one of the following
error values returned in errcode_ret:

• CL_INVALID_PROGRAM if program is not a valid program object.

• CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for program.

• CL_INVALID_KERNEL_NAME if kernel_name is not found in program.

• CL_INVALID_KERNEL_DEFINITION if the function definition for __kernel function given by
kernel_name such as the number of arguments, the argument types are not the same for all
devices for which the program executable has been built.

• CL_INVALID_VALUE if kernel_name is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To create kernel objects for all kernel functions in a program, call the function

cl_int clCreateKernelsInProgram(
    cl_program program,
    cl_uint num_kernels,
    cl_kernel* kernels,
    cl_uint* num_kernels_ret);

• program is a program object with a successfully built executable.

• num_kernels is the size of memory pointed to by kernels specified as the number of cl_kernel
entries.

• kernels is the buffer where the kernel objects for kernels in program will be returned. If kernels
is NULL, it is ignored. If kernels is not NULL, num_kernels must be greater than or equal to the
number of kernels in program.

• num_kernels_ret is the number of kernels in program. If num_kernels_ret is NULL, it is ignored.

Kernel objects are not created for any __kernel functions in program that do not have the same
function definition across all devices for which a program executable has been successfully built.

Kernel objects can only be created once you have a program object with a valid program source or
binary loaded into the program object and the program executable has been successfully built for
one or more devices associated with program. No changes to the program executable are allowed
while there are kernel objects associated with a program object. This means that calls to
clBuildProgram and clCompileProgram return CL_INVALID_OPERATION if there are kernel objects
attached to a program object. The OpenCL context associated with program will be the context
associated with kernel. The list of devices associated with program are the devices associated with

302



kernel. Devices associated with a program object for which a valid program executable has been
built can be used to execute kernels declared in the program object.

clCreateKernelsInProgram will return CL_SUCCESS if the kernel objects were successfully allocated.
Otherwise, it returns one of the following errors:

• CL_INVALID_PROGRAM if program is not a valid program object.

• CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built executable for any device in
program.

• CL_INVALID_VALUE if kernels is not NULL and num_kernels is less than the number of kernels in
program.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To retain a kernel object, call the function

cl_int clRetainKernel(
    cl_kernel kernel);

• kernel is the kernel object to be retained.

The kernel reference count is incremented.

clRetainKernel returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_KERNEL if kernel is not a valid kernel object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

clCreateKernel or clCreateKernelsInProgram do an implicit retain.

To release a kernel object, call the function

cl_int clReleaseKernel(
    cl_kernel kernel);

• kernel is the kernel object to be released.

The kernel reference count is decremented.

The kernel object is deleted once the number of instances that are retained to kernel become zero

303



and the kernel object is no longer needed by any enqueued commands that use kernel. Using this
function to release a reference that was not obtained by creating the object or by calling
clRetainKernel causes undefined behavior.

clReleaseKernel returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_KERNEL if kernel is not a valid kernel object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.9.2. Setting Kernel Arguments

To execute a kernel, the kernel arguments must be set.

To set the argument value for a specific argument of a kernel, call the function

cl_int clSetKernelArg(
    cl_kernel kernel,
    cl_uint arg_index,
    size_t arg_size,
    const void* arg_value);

• kernel is a valid kernel object.

• arg_index is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a
kernel (see below).

• arg_size specifies the size of the argument value. If the argument is a memory object, the
arg_size value must be equal to sizeof(cl_mem). For arguments declared with the local qualifier,
the size specified will be the size in bytes of the buffer that must be allocated for the local
argument. If the argument is of type sampler_t, the arg_size value must be equal to
sizeof(cl_sampler). If the argument is of type queue_t, the arg_size value must be equal to
sizeof(cl_command_queue). For all other arguments, the size will be the size of argument type.

• arg_value is a pointer to data that should be used as the argument value for argument specified
by arg_index. The argument data pointed to by arg_value is copied and the arg_value pointer can
therefore be reused by the application after clSetKernelArg returns. The argument value
specified is the value used by all API calls that enqueue kernel (clEnqueueNDRangeKernel and
clEnqueueTask) until the argument value is changed by a call to clSetKernelArg for kernel.

For example, consider the following kernel:

kernel void image_filter (int n,
                          int m,
                          constant float *filter_weights,

304



                          read_only image2d_t src_image,
                          write_only image2d_t dst_image)
{
...
}

Argument index values for image_filter will be 0 for n, 1 for m, 2 for filter_weights, 3 for src_image
and 4 for dst_image.

If the argument is a memory object (buffer, pipe, image or image array), the arg_value entry will be
a pointer to the appropriate buffer, pipe, image or image array object. The memory object must be
created with the context associated with the kernel object. If the argument is a buffer object, the
arg_value pointer can be NULL or point to a NULL value in which case a NULL value will be used as the
value for the argument declared as a pointer to global or constant memory in the kernel. If the
argument is declared with the local qualifier, the arg_value entry must be NULL. If the argument is
of type sampler_t, the arg_value entry must be a pointer to the sampler object. If the argument is of
type queue_t, the arg_value entry must be a pointer to the device queue object.

If the cl_khr_gl_msaa_sharing extension is supported, then: If the argument is a multi-sample 2D
image, the arg_value entry must be a pointer to a multi-sample image object. If the argument is a
multi-sample 2D depth image, the arg_value entry must be a pointer to a multisample depth image
object. If the argument is a multi-sample 2D image array, the arg_value entry must be a pointer to a
multi-sample image array object. If the argument is a multi-sample 2D depth image array, the
arg_value entry must be a pointer to a multi-sample depth image array object.

If the argument is declared to be a pointer of a built-in scalar or vector type, or a user defined
structure type in the global or constant address space, the memory object specified as argument
value must be a buffer object (or NULL). If the argument is declared with the constant qualifier, the
size in bytes of the memory object cannot exceed CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE and the
number of arguments declared as pointers to constant memory cannot exceed CL_DEVICE_MAX_
CONSTANT_ARGS.

The memory object specified as argument value must be a pipe object if the argument is declared
with the pipe qualifier.

The memory object specified as argument value must be a 2D image object if the argument is
declared to be of type image2d_t. The memory object specified as argument value must be a 2D
image object with image channel order = CL_DEPTH if the argument is declared to be of type
image2d_depth_t. The memory object specified as argument value must be a 3D image object if
argument is declared to be of type image3d_t. The memory object specified as argument value must
be a 1D image object if the argument is declared to be of type image1d_t. The memory object
specified as argument value must be a 1D image buffer object if the argument is declared to be of
type image1d_buffer_t. The memory object specified as argument value must be a 1D image array
object if argument is declared to be of type image1d_array_t. The memory object specified as
argument value must be a 2D image array object if argument is declared to be of type
image2d_array_t. The memory object specified as argument value must be a 2D image array object
with image channel order = CL_DEPTH if argument is declared to be of type image2d_array_depth_t.

For all other kernel arguments, the arg_value entry must be a pointer to the actual data to be used

305



as argument value.



A kernel object does not update the reference count for objects such as memory or
sampler objects specified as argument values by clSetKernelArg. Users may not
rely on a kernel object to retain objects specified as argument values to the kernel.

Implementations shall not allow cl_kernel objects to hold reference counts to
cl_kernel arguments, because no mechanism is provided for the user to tell the
kernel to release that ownership right. If the kernel holds ownership rights on
kernel args, that would make it impossible for users to tell with certainty when
they may safely release user allocated resources associated with OpenCL objects
such as the cl_mem backing store used with CL_MEM_USE_HOST_PTR.

clSetKernelArg returns CL_SUCCESS if the function was executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_KERNEL if kernel is not a valid kernel object.

• CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.

• CL_INVALID_ARG_VALUE if arg_value specified is not a valid value.

• CL_INVALID_MEM_OBJECT for an argument declared to be a memory object when the specified
arg_value is not a valid memory object.

• CL_INVALID_MEM_OBJECT for an argument declared to be a depth image, depth image array, multi-
sample image, multi-sample image array, multi-sample depth image, or a multi-sample depth
image array when the specified arg_value does not follow the rules described above for a depth
memory object or memory array object argument.

• CL_INVALID_SAMPLER for an argument declared to be of type sampler_t when the specified
arg_value is not a valid sampler object.

• CL_INVALID_DEVICE_QUEUE for an argument declared to be of type queue_t when the specified
arg_value is not a valid device queue object. This error code is missing before version 2.0.

• CL_INVALID_ARG_SIZE if arg_size does not match the size of the data type for an argument that is
not a memory object or if the argument is a memory object and arg_size != sizeof(cl_mem) or if
arg_size is zero and the argument is declared with the local qualifier or if the argument is a
sampler and arg_size != sizeof(cl_sampler).

• CL_MAX_SIZE_RESTRICTION_EXCEEDED if the size in bytes of the memory object (if the argument is a
memory object) or arg_size (if the argument is declared with local qualifier) exceeds a
language- specified maximum size restriction for this argument, such as the MaxByteOffset
SPIR-V decoration. This error code is missing before version 2.2.

• CL_INVALID_ARG_VALUE if the argument is an image declared with the read_only qualifier and
arg_value refers to an image object created with cl_mem_flags of CL_MEM_WRITE_ONLY or if the
image argument is declared with the write_only qualifier and arg_value refers to an image
object created with cl_mem_flags of CL_MEM_READ_ONLY.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL

306



implementation on the host.

When clSetKernelArg returns an error code different from CL_SUCCESS, the internal state of kernel
may only be modified when that error code is CL_OUT_OF_RESOURCES or CL_OUT_OF_HOST_MEMORY. When
the internal state of kernel is modified, it is implementation-defined whether:

• The argument value that was previously set is kept so that it can be used in further kernel
enqueues.

• The argument value is unset such that a subsequent kernel enqueue fails with CL_INVALID_
KERNEL_ARGS. [14]

To set a SVM pointer as the argument value for a specific argument of a kernel, call the function

cl_int clSetKernelArgSVMPointer(
    cl_kernel kernel,
    cl_uint arg_index,
    const void* arg_value);

 clSetKernelArgSVMPointer is missing before version 2.0.

• kernel is a valid kernel object.

• arg_index is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a
kernel.

• arg_value is the SVM pointer that should be used as the argument value for argument specified
by arg_index. The SVM pointer specified is the value used by all API calls that enqueue kernel
(clEnqueueNDRangeKernel and clEnqueueTask) until the argument value is changed by a call
to clSetKernelArgSVMPointer for kernel. The SVM pointer can only be used for arguments that
are declared to be a pointer to global or constant memory. The SVM pointer value must be
aligned according to the arguments type. For example, if the argument is declared to be global
float4 *p, the SVM pointer value passed for p must be at a minimum aligned to a float4. The
SVM pointer value specified as the argument value can be the pointer returned by clSVMAlloc
or can be a pointer offset into the SVM region.

clSetKernelArgSVMPointer returns CL_SUCCESS if the function was executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_KERNEL if kernel is not a valid kernel object.

• CL_INVALID_OPERATION if no devices in the context associated with kernel support SVM.

• CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.

• CL_INVALID_ARG_VALUE if arg_value specified is not a valid value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

307



To pass additional information other than argument values to a kernel, call the function

cl_int clSetKernelExecInfo(
    cl_kernel kernel,
    cl_kernel_exec_info param_name,
    size_t param_value_size,
    const void* param_value);

 clSetKernelExecInfo is missing before version 2.0.

• kernel specifies the kernel object being queried.

• param_name specifies the information to be passed to kernel. The list of supported param_name
types and the corresponding values passed in param_value is described in the Kernel Execution
Properties table.

• param_value_size specifies the size in bytes of the memory pointed to by param_value.

• param_value is a pointer to memory where the appropriate values determined by param_name
are specified.

Table 45. List of supported param_names by clSetKernelExecInfo

Kernel Exec Info Type Description

CL_KERNEL_EXEC_INFO_SVM_PTRS

missing before version 2.0.

void*[] SVM pointers must reference locations
contained entirely within buffers that are
passed to kernel as arguments, or that are
passed through the execution information.

Non-argument SVM buffers must be specified by
passing pointers to those buffers via
clSetKernelExecInfo for coarse-grain and fine-
grain buffer SVM allocations but not for
finegrain system SVM allocations.

CL_KERNEL_EXEC_INFO_SVM_FINE_
GRAIN_SYSTEM

missing before version 2.0.

cl_bool This flag indicates whether the kernel uses
pointers that are fine grain system SVM
allocations. These fine grain system SVM
pointers may be passed as arguments or defined
in SVM buffers that are passed as arguments to
kernel.

clSetKernelExecInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_KERNEL if kernel is a not a valid kernel object.

• CL_INVALID_OPERATION if no devices in the context associated with kernel support SVM.

• CL_INVALID_VALUE if param_name is not valid, if param_value is NULL or if the size specified by
param_value_size is not valid.

308



• CL_INVALID_OPERATION if param_name is CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM and
param_value is CL_TRUE but no devices in context associated with kernel support fine-grain
system SVM allocations.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.



Coarse-grain or fine-grain buffer SVM pointers used by a kernel which are not
passed as a kernel arguments must be specified using clSetKernelExecInfo with
CL_KERNEL_EXEC_INFO_SVM_PTRS. For example, if SVM buffer A contains a pointer to
another SVM buffer B, and the kernel dereferences that pointer, then a pointer to B
must either be passed as an argument in the call to that kernel or it must be made
available to the kernel using clSetKernelExecInfo. For example, we might pass
extra SVM pointers as follows:

clSetKernelExecInfo(kernel,
                    CL_KERNEL_EXEC_INFO_SVM_PTRS,
                    num_ptrs * sizeof(void *),
                    extra_svm_ptr_list);

Here num_ptrs specifies the number of additional SVM pointers while
extra_svm_ptr_list specifies a pointer to memory containing those SVM pointers.

When calling clSetKernelExecInfo with CL_KERNEL_EXEC_INFO_SVM_PTRS to specify
pointers to non-argument SVM buffers as extra arguments to a kernel, each of
these pointers can be the SVM pointer returned by clSVMAlloc or can be a pointer
+ offset into the SVM region. It is sufficient to provide one pointer for each SVM
buffer used.

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM is used to indicate whether SVM
pointers used by a kernel will refer to system allocations or not.

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM = CL_FALSE indicates that the OpenCL
implementation may assume that system pointers are not passed as kernel
arguments and are not stored inside SVM allocations passed as kernel arguments.

CL_KERNEL_EXEC_INFO_SVM_FINE_GRAIN_SYSTEM = CL_TRUE indicates that the OpenCL
implementation must assume that system pointers might be passed as kernel
arguments and/or stored inside SVM allocations passed as kernel arguments. In
this case, if the device to which the kernel is enqueued does not support system
SVM pointers, clEnqueueNDRangeKernel and clEnqueueTask will return a
CL_INVALID_OPERATION error. If none of the devices in the context associated with
kernel support fine-grain system SVM allocations, clSetKernelExecInfo will
return a CL_INVALID_OPERATION error.

If clSetKernelExecInfo has not been called with a value for CL_KERNEL_EXEC_INFO_

309



SVM_FINE_GRAIN_SYSTEM, the default value is used for this kernel attribute. The
default value depends on whether the device on which the kernel is enqueued
supports fine-grain system SVM allocations. If so, the default value used is CL_TRUE
(system pointers might be passed); otherwise, the default is CL_FALSE.

A call to clSetKernelExecInfo for a given value of param_name replaces any prior
value passed for that value of param_name. Only one param_value will be stored
for each value of param_name.

5.9.3. Copying Kernel Objects

 Copying kernel objects is missing before version 2.1.

To clone a kernel object, call the function

cl_kernel clCloneKernel(
    cl_kernel source_kernel,
    cl_int* errcode_ret);

 clCloneKernel is missing before version 2.1.

• source_kernel is a valid cl_kernel object that will be copied. source_kernel will not be modified
in any way by this function.

• errcode_ret will be assigned an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Cloning is used to make a shallow copy of the kernel object, its arguments and any information
passed to the kernel object using clSetKernelExecInfo. If the kernel object was ready to be
enqueued before copying it, the clone of the kernel object is ready to enqueue.

The returned kernel object is an exact copy of source_kernel, with one caveat: the reference count
on the returned kernel object is set as if it had been returned by clCreateKernel. The reference
count of source_kernel will not be changed.

The resulting kernel will be in the same state as if clCreateKernel is called to create the resultant
kernel with the same arguments as those used to create source_kernel, the latest call to
clSetKernelArg or clSetKernelArgSVMPointer for each argument index applied to kernel and the
last call to clSetKernelExecInfo for each value of the param name parameter are applied to the
new kernel object.

All arguments of the new kernel object must be intact and it may be correctly used in the same
situations as kernel except those that assume a pre-existing reference count. Setting arguments on
the new kernel object will not affect source_kernel except insofar as the argument points to a
shared underlying entity and in that situation behavior is as if two kernel objects had been created
and the same argument applied to each. Only the data stored in the kernel object is copied; data
referenced by the kernels arguments are not copied. For example, if a buffer or pointer argument is
set on a kernel object, the pointer is copied but the underlying memory allocation is not.

310



clCloneKernel returns a valid non-zero kernel object and errcode_ret is set to CL_SUCCESS if the
kernel is successfully copied. Otherwise it returns a NULL value with one of the following error
values returned in errcode_ret:

• CL_INVALID_KERNEL if kernel is not a valid kernel object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.9.4. Kernel Object Queries

To return information about a kernel object, call the function

cl_int clGetKernelInfo(
    cl_kernel kernel,
    cl_kernel_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• kernel specifies the kernel object being queried.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelInfo is described in the Kernel Object
Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Kernel Object Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 46. List of supported param_names by clGetKernelInfo

Kernel Info Return Type Description

CL_KERNEL_FUNCTION_NAME char[] Return the kernel function name.

CL_KERNEL_NUM_ARGS cl_uint Return the number of arguments to kernel.

CL_KERNEL_REFERENCE_COUNT [15] cl_uint Return the kernel reference count.

CL_KERNEL_CONTEXT cl_context Return the context associated with kernel.

CL_KERNEL_PROGRAM cl_program Return the program object associated with
kernel.

311



Kernel Info Return Type Description

CL_KERNEL_ATTRIBUTES

missing before version 1.2.

char[] Returns any attributes specified using the
__attribute__ OpenCL C qualifier (or using an
OpenCL C++ qualifier syntax [[]] ) with the
kernel function declaration in the program
source. These attributes include attributes
described in the earlier OpenCL C kernel
language specifications and other attributes
supported by an implementation.

Attributes are returned as they were declared
inside __attribute__((...)), with any
surrounding whitespace and embedded
newlines removed. When multiple attributes are
present, they are returned as a single, space
delimited string.

For kernels not created from OpenCL C source
and the clCreateProgramWithSource API call
the string returned from this query will be
empty.

clGetKernelInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Kernel Object Queries table and param_value is not NULL.

• CL_INVALID_KERNEL if kernel is a not a valid kernel object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return information about the kernel object that may be specific to a device, call the function

cl_int clGetKernelWorkGroupInfo(
    cl_kernel kernel,
    cl_device_id device,
    cl_kernel_work_group_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• kernel specifies the kernel object being queried.

• device identifies a specific device in the list of devices associated with kernel. The list of devices
is the list of devices in the OpenCL context that is associated with kernel. If the list of devices

312



associated with kernel is a single device, device can be a NULL value.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelWorkGroupInfo is described in the
Kernel Object Device Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Kernel Object Device Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 47. List of supported param_names by clGetKernelWorkGroupInfo

Kernel Work-group Info Return Type Description

CL_KERNEL_GLOBAL_WORK_SIZE

missing before version 1.2.

size_t[3] This provides a mechanism for the application
to query the maximum global size that can be
used to execute a kernel (i.e. global_work_size
argument to clEnqueueNDRangeKernel) on a
custom device given by device or a built-in
kernel on an OpenCL device given by device.

If device is not a custom device and kernel is not
a built-in kernel, clGetKernelWorkGroupInfo
returns the error CL_INVALID_VALUE.

CL_KERNEL_WORK_GROUP_SIZE size_t This provides a mechanism for the application
to query the maximum work-group size that can
be used to execute the kernel on a specific
device given by device. The OpenCL
implementation uses the resource requirements
of the kernel (register usage etc.) to determine
what this work-group size should be.

As a result and unlike CL_DEVICE_MAX_WORK_GROUP_
SIZE this value may vary from one kernel to
another as well as one device to another.

CL_KERNEL_WORK_GROUP_SIZE will be less than or
equal to CL_DEVICE_MAX_WORK_GROUP_SIZE for a
given kernel object.

CL_KERNEL_COMPILE_WORK_GROUP_
SIZE

size_t[3] Returns the work-group size specified in the
kernel source or IL.

If the work-group size is not specified in the
kernel source or IL, (0, 0, 0) is returned.

313



Kernel Work-group Info Return Type Description

CL_KERNEL_LOCAL_MEM_SIZE cl_ulong Returns the amount of local memory in bytes
being used by a kernel. This includes local
memory that may be needed by an
implementation to execute the kernel, variables
declared inside the kernel with the __local
address qualifier and local memory to be
allocated for arguments to the kernel declared
as pointers with the __local address qualifier
and whose size is specified with
clSetKernelArg.

If the local memory size, for any pointer
argument to the kernel declared with the
__local address qualifier, is not specified, its size
is assumed to be 0.

CL_KERNEL_PREFERRED_WORK_
GROUP_SIZE_MULTIPLE

size_t Returns the preferred multiple of work-group
size for launch. This is a performance hint.
Specifying a work-group size that is not a
multiple of the value returned by this query as
the value of the local work size argument to
clEnqueueNDRangeKernel will not fail to
enqueue the kernel for execution unless the
work-group size specified is larger than the
device maximum.

CL_KERNEL_PRIVATE_MEM_SIZE cl_ulong Returns the minimum amount of private
memory, in bytes, used by each work-item in the
kernel. This value may include any private
memory needed by an implementation to
execute the kernel, including that used by the
language built-ins and variable declared inside
the kernel with the __private qualifier.

clGetKernelWorkGroupInfo returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns one of the following errors:

• CL_INVALID_DEVICE if device is not in the list of devices associated with kernel or if device is NULL
but there is more than one device associated with kernel.

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Kernel Object Device Queries table and param_value is
not NULL.

• CL_INVALID_VALUE if param_name is CL_KERNEL_GLOBAL_WORK_SIZE and device is not a custom device
and kernel is not a built-in kernel.

• CL_INVALID_KERNEL if kernel is a not a valid kernel object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL

314



implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return information about a kernel object, call the function

cl_int clGetKernelSubGroupInfo(
    cl_kernel kernel,
    cl_device_id device,
    cl_kernel_sub_group_info param_name,
    size_t input_value_size,
    const void* input_value,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

 clGetKernelSubGroupInfo is missing before version 2.1.

Also see cl_khr_subgroups.

• kernel specifies the kernel object being queried.

• device identifies a specific device in the list of devices associated with kernel. The list of devices
is the list of devices in the OpenCL context that is associated with kernel. If the list of devices
associated with kernel is a single device, device can be a NULL value.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetKernelSubGroupInfo is described in the Kernel
Object Sub-group Queries table.

• input_value_size is used to specify the size in bytes of memory pointed to by input_value. This
size must be == size of input type as described in the table below.

• input_value is a pointer to memory where the appropriate parameterization of the query is
passed from. If input_value is NULL, it is ignored.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Kernel Object Sub-group Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 48. List of supported param_names by clGetKernelSubGroupInfo

315



Kernel Sub-group Info Input Type Return Type Description

CL_KERNEL_MAX_SUB_
GROUP_SIZE_FOR_NDRANGE

missing before version
2.1.

The equivalent
CL_KERNEL_MAX_SUB_
GROUP_SIZE_FOR_
NDRANGE_KHR may be
used if the cl_khr_
subgroups extension is
supported.

size_t* size_t Returns the maximum
sub-group size for this
kernel. All sub-groups
must be the same size,
while the last sub-
group in any work-
group (i.e. the sub-
group with the
maximum index) could
be the same or smaller
size.

The input_value must
be an array of size_t
values corresponding
to the local work size
parameter of the
intended dispatch. The
number of dimensions
in the ND-range will be
inferred from the value
specified for
input_value_size.

316



Kernel Sub-group Info Input Type Return Type Description

CL_KERNEL_SUB_GROUP_
COUNT_FOR_NDRANGE

missing before version
2.1.

The equivalent
CL_KERNEL_SUB_GROUP_
COUNT_FOR_NDRANGE_KHR
may be used if the
cl_khr_subgroups
extension is supported.

size_t* size_t Returns the number of
sub-groups that will be
present in each work-
group for a given local
work size. All
workgroups, apart
from the last work-
group in each
dimension in the
presence of non-
uniform work-group
sizes, will have the
same number of sub-
groups.

The input_value must
be an array of size_t
values corresponding
to the local work size
parameter of the
intended dispatch. The
number of dimensions
in the ND-range will be
inferred from the value
specified for
input_value_size.

317



Kernel Sub-group Info Input Type Return Type Description

CL_KERNEL_LOCAL_SIZE_
FOR_SUB_GROUP_COUNT

missing before version
2.1.

Also see cl_khr_
subgroups.

size_t size_t[] Returns the local size
that will generate the
requested number of
sub-groups for the
kernel. The output
array must be an array
of size_t values
corresponding to the
local size parameter.
Any returned work-
group will have one
dimension. Other
dimensions inferred
from the value
specified for
param_value_size will
be filled with the value
1. The returned value
will produce an exact
number of sub-groups
and result in no partial
groups for an executing
kernel except in the
case where the last
work-group in a
dimension has a size
different from that of
the other groups. If no
work-group size can
accommodate the
requested number of
sub-groups, 0 will be
returned in each
element of the return
array.

318



Kernel Sub-group Info Input Type Return Type Description

CL_KERNEL_MAX_NUM_SUB_
GROUPS

missing before version
2.1.

Also see cl_khr_
subgroups.

ignored size_t This provides a
mechanism for the
application to query
the maximum number
of sub-groups that may
make up each work-
group to execute a
kernel on a specific
device given by device.
The OpenCL
implementation uses
the resource
requirements of the
kernel (register usage
etc.) to determine what
this work-group size
should be. The
returned value may be
used to compute a
work-group size to
enqueue the kernel
with to give a round
number of sub-groups
for an enqueue.

CL_KERNEL_COMPILE_NUM_
SUB_GROUPS

missing before version
2.1.

Also see cl_khr_
subgroups.

ignored size_t Returns the number of
sub-groups per work-
group specified in the
kernel source or IL. If
the sub-group count is
not specified then 0 is
returned.

clGetKernelSubGroupInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_DEVICE if device is not in the list of devices associated with kernel or if device is NULL
but there is more than one device associated with kernel.

• CL_INVALID_OPERATION if device does not support sub-groups.

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Kernel Object Sub-group Queries table and param_value
is not NULL.

• CL_INVALID_VALUE if param_name is CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE, CL_KERNEL_SUB_
GROUP_COUNT_FOR_NDRANGE or CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT and the size in bytes
specified by input_value_size is not valid or if input_value is NULL.

319



• CL_INVALID_KERNEL if kernel is a not a valid kernel object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return information about the arguments of a kernel, call the function

cl_int clGetKernelArgInfo(
    cl_kernel kernel,
    cl_uint arg_index,
    cl_kernel_arg_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

 clGetKernelArgInfo is missing before version 1.2.

• kernel specifies the kernel object being queried.

• arg_index is the argument index. Arguments to the kernel are referred by indices that go from 0
for the leftmost argument to n - 1, where n is the total number of arguments declared by a
kernel.

• param_name specifies the argument information to query. The list of supported param_name
types and the information returned in param_value by clGetKernelArgInfo is described in the
Kernel Argument Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be > size of return type as described in the Kernel Argument Queries table.

• param_value_size ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Kernel argument information is only available if the program object associated with kernel:

• is created with clCreateProgramWithBinary and the program executable is built with the -cl
-kernel-arg-info and -x spir options specified in the options argument to clBuildProgram or
clCompileProgram, if the cl_khr_spir extension is supported; or,

• is created with clCreateProgramWithSource and the program executable is built with the -cl
-kernel-arg-info option specified in the options argument to clBuildProgram or
clCompileProgram,

Table 49. List of supported param_names by clGetKernelArgInfo

320



Kernel Arg Info Return Type Description

CL_KERNEL_ARG_ADDRESS_
QUALIFIER

missing before version 1.2.

cl_kernel_arg_
address_
qualifier

Returns the address qualifier specified for the
argument given by arg_index. This can be one of
the following values:

CL_KERNEL_ARG_ADDRESS_GLOBAL
CL_KERNEL_ARG_ADDRESS_LOCAL
CL_KERNEL_ARG_ADDRESS_CONSTANT
CL_KERNEL_ARG_ADDRESS_PRIVATE

If no address qualifier is specified, the default
address qualifier which is CL_KERNEL_ARG_
ADDRESS_PRIVATE is returned.

CL_KERNEL_ARG_ACCESS_QUALIFIER

missing before version 1.2.

cl_kernel_arg_
access_
qualifier

Returns the access qualifier specified for the
argument given by arg_index. This can be one of
the following values:

CL_KERNEL_ARG_ACCESS_READ_ONLY
CL_KERNEL_ARG_ACCESS_WRITE_ONLY
CL_KERNEL_ARG_ACCESS_READ_WRITE
CL_KERNEL_ARG_ACCESS_NONE

If argument is not an image type and is not
declared with the pipe qualifier, CL_KERNEL_ARG_
ACCESS_NONE is returned. If argument is an image
type, the access qualifier specified or the default
access qualifier is returned.

CL_KERNEL_ARG_TYPE_NAME

missing before version 1.2.

char[] Returns the type name specified for the
argument given by arg_index. The type name
returned will be the argument type name as it
was declared with any whitespace removed. If
argument type name is an unsigned scalar type
(i.e. unsigned char, unsigned short, unsigned int,
unsigned long), uchar, ushort, uint and ulong
will be returned. The argument type name
returned does not include any type qualifiers.

321



Kernel Arg Info Return Type Description

CL_KERNEL_ARG_TYPE_QUALIFIER

missing before version 1.2.

cl_kernel_arg_
type_qualifier

Returns a bitfield describing one or more type
qualifiers specified for the argument given by
arg_index. The returned values can be:

CL_KERNEL_ARG_TYPE_CONST
CL_KERNEL_ARG_TYPE_RESTRICT
CL_KERNEL_ARG_TYPE_VOLATILE
CL_KERNEL_ARG_TYPE_PIPE, or
CL_KERNEL_ARG_TYPE_NONE

CL_KERNEL_ARG_TYPE_CONST is returned if the
kernel argument is a pointer and the referenced
type is declared with the const qualifier. For
example, a kernel argument declared as global
int const* returns CL_KERNEL_ARG_TYPE_CONST but
a kernel argument declared as global int* const
does not. Additionally, CL_KERNEL_ARG_TYPE_CONST
is returned if the kernel argument is declared
with the constant address space qualifier.

CL_KERNEL_ARG_TYPE_RESTRICT is returned if the
pointer type is marked restrict. For example,
global int* restrict returns CL_KERNEL_ARG_
TYPE_RESTRICT.

CL_KERNEL_ARG_TYPE_VOLATILE is returned for
CL_KERNEL_ARG_TYPE_QUALIFIER if the kernel
argument is a pointer and the referenced type is
declared with the volatile qualifier. For
example, a kernel argument declared as global
int volatile* returns CL_KERNEL_ARG_TYPE_
VOLATILE but a kernel argument declared as
global int* volatile does not.

CL_KERNEL_ARG_TYPE_NONE is returned for all
kernel arguments passed by value.

CL_KERNEL_ARG_NAME

missing before version 1.2.

char[] Returns the name specified for the argument
given by arg_index.

clGetKernelArgInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_ARG_INDEX if arg_index is not a valid argument index.

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value size is <
size of return type as described in the Kernel Argument Queries table and param_value is not

322



NULL.

• CL_KERNEL_ARG_INFO_NOT_AVAILABLE if the argument information is not available for kernel.

• CL_INVALID_KERNEL if kernel is a not a valid kernel object.

To query a suggested local work size for a kernel object, call the function

cl_int clGetKernelSuggestedLocalWorkSizeKHR(
    cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint work_dim,
    const size_t* global_work_offset,
    const size_t* global_work_size,
    size_t* suggested_local_work_size);


clGetKernelSuggestedLocalWorkSizeKHR is provided by the
cl_khr_suggested_local_work_size extension.

• command_queue specifies the command-queue and device for the query.

• kernel specifies the kernel object and kernel arguments for the query. The OpenCL context
associated with kernel and command_queue must the same.

• work_dim specifies the number of work dimensions in the input global work offset and global
work size, and the output suggested local work size.

• global_work_offset can be used to specify an array of at least work_dim global ID offset values
for the query. This is optional and may be NULL to indicate there is no global ID offset.

• global_work_size is an array of at least work_dim values describing the global work size for the
query.

• suggested_local_work_size is an output array of at least work_dim values that will contain the
result of the query.

The returned suggested local work size is expected to match the local work size that would be
chosen if the specified kernel object, with the same kernel arguments, were enqueued into the
specified command-queue with the specified global work size, specified global work offset, and
with a NULL local work size.

clGetKernelSuggestedLocalWorkSizeKHR returns CL_SUCCESS if the query executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_KERNEL if kernel is not a valid kernel object.

• CL_INVALID_CONTEXT if the context associated with kernel is not the same as the context associated
with command_queue.

• CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program executable available for
kernel for the device associated with command_queue.

• CL_INVALID_KERNEL_ARGS if all argument values for kernel have not been set.

323



• CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is set as an argument to kernel and the
offset specified when the sub-buffer object was created is not aligned to CL_DEVICE_MEM_BASE_
ADDR_ALIGN for the device associated with command_queue.

• CL_INVALID_IMAGE_SIZE if an image object is set as an argument to kernel and the image
dimensions are not supported by device associated with command_queue.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is set as an argument to kernel and the image
format is not supported by the device associated with command_queue.

• CL_INVALID_OPERATION if an SVM pointer is set as an argument to kernel and the device associated
with command_queue does not support SVM or the required SVM capabilities for the SVM
pointer.

• CL_INVALID_WORK_DIMENSION if work_dim is not a valid value (i.e. a value between 1 and CL_DEVICE_
MAX_WORK_ITEM_DIMENSIONS).

• CL_INVALID_GLOBAL_WORK_SIZE if global_work_size is NULL or if any of the values specified in
global_work_size are 0.

• CL_INVALID_GLOBAL_WORK_SIZE if any of the values specified in global_work_size exceed the
maximum value representable by size_t on the device associated with command_queue.

• CL_INVALID_GLOBAL_OFFSET if the value specified in global_work_size plus the corresponding value
in global_work_offset for dimension exceeds the maximum value representable by size_t on the
device associated with command_queue.

• CL_INVALID_VALUE if suggested_local_work_size is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.


These error conditions are consistent with error conditions for
clEnqueueNDRangeKernel.

5.10. Executing Kernels
To enqueue a command to execute a kernel on a device, call the function

cl_int clEnqueueNDRangeKernel(
    cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint work_dim,
    const size_t* global_work_offset,
    const size_t* global_work_size,
    const size_t* local_work_size,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

324



• command_queue is a valid host command-queue. The kernel will be queued for execution on the
device associated with command_queue.

• kernel is a valid kernel object. The OpenCL context associated with kernel and command-queue
must be the same.

• work_dim is the number of dimensions used to specify the global work-items and work-items in
the work-group. work_dim must be greater than zero and less than or equal to CL_DEVICE_MAX_
WORK_ITEM_DIMENSIONS. If global_work_size is NULL, or the value in any passed dimension is 0 then
the kernel command will trivially succeed after its event dependencies are satisfied and
subsequently update its completion event. The behavior in this situation is similar to that of an
enqueued marker, except that unlike a marker, an enqueued kernel with no events passed to
event_wait_list may run at any time.

• global_work_offset can be used to specify an array of work_dim unsigned values that describe
the offset used to calculate the global ID of a work-item. If global_work_offset is NULL, the global
IDs start at offset (0, 0, 0). global_work_offset must be NULL before version 1.1.

• global_work_size points to an array of work_dim unsigned values that describe the number of
global work-items in work_dim dimensions that will execute the kernel function. The total
number of global work-items is computed as global_work_size[0] × … × global_work_size
[work_dim - 1].

• local_work_size points to an array of work_dim unsigned values that describe the number of
work-items that make up a work-group (also referred to as the size of the work-group) that will
execute the kernel specified by kernel. The total number of work-items in a work-group is
computed as local_work_size[0] × … × local_work_size[work_dim - 1]. The total number of work-
items in the work-group must be less than or equal to the CL_KERNEL_WORK_GROUP_SIZE value
specified in the Kernel Object Device Queries table, and the number of work-items specified in
local_work_size[0], …, local_work_size[work_dim - 1] must be less than or equal to the
corresponding values specified by CL_DEVICE_MAX_WORK_ITEM_SIZES[0], …, CL_DEVICE_MAX_WORK_
ITEM_SIZES[work_dim - 1]. The explicitly specified local_work_size will be used to determine how
to break the global work-items specified by global_work_size into appropriate work-group
instances.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

An ND-range kernel command may require uniform work-groups or may support non-uniform
work-groups. To support non-uniform work-groups:

325



1. The device associated with command_queue must support non-uniform work-groups.

2. The program object associated with kernel must support non-uniform work-groups. Specifically,
this means:

a. If the program was created with clCreateProgramWithSource, the program must be
compiled or built using the -cl-std=CL2.0 or -cl-std=CL3.0 build option and without the -cl
-uniform-work-group-size build option.

b. If the program was created with clCreateProgramWithIL or clCreateProgramWithBinary,
the program must be compiled or built without the -cl-uniform-work-group-size build
options.

c. If the program was created using clLinkProgram, all input programs must support non-
uniform work-groups.

If non-uniform work-groups are supported, any single dimension for which the global size is not
divisible by the local size will be partitioned into two regions. One region will have work-groups
that have the same number of work-items as was specified by the local size parameter in that
dimension. The other region will have work-groups with less than the number of work items
specified by the local size parameter in that dimension. The global IDs and group IDs of the work-
items in the first region will be numerically lower than those in the second, and the second region
will be at most one work-group wide in that dimension. Work-group sizes could be non-uniform in
multiple dimensions, potentially producing work-groups of up to 4 different sizes in a 2D range and
8 different sizes in a 3D range.

If non-uniform work-groups are supported and local_work_size is NULL, the OpenCL runtime may
choose a uniform or non-uniform work-group size.

Otherwise, when non-uniform work-groups are not supported, the size of each work-group must be
uniform. If local_work_size is specified, the values specified in global_work_size[0], …,
global_work_size[work_dim - 1] must be evenly divisible by the corresponding values specified in
local_work_size[0], …, local_work_size[work_dim - 1]. If local_work_size is NULL, the OpenCL runtime
must choose a uniform work-group size.

The work-group size to be used for kernel can also be specified in the program source or
intermediate language. In this case the size of work-group specified by local_work_size must match
the value specified in the program source.

These work-group instances are executed in parallel across multiple compute units or concurrently
on the same compute unit.

Each work-item is uniquely identified by a global identifier. The global ID, which can be read inside
the kernel, is computed using the value given by global_work_size and global_work_offset. In
addition, a work-item is also identified within a work-group by a unique local ID. The local ID,
which can also be read by the kernel, is computed using the value given by local_work_size. The
starting local ID is always (0, 0, …, 0).

clEnqueueNDRangeKernel returns CL_SUCCESS if the kernel-instance was successfully queued.
Otherwise, it returns one of the following errors:

• CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program executable available for

326



device associated with command_queue.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_KERNEL if kernel is not a valid kernel object.

• CL_INVALID_CONTEXT if context associated with command_queue and kernel are not the same or if
the context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified.

• CL_INVALID_WORK_DIMENSION if work_dim is not a valid value (i.e. a value between 1 and CL_DEVICE_
MAX_WORK_ITEM_DIMENSIONS).

• CL_INVALID_GLOBAL_WORK_SIZE if global_work_size is NULL or if any of the values specified in
global_work_size[0], … global_work_size[work_dim - 1] are 0. Returning this error code under
these circumstances is deprecated by version 2.1.

• CL_INVALID_GLOBAL_WORK_SIZE if any of the values specified in global_work_size[0], …
global_work_size[work_dim - 1] exceed the maximum value representable by size_t on the
device on which the kernel-instance will be enqueued.

• CL_INVALID_GLOBAL_OFFSET if the value specified in global_work_size + the corresponding values
in global_work_offset for any dimensions is greater than the maximum value representable by
size t on the device on which the kernel-instance will be enqueued, or if global_work_offset is
non-NULL before version 1.1.

• CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and does not match the required
work-group size for kernel in the program source.

• CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and is not consistent with the required
number of sub-groups for kernel in the program source.

• CL_INVALID_WORK_GROUP_SIZE if local_work_size is specified and the total number of work-items in
the work-group computed as local_work_size[0] × … local_work_size[work_dim - 1] is greater
than the value specified by CL_KERNEL_WORK_GROUP_SIZE in the Kernel Object Device Queries table.

• CL_INVALID_WORK_GROUP_SIZE if the work-group size must be uniform and the local_work_size is
not NULL, is not equal to the required work-group size specified in the kernel source, or the
global_work_size is not evenly divisible by the local_work_size.

• CL_INVALID_WORK_ITEM_SIZE if the number of work-items specified in any of local_work_size[0], …
local_work_size[work_dim - 1] is greater than the corresponding values specified by CL_DEVICE_
MAX_WORK_ITEM_SIZES[0], …, CL_DEVICE_MAX_WORK_ITEM_SIZES[work_dim - 1].

• CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value for an argument
that is a buffer object and the offset specified when the sub-buffer object is created is not
aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue. This error code
is missing before version 1.1.

• CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the image
dimensions (image width, height, specified or compute row and/or slice pitch) are not supported
by device associated with queue.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is specified as an argument value and the
image format (image channel order and data type) is not supported by device associated with
queue.

327



• CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel on the
command-queue because of insufficient resources needed to execute the kernel. For example,
the explicitly specified local_work_size causes a failure to execute the kernel because of
insufficient resources such as registers or local memory. Another example would be the number
of read-only image args used in kernel exceed the CL_DEVICE_MAX_READ_IMAGE_ARGS value for
device or the number of write-only and read-write image args used in kernel exceed the
CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS value for device or the number of samplers used in kernel
exceed CL_DEVICE_MAX_SAMPLERS for device.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image or buffer objects specified as arguments to kernel.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_INVALID_OPERATION if SVM pointers are passed as arguments to a kernel and the device does
not support SVM or if system pointers are passed as arguments to a kernel and/or stored inside
SVM allocations passed as kernel arguments and the device does not support fine grain system
SVM allocations.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to execute a kernel on a device, using a single work-item, call the function

cl_int clEnqueueTask(
    cl_command_queue command_queue,
    cl_kernel kernel,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueTask is deprecated by version 2.0.

• command_queue is a valid host command-queue. The kernel will be queued for execution on the
device associated with command_queue.

• kernel is a valid kernel object. The OpenCL context associated with kernel and command-queue
must be the same.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused

328



or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

clEnqueueTask is equivalent to calling clEnqueueNDRangeKernel with work_dim set to 1,
global_work_offset set to NULL, global_work_size[0] set to 1, and local_work_size[0] set to 1.

clEnqueueTask returns CL_SUCCESS if the kernel-instance was successfully queued. Otherwise, it
returns one of the following errors:

• CL_INVALID_PROGRAM_EXECUTABLE if there is no successfully built program executable available for
device associated with command_queue.

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_KERNEL if kernel is not a valid kernel object.

• CL_INVALID_CONTEXT if context associated with command_queue and kernel are not the same or if
the context associated with command_queue and events in event_wait_list are not the same.

• CL_INVALID_KERNEL_ARGS if the kernel argument values have not been specified.

• CL_INVALID_WORK_GROUP_SIZE if a work-group size is specified for kernel in the program source
and it is not (1, 1, 1).

• CL_INVALID_WORK_GROUP_SIZE if the required number of sub-groups is specified for kernel in the
program source and is not consistent with a work-group size of (1, 1, 1).

• CL_MISALIGNED_SUB_BUFFER_OFFSET if a sub-buffer object is specified as the value for an argument
that is a buffer object and the offset specified when the sub-buffer object is created is not
aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN value for device associated with queue. This error code
is missing before version 1.1.

• CL_INVALID_IMAGE_SIZE if an image object is specified as an argument value and the image
dimensions (image width, height, specified or compute row and/or slice pitch) are not supported
by device associated with queue.

• CL_IMAGE_FORMAT_NOT_SUPPORTED if an image object is specified as an argument value and the
image format (image channel order and data type) is not supported by device associated with
queue.

• CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel on the
command-queue because of insufficient resources needed to execute the kernel. See how this
error code is used with clEnqueueNDRangeKernel for examples.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with image or buffer objects specified as arguments to kernel.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_INVALID_OPERATION if SVM pointers are passed as arguments to a kernel and the device does

329



not support SVM or if system pointers are passed as arguments to a kernel and/or stored inside
SVM allocations passed as kernel arguments and the device does not support fine grain system
SVM allocations.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to execute a native C/C++ function not compiled using the OpenCL
compiler, call the function

cl_int clEnqueueNativeKernel(
    cl_command_queue command_queue,
    void (CL_CALLBACK* user_func)(void*),
    void* args,
    size_t cb_args,
    cl_uint num_mem_objects,
    const cl_mem* mem_list,
    const void** args_mem_loc,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

• command_queue is a valid host command-queue. A native user function can only be executed on
a command-queue created on a device that has CL_EXEC_NATIVE_KERNEL capability set in
CL_DEVICE_EXECUTION_CAPABILITIES as specified in the Device Queries table.

• user_func is a pointer to a host-callable user function. It is the application’s responsibility to
ensure that the host-callable user function is thread-safe.

• args is a pointer to the args list that user_func should be called with.

• cb_args is the size in bytes of the args list that args points to.

• num_mem_objects is the number of buffer objects that are passed in args.

• mem_list is a list of valid buffer objects, if num_mem_objects > 0. The buffer object values
specified in mem_list are memory object handles (cl_mem values) returned by clCreateBuffer or
clCreateBufferWithProperties, or NULL.

• args_mem_loc is a pointer to appropriate locations that args points to where memory object
handles (cl_mem values) are stored. Before the user function is executed, the memory object
handles are replaced by pointers to global memory.

• event_wait_list, num_events_in_wait_list and event are as described in
clEnqueueNDRangeKernel.

The data pointed to by args and cb_args bytes in size will be copied and a pointer to this copied
region will be passed to user_func. The copy needs to be done because the memory objects (cl_mem
values) that args may contain need to be modified and replaced by appropriate pointers to global
memory. When clEnqueueNativeKernel returns, the memory region pointed to by args can be

330



reused by the application.

clEnqueueNativeKernel returns CL_SUCCESS if the user function execution instance was
successfully queued. Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_VALUE if user_func is NULL.

• CL_INVALID_VALUE if args is a NULL value and cb_args > 0, or if args is a NULL value and
num_mem_objects > 0.

• CL_INVALID_VALUE if args is not NULL and cb_args is 0.

• CL_INVALID_VALUE if num_mem_objects > 0 and mem_list or args_mem_loc are NULL.

• CL_INVALID_VALUE if num_mem_objects = 0 and mem_list or args_mem_loc are not NULL.

• CL_INVALID_OPERATION if the device associated with command_queue cannot execute the native
kernel.

• CL_INVALID_MEM_OBJECT if one or more memory objects specified in mem_list are not valid or are
not buffer objects.

• CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of kernel on the
command-queue because of insufficient resources needed to execute the kernel.

• CL_MEM_OBJECT_ALLOCATION_FAILURE if there is a failure to allocate memory for data store
associated with buffer objects specified as arguments to kernel.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_INVALID_OPERATION if SVM pointers are passed as arguments to a kernel and the device does
not support SVM or if system pointers are passed as arguments to a kernel and/or stored inside
SVM allocations passed as kernel arguments and the device does not support fine grain system
SVM allocations.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.



The total number of read-only images specified as arguments to a kernel cannot
exceed CL_DEVICE_MAX_READ_IMAGE_ARGS. Each image array argument to a kernel
declared with the read_only qualifier counts as one image. The total number of
write-only images specified as arguments to a kernel cannot exceed CL_DEVICE_MAX_
WRITE_IMAGE_ARGS. Each image array argument to a kernel declared with the
write_only qualifier counts as one image.

The total number of read-write images specified as arguments to a kernel cannot
exceed CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS. Each image array argument to a

331



kernel declared with the read_write qualifier counts as one image.

5.11. Event Objects
An event object can be used to track the execution status of a command. The API calls that enqueue
commands to a command-queue create a new event object that is returned in the event argument.
In case of an error enqueuing the command in the command-queue the event argument does not
return an event object.

The execution status of an enqueued command at any given point in time can be one of the
following:

• CL_QUEUED: Indicates that the command has been enqueued in a command-queue. This is the
initial state of all events except user events.

• CL_SUBMITTED: The initial state for all user events. For all other events, indicates that the
command has been submitted by the host to the device.

• CL_RUNNING: Indicates that the device has started executing this command. In order for the
execution status of an enqueued command to change from CL_SUBMITTED to CL_RUNNING, all events
that this command is waiting on must have completed successfully i.e. their execution status
must be CL_COMPLETE.

• CL_COMPLETE: Indicates that the command has successfully completed.

• An Error Code: A negative integer value indicating that the command was abnormally
terminated. Abnormal termination may occur for a number of reasons, such as a bad memory
access.



A command is considered to be complete if its execution status is CL_COMPLETE or is
a negative integer value.

If the execution of a command is terminated, the command-queue associated with
this terminated command, and the associated context (and all other command-
queues in this context) may no longer be available. The behavior of OpenCL API
calls that use this context (and command-queues associated with this context) are
now considered to be implementation-defined. The user registered callback
function specified when context is created can be used to report appropriate error
information.

5.11.1. Creating, Waiting for, and Releasing Event Objects

To create a user event object, call the function

cl_event clCreateUserEvent(
    cl_context context,
    cl_int* errcode_ret);

 clCreateUserEvent is missing before version 1.1.

332



• context must be a valid OpenCL context.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

User events allow applications to enqueue commands that wait on a user event to finish before the
command is executed by the device.

clCreateUserEvent returns a valid non-zero event object and errcode_ret is set to CL_SUCCESS if the
user event object is created successfully. Otherwise, it returns a NULL value with one of the following
error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

The initial execution status for the user event object is CL_SUBMITTED.

To set the execution status of a user event object, call the function

cl_int clSetUserEventStatus(
    cl_event event,
    cl_int execution_status);

 clSetUserEventStatus is missing before version 1.1.

• event is a user event object created using clCreateUserEvent.

• execution_status specifies the new execution status to be set and can be CL_COMPLETE or a
negative integer value to indicate an error. A negative integer value causes all enqueued
commands that wait on this user event to be terminated. clSetUserEventStatus can only be
called once to change the execution status of event.



If there are enqueued commands with user events in the event_wait_list argument
of clEnqueue* commands, the user must ensure that the status of these user
events being waited on are set using clSetUserEventStatus before any OpenCL
APIs that release OpenCL objects except for event objects are called; otherwise the
behavior is undefined.

For example, the following code sequence will result in undefined behavior of
clReleaseMemObject.

ev1 = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ..., 1, &ev1, NULL);
clEnqueueWriteBuffer(cq, buf2, CL_FALSE, ...);
clReleaseMemObject(buf2);

333



clSetUserEventStatus(ev1, CL_COMPLETE);

The following code sequence, however, works correctly.

ev1 = clCreateUserEvent(ctx, NULL);
clEnqueueWriteBuffer(cq, buf1, CL_FALSE, ..., 1, &ev1, NULL);
clEnqueueWriteBuffer(cq, buf2, CL_FALSE, ...);
clSetUserEventStatus(ev1, CL_COMPLETE);
clReleaseMemObject(buf2);

clSetUserEventStatus returns CL_SUCCESS if the function was executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_EVENT if event is not a valid user event object.

• CL_INVALID_VALUE if the execution_status is not CL_COMPLETE or a negative integer value.

• CL_INVALID_OPERATION if the execution_status for event has already been changed by a previous
call to clSetUserEventStatus.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To wait for events to complete, call the function

cl_int clWaitForEvents(
    cl_uint num_events,
    const cl_event* event_list);

• num_events is the number of events in event_list.

• event_list is a pointer to a list of event object handles.

This function waits on the host thread for commands identified by event objects in event_list to
complete. A command is considered complete if its execution status is CL_COMPLETE or a negative
value. The events specified in event_list act as synchronization points.

clWaitForEvents returns CL_SUCCESS if the execution status of all events in event_list is CL_COMPLETE.
Otherwise, it returns one of the following errors:

• CL_INVALID_VALUE if num_events is zero or event_list is NULL.

• CL_INVALID_CONTEXT if events specified in event_list do not belong to the same context.

• CL_INVALID_EVENT if event objects specified in event_list are not valid event objects.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the execution status of any of the events in
event_list is a negative integer value. This error code is missing before version 1.1.

334



• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To return information about an event object, call the function

cl_int clGetEventInfo(
    cl_event event,
    cl_event_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• event specifies the event object being queried.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetEventInfo is described in the Event Object
Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Event Object Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 50. List of supported param_names by clGetEventInfo

Event Info Return Type Description

CL_EVENT_COMMAND_QUEUE cl_command_
queue

Return the command-queue associated with
event. For user event objects, a NULL value is
returned.

If the cl_khr_command_buffer_multi_device
extension is supported, for events returned by a
command-buffer enqueue operation to multiple
command-queues, NULL is returned.

CL_EVENT_CONTEXT

missing before version 1.1.

cl_context Return the context associated with event.

CL_EVENT_COMMAND_TYPE cl_command_type Return the command type associated with event
as described in the Event Command Types table.

335



Event Info Return Type Description

CL_EVENT_COMMAND_EXECUTION_
STATUS [16]

cl_int Return the execution status of the command
identified by event. Valid values are:

CL_QUEUED - Command has been enqueued in the
command-queue.

CL_SUBMITTED - Enqueued command has been
submitted by the host to the device associated
with the command-queue.

CL_RUNNING - Device is currently executing this
command.

CL_COMPLETE - The command has completed.

Or an error code given by a negative integer
value (command was abnormally terminated -
this may be caused by a bad memory access
etc.). These error codes come from the same set
of error codes that are returned from the
platform or runtime API calls as return values or
errcode_ret values.

If the cl_khr_command_buffer_multi_device
extension is supported, for events returned by a
command-buffer enqueue operation to multiple
command-queues the semantics of execution
status is as follows:

CL_QUEUED - Command-buffer has been enqueued
across the command-queues.

CL_SUBMITTED - Commands from the command-
buffer have been submitted by the host to any
device associated with one of the command-
queues.

CL_RUNNING - Any command from the command-
buffer has started execution on a device.

CL_COMPLETE - All commands have completed on
all devices.

CL_EVENT_REFERENCE_COUNT [17] cl_uint Return the event reference count.

Table 51. List of supported event command types

336



Events Created By Event Command Type

clEnqueueNDRangeKernel CL_COMMAND_NDRANGE_KERNEL

clEnqueueTask CL_COMMAND_TASK

clEnqueueNativeKernel CL_COMMAND_NATIVE_KERNEL

clEnqueueReadBuffer CL_COMMAND_READ_BUFFER

clEnqueueWriteBuffer CL_COMMAND_WRITE_BUFFER

clEnqueueCopyBuffer CL_COMMAND_COPY_BUFFER

clEnqueueReadImage CL_COMMAND_READ_IMAGE

clEnqueueWriteImage CL_COMMAND_WRITE_IMAGE

clEnqueueCopyImage CL_COMMAND_COPY_IMAGE

clEnqueueCopyBufferToImage CL_COMMAND_COPY_BUFFER_TO_IMAGE

clEnqueueCopyImageToBuffer CL_COMMAND_COPY_IMAGE_TO_BUFFER

clEnqueueMapBuffer CL_COMMAND_MAP_BUFFER

clEnqueueMapImage CL_COMMAND_MAP_IMAGE

clEnqueueUnmapMemObject CL_COMMAND_UNMAP_MEM_OBJECT

clEnqueueMarker,
clEnqueueMarkerWithWaitList

CL_COMMAND_MARKER

clEnqueueReadBufferRect CL_COMMAND_READ_BUFFER_RECT

missing before version 1.1.

clEnqueueWriteBufferRect CL_COMMAND_WRITE_BUFFER_RECT

missing before version 1.1.

clEnqueueCopyBufferRect CL_COMMAND_COPY_BUFFER_RECT

missing before version 1.1.

clCreateUserEvent CL_COMMAND_USER

missing before version 1.1.

clEnqueueBarrier,
clEnqueueBarrierWithWaitList

CL_COMMAND_BARRIER

missing before version 1.2.

clEnqueueMigrateMemObjects CL_COMMAND_MIGRATE_MEM_OBJECTS

missing before version 1.2.

clEnqueueFillBuffer CL_COMMAND_FILL_BUFFER

missing before version 1.2.

337



Events Created By Event Command Type

clEnqueueFillImage CL_COMMAND_FILL_IMAGE

missing before version 1.2.

clEnqueueSVMFree CL_COMMAND_SVM_FREE

missing before version 2.0.

clEnqueueSVMMemcpy CL_COMMAND_SVM_MEMCPY

missing before version 2.0.

clEnqueueSVMMemFill CL_COMMAND_SVM_MEMFILL

missing before version 2.0.

clEnqueueSVMMap CL_COMMAND_SVM_MAP

missing before version 2.0.

clEnqueueSVMUnmap CL_COMMAND_SVM_UNMAP

missing before version 2.0.

clEnqueueSVMMigrateMem CL_COMMAND_SVM_MIGRATE_MEM

missing before version 3.0.

Prior to OpenCL 3.0, implementations should return
CL_COMMAND_MIGRATE_MEM_OBJECTS, but may return an
implementation-defined event command type for
clEnqueueSVMMigrateMem.

clEnqueueCommandBufferKHR CL_COMMAND_COMMAND_BUFFER_KHR

provided by the cl_khr_command_buffer extension.

clEnqueueAcquireDX9MediaSurface
sKHR

CL_COMMAND_ACQUIRE_DX9_MEDIA_SURFACES_KHR

provided by the cl_khr_dx9_media_sharing extension.

clEnqueueReleaseDX9MediaSurface
sKHR

CL_COMMAND_RELEASE_DX9_MEDIA_SURFACES_KHR

provided by the cl_khr_dx9_media_sharing extension.

clEnqueueAcquireD3D10ObjectsKH
R

CL_COMMAND_ACQUIRE_D3D10_OBJECTS_KHR

provided by the cl_khr_d3d10_sharing extension.

clEnqueueReleaseD3D10ObjectsKHR CL_COMMAND_RELEASE_D3D10_OBJECTS_KHR

provided by the cl_khr_d3d10_sharing extension.

338



Events Created By Event Command Type

clEnqueueAcquireD3D11ObjectsKH
R

CL_COMMAND_ACQUIRE_D3D11_OBJECTS_KHR

provided by the cl_khr_d3d11_sharing extension.

clEnqueueReleaseD3D11ObjectsKHR CL_COMMAND_RELEASE_D3D11_OBJECTS_KHR

provided by the cl_khr_d3d11_sharing extension.

clEnqueueAcquireEGLObjectsKHR CL_COMMAND_ACQUIRE_EGL_OBJECTS_KHR

provided by the cl_khr_egl_image extension.

clEnqueueReleaseEGLObjectsKHR CL_COMMAND_RELEASE_EGL_OBJECTS_KHR

provided by the cl_khr_egl_image extension.

clCreateEventFromEGLSyncKHR CL_COMMAND_EGL_FENCE_SYNC_OBJECT_KHR

provided by the cl_khr_egl_image extension.

clEnqueueAcquireExternalMemObj
ectsKHR

CL_COMMAND_ACQUIRE_EXTERNAL_MEM_OBJECTS_KHR

provided by the cl_khr_external_memory extension.

clEnqueueReleaseExternalMemObje
ctsKHR

CL_COMMAND_RELEASE_EXTERNAL_MEM_OBJECTS_KHR

provided by the cl_khr_external_memory extension.

clEnqueueAcquireGLObjects CL_COMMAND_ACQUIRE_GL_OBJECTS

clEnqueueReleaseGLObjects CL_COMMAND_RELEASE_GL_OBJECTS

clCreateEventFromGLsyncKHR CL_COMMAND_GL_FENCE_SYNC_OBJECT_KHR

provided by the cl_khr_gl_event extension.

clEnqueueSignalSemaphoresKHR CL_COMMAND_SEMAPHORE_SIGNAL_KHR

provided by the cl_khr_semaphore extension.

clEnqueueWaitSemaphoresKHR CL_COMMAND_SEMAPHORE_WAIT_KHR

provided by the cl_khr_semaphore extension.

Using clGetEventInfo to determine if a command identified by event has finished execution (i.e.
CL_EVENT_COMMAND_EXECUTION_STATUS returns CL_COMPLETE) is not a synchronization point. There are no
guarantees that the memory objects being modified by command associated with event will be
visible to other enqueued commands.

clGetEventInfo returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <

339



size of return type as described in the Kernel Argument Queries table and param_value is not
NULL.

• CL_INVALID_VALUE if information to query given in param_name cannot be queried for event.

• CL_INVALID_EVENT if event is a not a valid event object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To register a user callback function for a specific command execution status, call the function

cl_int clSetEventCallback(
    cl_event event,
    cl_int command_exec_callback_type,
    void (CL_CALLBACK* pfn_notify)(cl_event event, cl_int event_command_status, void
*user_data),
    void* user_data);

 clSetEventCallback is missing before version 1.1.

• event is a valid event object.

• command_exec_callback_type specifies the command execution status for which the callback is
registered. The command execution status types for which a callback can be registered are
CL_SUBMITTED, CL_RUNNING, or CL_COMPLETE. The callback function registered for a
command_exec_callback_type value of CL_COMPLETE will be called when the command has
completed successfully or is abnormally terminated.

• pfn_event_notify is the event callback function that can be registered by the application. This
callback function may be called asynchronously by the OpenCL implementation. It is the
application’s responsibility to ensure that the callback function is thread-safe. The parameters
to this callback function are:

◦ event is the event object for which the callback function is invoked.

◦ event_command_status is equal to the command_exec_callback_type used while registering
the callback. Refer to the Event Object Queries table for the command execution status
values. If the callback is called as the result of the command associated with event being
abnormally terminated, an appropriate error code for the error that caused the termination
will be passed to event_command_status instead.

◦ user_data is a pointer to user supplied data.

• user_data will be passed as the user_data argument when pfn_notify is called. user_data can be
NULL.

Each call to clSetEventCallback registers the specified user callback function on a callback stack
associated with event. The order in which the registered user callback functions are called is
undefined.

340



The registered callback function will be called when the execution status of the command
associated with event changes to an execution status equal to or past the status specified by
command_exec_status, or for the execution status CL_COMPLETE, if the command is abnormally
terminated. There is no guarantee that the callback functions registered for various command
execution status values for an event will be called in the exact order that the execution status of a
command changes. Furthermore, it should be noted that calling a callback for an event execution
status other than CL_COMPLETE in no way implies that the memory model or execution model as
defined by the OpenCL specification has changed. For example, it is not valid to assume that a
corresponding memory transfer has completed unless the event is in the state CL_COMPLETE.

All callbacks registered for an event object must be called before the event object is destroyed.

Callbacks should return promptly. Behavior is undefined when calling expensive system routines,
OpenCL APIs to create contexts or command-queues, or blocking OpenCL APIs in an event callback.
Rather than calling a blocking OpenCL API in an event callback, applications may call a non-
blocking OpenCL API, then register a completion callback for the non-blocking OpenCL API with the
remainder of the work.

Because commands in a command-queue are not required to begin execution until the command-
queue is flushed, callbacks that enqueue commands on a command-queue should either call
clFlush on the queue before returning, or arrange for the command-queue to be flushed later.

clSetEventCallback returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_EVENT if event is not a valid event object.

• CL_INVALID_VALUE if pfn_event_notify is NULL or if command_exec_callback_type is not
CL_SUBMITTED, CL_RUNNING, or CL_COMPLETE.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To retain an event object, call the function

cl_int clRetainEvent(
    cl_event event);

• event is the event object to be retained.

The event reference count is incremented. The OpenCL commands that return an event perform an
implicit retain.

clRetainEvent returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns one
of the following errors:

• CL_INVALID_EVENT if event is not a valid event object.

341



• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To release an event object, call the function

cl_int clReleaseEvent(
    cl_event event);

• event is the event object to be released.

The event reference count is decremented.

The event object is deleted once the reference count becomes zero, the specific command identified
by this event has completed (or terminated) and there are no commands in the command-queues of
a context that require a wait for this event to complete. Using this function to release a reference
that was not obtained by creating the object or by calling clRetainEvent causes undefined
behavior.



Developers should be careful when releasing their last reference count on events
created by clCreateUserEvent that have not yet been set to status of CL_COMPLETE
or an error. If the user event was used in the event_wait_list argument passed to a
clEnqueue* API or another application host thread is waiting for it in
clWaitForEvents, those commands and host threads will continue to wait for the
event status to reach CL_COMPLETE or error, even after the application has released
the object. Since in this scenario the application has released its last reference
count to the user event, it would be in principle no longer valid for the application
to change the status of the event to unblock all the other machinery. As a result the
waiting tasks will wait forever, and associated events, cl_mem objects, command-
queues and contexts are likely to leak. In-order command-queues caught up in this
deadlock may cease to do any work.

clReleaseEvent returns CL_SUCCESS if the function is executed successfully. Otherwise, it returns
one of the following errors:

• CL_INVALID_EVENT if event is not a valid event object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.11.1.1. Linking Event Objects to EGL Fence Sync Objects

An event object may be created by linking to an EGL fence sync object.

To create an OpenCL event object linked to an EGL fence sync object, call the function

342



cl_event clCreateEventFromEGLSyncKHR(
    cl_context context,
    CLeglSyncKHR sync,
    CLeglDisplayKHR display,
    cl_int* errcode_ret);

 clCreateEventFromEGLSyncKHR is provided by the cl_khr_egl_event extension.

• context is a valid OpenCL context created from an OpenGL context or share group, using the
cl_khr_gl_sharing extension.

• sync is the name of a sync object of type EGL_SYNC_FENCE_KHR created with respect to EGLDisplay
display.

• display is the EGLDisplay handle.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Completion of such an event object is equivalent to waiting for completion of the fence command
associated with the linked EGL sync object.

The parameters of an event object linked to an EGL sync object will return the following values
when queried with clGetEventInfo:

• The CL_EVENT_COMMAND_QUEUE of a linked event is NULL, because the event is not associated with
any OpenCL command-queue.

• The CL_EVENT_COMMAND_TYPE of a linked event is CL_COMMAND_EGL_FENCE_SYNC_OBJECT_KHR, indicating
that the event is associated with a EGL sync object, rather than an OpenCL command.

• The CL_EVENT_COMMAND_EXECUTION_STATUS of a linked event is either CL_SUBMITTED, indicating that
the fence command associated with the sync object has not yet completed, or CL_COMPLETE,
indicating that the fence command has completed.

clCreateEventFromEGLSyncKHR performs an implicit clRetainEvent on the returned event
object. Creating a linked event object also places a reference on the linked EGL sync object. When
the event object is deleted, the reference will be removed from the EGL sync object.

Events returned from clCreateEventFromEGLSyncKHR may only be consumed by commands to
acquire and release memory objects. Passing such events to any other CL API that enqueues
commands will generate a CL_INVALID_EVENT error.

clCreateEventFromEGLSyncKHR returns a valid OpenCL event object and errcode_ret is set to
CL_SUCCESS if the event object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context, or was not created from a GL context.

• CL_INVALID_EGL_OBJECT_KHR if sync is not a valid EGLSyncKHR object of type EGL_SYNC_FENCE_KHR
created with respect to EGLDisplay display.

343



5.11.1.1.1. Explicit Synchronization Using EGL Fence Sync Objects

If the cl_khr_egl_event extension is supported, event objects created with
clCreateEventFromEGLSyncKHR provide another method of coordinating sharing between EGL /
EGL client API objects, and OpenCL.

Completion of EGL and EGL client API commands may be determined by

• placing an EGL fence command after commands using eglCreateSyncKHR;

• creating an event from the resulting EGL sync object using clCreateEventFromEGLSyncKHR;
and

• determining completion of that event object via clEnqueueAcquireGLObjects.

This method may be considerably more efficient than calling operations like glFinish, and is
referred to as explicit synchronization. The application is responsible for ensuring the command
stream associated with the EGL fence is flushed to ensure the CL queue is submitted to the device.
Explicit synchronization is most useful when an EGL client API context bound to another thread is
accessing the memory objects.

5.11.1.2. Linking Event Objects to OpenGL Fence Sync Objects

An event object may be created by linking to an OpenGL fence sync object.

To create an OpenCL event object linked to an OpenGL fence sync object, call the function

cl_event clCreateEventFromGLsyncKHR(
    cl_context context,
    cl_GLsync sync,
    cl_int* errcode_ret);

 clCreateEventFromGLsyncKHR is provided by the cl_khr_gl_event extension.

• context is a valid OpenCL context created from an OpenGL context or share group, using the
cl_khr_gl_sharing extension.

• sync is the name of a sync object in the GL share group associated with context.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Completion of such an event object is equivalent to waiting for completion of the fence command
associated with the linked GL sync object.

clCreateEventFromGLsyncKHR returns a valid OpenCL event object and errcode_ret is set to
CL_SUCCESS if the event object is created successfully. Otherwise, it returns a NULL value with one of
the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context, or was not created from a GL context.

• CL_INVALID_GL_OBJECT if sync is not the name of a sync object in the GL share group associated

344



with context.

The parameters of an event object linked to a GL sync object will return the following values when
queried with clGetEventInfo:

• The CL_EVENT_COMMAND_QUEUE of a linked event is NULL, because the event is not associated with
any OpenCL command-queue.

• The CL_EVENT_COMMAND_TYPE of a linked event is CL_COMMAND_GL_FENCE_SYNC_OBJECT_KHR, indicating
that the event is associated with a GL sync object, rather than an OpenCL command.

• The CL_EVENT_COMMAND_EXECUTION_STATUS of a linked event is either CL_SUBMITTED, indicating that
the fence command associated with the sync object has not yet completed, or CL_COMPLETE,
indicating that the fence command has completed.

clCreateEventFromGLsyncKHR performs an implicit clRetainEvent on the returned event object.
Creating a linked event object also places a reference on the linked GL sync object. When the event
object is deleted, the reference will be removed from the GL sync object.

Events returned from clCreateEventFromGLsyncKHR can be used in the event_wait_list argument
to clEnqueueAcquireGLObjects and CL APIs that take a cl_event as an argument but do not
enqueue commands. Passing such events to any other CL API that enqueues commands will
generate a CL_INVALID_EVENT error.

5.11.1.2.1. Explicit Synchronization Using OpenGL Fence Sync Objects

If the cl_khr_gl_event extension is supported, event objects created with
clCreateEventFromGLsyncKHR provide another method of coordinating sharing of buffers and
images between OpenGL and OpenCL.

Completion of OpenGL commands may be determined by

• placing an OpenGL fence command after commands using glFenceSync;

• creating an event from the resulting OpenGL sync object using
clCreateEventFromGLsyncKHR; and

• determining completion of that event object via clEnqueueAcquireGLObjects.

This method may be considerably more efficient than calling glFinish, and is referred to as explicit
synchronization. Explicit synchronization is most useful when an OpenGL context bound to another
thread is accessing the memory objects.

Explicit synchronization is most useful when an OpenGL context bound to another thread is
accessing the memory objects.

5.12. Markers, Barriers and Waiting for Events
To enqueue a marker command which waits for events or commands to complete, call the function

345



cl_int clEnqueueMarkerWithWaitList(
    cl_command_queue command_queue,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueMarkerWithWaitList is missing before version 1.2.

• command_queue is a valid host command-queue.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

If event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of
events pointed to by event_wait_list must be valid and num_events_in_wait_list must be greater than
0. The events specified in event_wait_list act as synchronization points. The context associated with
events in event_wait_list and command_queue must be the same. The memory associated with
event_wait_list can be reused or freed after the function returns.

If event_wait_list is NULL, then this particular command waits until all previous enqueued
commands to command_queue have completed.

The marker command either waits for a list of events to complete, or if the list is empty it waits for
all commands previously enqueued in command_queue to complete before it completes. This
command returns an event which can be waited on, i.e. this event can be waited on to insure that
all events either in the event_wait_list or all previously enqueued commands, queued before this
command to command_queue, have completed.

clEnqueueMarkerWithWaitList returns CL_SUCCESS if the function is successfully executed.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

346



To enqueue a marker command which waits for previous commands to complete, call the function

cl_int clEnqueueMarker(
    cl_command_queue command_queue,
    cl_event* event);

 clEnqueueMarker is deprecated by version 1.2.

• command_queue is a valid host command-queue.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

The marker command waits for all commands previously enqueued in command_queue to complete
before it completes. This command returns an event which can be waited on, i.e. this event can be
waited on to insure that all previously enqueued commands, queued before this command to
command_queue, have completed.

clEnqueueMarker returns CL_SUCCESS if the function is successfully executed. Otherwise, it returns
one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_VALUE if event is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a wait for a specific event or a list of events to complete before any future commands
queued in a command-queue are executed, call the function

cl_int clEnqueueWaitForEvents(
    cl_command_queue command_queue,
    cl_uint num_events,
    const cl_event* event_list);

 clEnqueueWaitForEvents is deprecated by version 1.2.

• command_queue is a valid host command-queue.

• event_list and num_events specify events that need to complete before this particular command
can be executed.

The events specified in event_list act as synchronization points. The context associated with events

347



in event_list and command_queue must be the same. The memory associated with event_list can be
reused or freed after the function returns.

clEnqueueWaitForEvents returns CL_SUCCESS if the function is successfully executed. Otherwise, it
returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue and events in event_list are not
the same.

• CL_INVALID_VALUE if num_events is 0 or event_list is NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a barrier command which waits for events or commands to complete, call the function

cl_int clEnqueueBarrierWithWaitList(
    cl_command_queue command_queue,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueBarrierWithWaitList is missing before version 1.2.

• command_queue is a valid host command-queue.

• event_wait_list and num_events_in_wait_list specify events that need to complete before this
particular command can be executed.

• If event_wait_list is NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list
of events pointed to by event_wait_list must be valid and num_events_in_wait_list must be
greater than 0. The events specified in event_wait_list act as synchronization points. The context
associated with events in event_wait_list and command_queue must be the same. The memory
associated with event_wait_list can be reused or freed after the function returns.

• event returns an event object that identifies this command and can be used to query or wait for
this command to complete. If event is NULL or the enqueue is unsuccessful, no event will be
created and therefore it will not be possible to query the status of this command or to wait for
this command to complete. If event_wait_list and event are not NULL, event must not refer to an
element of the event_wait_list array.

If event_wait_list is NULL, then this particular command waits until all previous enqueued
commands to command_queue have completed.

The barrier command either waits for a list of events to complete, or if the list is empty it waits for
all commands previously enqueued in command_queue to complete before it completes. This
command blocks command execution, that is, any following commands enqueued after it do not

348



execute until it completes. This command returns an event which can be waited on, i.e. this event
can be waited on to insure that all events either in the event_wait_list or all previously enqueued
commands, queued before this command to command_queue, have completed.

clEnqueueBarrierWithWaitList returns CL_SUCCESS if the function is successfully executed.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_INVALID_CONTEXT if context associated with command_queue and events in event_wait_list are
not the same.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a barrier command which waits for commands to complete, call the function

cl_int clEnqueueBarrier(
    cl_command_queue command_queue);

 clEnqueueBarrier is deprecated by version 1.2.

• command_queue is a valid host command-queue.

The barrier command waits for all commands previously enqueued in command_queue to complete
before it completes. This command blocks command execution, that is, any following commands
enqueued after it do not execute until it completes. The barrier command is a synchronization
point.

clEnqueueBarrier returns CL_SUCCESS if the function is successfully executed. Otherwise, it returns
one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.13. Semaphores
This section describes the semaphore types and functions defined by the cl_khr_semaphore
extension.

349



5.13.1. Semaphore Types

• cl_semaphore_type_khr represent the different types of semaphores.

◦ It is mandatory to support CL_SEMAPHORE_TYPE_BINARY_KHR.

• cl_semaphore_properties_khr represents properties associated with semaphores.

◦ CL_SEMAPHORE_TYPE_KHR must be supported.

• cl_semaphore_info_khr represents queries for additional information about semaphores.

◦ All enums described in the “New API Enums” section of the cl_khr_semaphore extension for
cl_semaphore_info_khr must be supported.

• cl_semaphore_payload_khr represents payload values of semaphores.

• cl_semaphore_khr represent semaphore objects.

5.13.2. Creating Semaphores

To create a semaphore object, call the function

cl_semaphore_khr clCreateSemaphoreWithPropertiesKHR(
    cl_context context,
    const cl_semaphore_properties_khr* sema_props,
    cl_int* errcode_ret);


clCreateSemaphoreWithPropertiesKHR is provided by the cl_khr_semaphore
extension.

• context identifies a valid OpenCL context that the created cl_semaphore_khr will belong to.

• sema_props specifies additional semaphore properties in the form list of <property_name,
property_value> pairs terminated with 0. CL_SEMAPHORE_TYPE_KHR must be part of the list of
properties specified by sema_props.

Following new properties are added to the list of possible supported properties by cl_semaphore_
properties_khr that can be passed to clCreateSemaphoreWithPropertiesKHR:

Table 52. List of supported semaphore creation properties by clCreateSemaphoreWithPropertiesKHR

Semaphore Property Property Value Description

CL_SEMAPHORE_TYPE_KHR cl_semaphore_
type_khr

Specifies the type of semaphore to create. This
property is always required.

CL_SEMAPHORE_DEVICE_HANDLE_
LIST_KHR

cl_device_id[] Specifies the list of OpenCL devices (terminated
with CL_SEMAPHORE_DEVICE_HANDLE_LIST_END_KHR)
to associate with the semaphore. Only a single
device is permitted in the list.

350



Semaphore Property Property Value Description

CL_SEMAPHORE_EXPORT_HANDLE_
TYPES_KHR

provided by the
cl_khr_external_semaphore
extension.

cl_external_
semaphore_
handle_type_
khr[]

Specifies the list of semaphore handle type
properties (terminated with CL_SEMAPHORE_
EXPORT_HANDLE_TYPES_LIST_END_KHR) that can be
used to export the semaphore being created.

If CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR is not specified as part of sema_props, the semaphore object
created by clCreateSemaphoreWithPropertiesKHR is by default accessible to all devices in the
context. For a multi-device context CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR must be specified in
sema_props.

errcode_ret returns an appropriate error code. If errcode_ret is NULL, no error code is returned.

clCreateSemaphoreWithPropertiesKHR returns a valid semaphore object in an un-signaled state
and and errcode_ret is set to CL_SUCCESS if the function is executed successfully. Otherwise, it returns
a NULL value with one of the following error values returned in errcode_ret:

• CL_INVALID_CONTEXT if context is not a valid context.

• CL_INVALID_PROPERTY if a property name in sema_props is not a supported property name, if the
value specified for a supported property name is not valid, or if the same property name is
specified more than once. Additionally, if context is a multiple device context and sema_props
does not specify CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR.

• CL_INVALID_DEVICE if CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR is specified as part of sema_props, but
it does not identify exactly one valid device; or if a device identified by CL_SEMAPHORE_DEVICE_
HANDLE_LIST_KHR is not one of the devices within context.

• CL_INVALID_VALUE

◦ if sema_props is NULL, or

◦ if sema_props do not specify <property, value> pairs for minimum set of properties (i.e.
CL_SEMAPHORE_TYPE_KHR) required for successful creation of a cl_semaphore_khr, or

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_INVALID_DEVICE if one or more devices identified by properties CL_SEMAPHORE_DEVICE_HANDLE_
LIST_KHR cannot import the requested external semaphore handle type.

• CL_INVALID_VALUE if more than one semaphore handle type is specified in the CL_SEMAPHORE_
EXPORT_HANDLE_TYPES_KHR list.

• CL_INVALID_OPERATION If props_list specifies a cl_external_semaphore_handle_type_khr followed by
a handle as well as CL_SEMAPHORE_EXPORT_HANDLE_TYPES_KHR. Exporting a semaphore handle from
a semaphore that was created by importing an external semaphore handle is not permitted.

351



5.13.3. Exporting Semaphore External Handles

To export an external handle from a semaphore, call the function

cl_int clGetSemaphoreHandleForTypeKHR(
    cl_semaphore_khr sema_object,
    cl_device_id device,
    cl_external_semaphore_handle_type_khr handle_type,
    size_t handle_size,
    void* handle_ptr,
    size_t* handle_size_ret);

• sema_object specifies a valid semaphore object with exportable properties.

• device specifies a valid device for which a semaphore handle is being requested.

• handle_type specifies the type of semaphore handle that should be returned for this exportable
sema_object, and must be one of the values specified when sema_object was created.

• handle_size specifies the size of memory pointed by handle_ptr.

• handle_ptr is a pointer to memory where the exported external handle is returned. If
param_value is NULL, it is ignored.

• handle_size_ret returns the actual size in bytes for the external handle. If handle_size_ret is NULL,
it is ignored.

clGetSemaphoreHandleForTypeKHR returns CL_SUCCESS if the semaphore handle is queried
successfully. Otherwise, it returns one of the following errors:

• CL_INVALID_SEMAPHORE_KHR

◦ if sema_object is not a valid semaphore

◦ if sema_object is not exportable

• CL_INVALID_DEVICE

◦ if device is not a valid device, or

◦ if sema_object belongs to a context that is not associated with device, or

◦ if sema_object can not be shared with device.

• CL_INVALID_VALUE if the requested external semaphore handle type was not specified when
sema_object was created.

• CL_INVALID_VALUE if handle_size is less than the size needed to store the returned handle.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

352



5.13.4. Importing Semaphore External Handles

Applications can import a semaphore payload into an existing semaphore using an external
semaphore handle. The effects of the import operation will be either temporary or permanent, as
specified by the application. If the import is temporary, the implementation must restore the
semaphore to its prior permanent state after submitting the next semaphore wait operation.
Performing a subsequent temporary import on a semaphore before performing a semaphore wait
has no effect on this requirement; the next wait submitted on the semaphore must still restore its
last permanent state. A permanent payload import behaves as if the target semaphore was
destroyed, and a new semaphore was created with the same handle but the imported payload.
Because importing a semaphore payload temporarily or permanently detaches the existing payload
from a semaphore, similar usage restrictions to those applied to clReleaseSemaphoreKHR are
applied to any command that imports a semaphore payload. Which of these import types is used is
referred to as the import operation’s permanence. Each handle type supports either one or both
types of permanence.

The implementation must perform the import operation by either referencing or copying the
payload referred to by the specified external semaphore handle, depending on the handle’s type.
The import method used is referred to as the handle type’s transference. When using handle types
with reference transference, importing a payload to a semaphore adds the semaphore to the set of
all semaphores sharing that payload. This set includes the semaphore from which the payload was
exported. Semaphore signaling and waiting operations performed on any semaphore in the set
must behave as if the set were a single semaphore. Importing a payload using handle types with
copy transference creates a duplicate copy of the payload at the time of import, but makes no
further reference to it. Semaphore signaling and waiting operations performed on the target of
copy imports must not affect any other semaphore or payload.

Export operations have the same transference as the specified handle type’s import operations.
Additionally, exporting a semaphore payload to a handle with copy transference has the same side
effects on the source semaphore’s payload as executing a semaphore wait operation. If the
semaphore was using a temporarily imported payload, the semaphore’s prior permanent payload
will be restored.

Please refer to handle specific specifications for more details on transference and permanence
requirements specific to handle type.

5.13.5. Descriptions of External Semaphore Handle Types

This section describes the external semaphore handle types that are added by related extensions.

Applications can import the same semaphore payload into multiple OpenCL contexts, into the same
context from which it was exported, and multiple times into a given OpenCL context. In all cases,
each import operation must create a distinct semaphore object.

5.13.5.1. File Descriptor Handle Types

The cl_khr_external_semaphore_opaque_fd extension extends cl_external_semaphore_handle_type_khr
to support the following new types of handles, and adds as a property that may be specified when
creating a semaphore from an external handle:

353



• CL_SEMAPHORE_HANDLE_OPAQUE_FD_KHR specifies a POSIX file descriptor handle that has only limited
valid usage outside of OpenCL and other compatible APIs. It must be compatible with the POSIX
system calls dup, dup2, close, and the non-standard system call dup3. Additionally, it must be
transportable over a socket using an SCM_RIGHTS control message. It owns a reference to the
underlying synchronization primitive represented by its semaphore object.

The cl_khr_external_semaphore_sync_fd extension extends cl_external_semaphore_handle_type_khr to
support the following new types of handles, and adds as a property that may be specified when
creating a semaphore from an external handle:

• CL_SEMAPHORE_HANDLE_SYNC_FD_KHR specifies a POSIX file descriptor handle to a Linux Sync File or
Android Fence object. It can be used with any native API accepting a valid sync file or fence as
input. It owns a reference to the underlying synchronization primitive associated with the file
descriptor. Implementations which support importing this handle type must accept any type of
sync or fence FD supported by the native system they are running on.

The special value -1 for fd is treated like a valid sync file descriptor referring to an object that has
already signaled. The import operation will succeed and the semaphore will have a temporarily
imported payload as if a valid file descriptor had been provided.

Note: This special behavior for importing an invalid sync file descriptor allows easier
interoperability with other system APIs which use the convention that an invalid sync file
descriptor represents work that has already completed and does not need to be waited for. It is
consistent with the option for implementations to return a -1 file descriptor when exporting a
CL_SEMAPHORE_HANDLE_SYNC_FD_KHR from a cl_semaphore_khr which is signaled.

Table 53. Transference and Permanence Properties for File Descriptor Handles

Handle Type Transference Permanence

CL_SEMAPHORE_HANDLE_OPAQUE_FD_KHR

provided by the cl_khr_external_semaphore_opaque_fd
extension.

Reference Temporary,
Permanent

CL_SEMAPHORE_HANDLE_SYNC_FD_KHR

provided by the cl_khr_external_semaphore_sync_fd
extension.

Copy Temporary

Importing a semaphore payload from a file descriptor transfers ownership of the file descriptor
from the application to the OpenCL implementation. The application must not perform any
operations on the file descriptor after a successful import.

To re-imported a handle of type CL_SEMAPHORE_HANDLE_SYNC_FD_KHR into an existing semaphore, call
the function:

354



cl_int clReImportSemaphoreSyncFdKHR(
    cl_semaphore_khr sema_object,
    cl_semaphore_reimport_properties_khr* reimport_props,
    int fd);

• sema_object specifies a valid semaphore object with importable properties.

• reimport_props must be NULL, and is reserved for future use.

• fd specifies an external file descriptor handle to import

Calling clReImportSemaphoreSyncFdKHR is equivalent to destroying sema_object and re-creating
it with the original sema_props from clCreateSemaphoreWithPropertiesKHR, except a handle
specified by fd will be imported. The semaphore sema_object must have originally imported an
external handle of type CL_SEMAPHORE_HANDLE_SYNC_FD_KHR.

clGetSemaphoreHandleForTypeKHR returns CL_SUCCESS if the semaphore handle is re-imported
successfully. Otherwise, it returns one of the following errors:

• CL_INVALID_SEMAPHORE_KHR

◦ if sema_object is not a valid semaphore

• CL_INVALID_SEMAPHORE_KHR if a CL_SEMAPHORE_HANDLE_SYNC_FD_KHR handle was not imported when
sema_object was created.

• CL_INVALID_VALUE if fd is invalid.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

5.13.5.2. NT Handle Types

The cl_khr_external_semaphore_dx_fence extension extends cl_external_semaphore_handle_type_khr
to support the following new types of handles, and adds as a property that may be specified when
creating a semaphore from an external handle:

• CL_SEMAPHORE_HANDLE_D3D12_FENCE_KHR specifies an NT handle returned by
ID3D12Device::CreateSharedHandle referring to a Direct3D 12 fence, or
ID3D11Device5::CreateFence referring to a Direct3D 11 fence. It owns a reference to the
underlying synchronization primitive associated with the Direct3D fence.

When waiting on semaphores using clEnqueueWaitSemaphoresKHR or signaling semaphores
using clEnqueueSignalSemaphoresKHR, the semaphore payload must be provided for
semaphores created from CL_SEMAPHORE_HANDLE_D3D12_FENCE_KHR.

• If sema_objects list has a mix of semaphores obtained from CL_SEMAPHORE_HANDLE_D3D12_FENCE_KHR
and other handle types, then the sema_payload_list should point to a list of num_sema_objects
payload values for each semaphore in sema_objects. However, the payload values
corresponding to semaphores with type CL_SEMAPHORE_TYPE_BINARY_KHR can be set to 0 or will be

355



ignored.

clEnqueueWaitSemaphoresKHR and clEnqueueSignalSemaphoresKHR may return CL_INVALID_
VALUE if sema_objects list has one or more semaphores obtained from CL_SEMAPHORE_HANDLE_D3D12_
FENCE_KHR and sema_payload_list is NULL.

The cl_khr_external_semaphore_win32 extension extends cl_external_semaphore_handle_type_khr to
support the following new types of handles, and adds as a property that may be specified when
creating a semaphore from an external handle:

• CL_SEMAPHORE_HANDLE_OPAQUE_WIN32_KHR specifies an NT handle that has only limited valid usage
outside of OpenCL and other compatible APIs. It must be compatible with the functions
DuplicateHandle, CloseHandle, CompareObjectHandles, GetHandleInformation, and
SetHandleInformation. It owns a reference to the underlying synchronization primitive
represented by its semaphore object.

• CL_SEMAPHORE_HANDLE_OPAQUE_WIN32_KMT_KHR specifies a global share handle that has only limited
valid usage outside of OpenCL and other compatible APIs. It is not compatible with any native
APIs. It does not own a reference to the underlying synchronization primitive represented by its
semaphore object, and will therefore become invalid when all semaphore objects associated
with it are destroyed.

Table 54. Transference and Permanence Properties for NT Handle Types

Handle Type Transference Permanence

CL_SEMAPHORE_HANDLE_D3D12_FENCE_KHR

provided by the cl_khr_external_semaphore_dx_fence
extension.

Reference Temporary,
Permanent

CL_SEMAPHORE_HANDLE_OPAQUE_WIN32_KHR

provided by the cl_khr_external_semaphore_win32
extension.

Reference Temporary,
Permanent

CL_SEMAPHORE_HANDLE_OPAQUE_WIN32_KMT_KHR

provided by the cl_khr_external_semaphore_win32
extension.

Reference Temporary,
Permanent

Importing a semaphore payload from Windows handles does not transfer ownership of the handle
to the OpenCL implementation. For handle types defined as NT handles, the application must
release ownership using the CloseHandle system call when the handle is no longer needed.

5.13.6. Waiting On and Signaling Semaphores

To enqueue a command to wait on a set of semaphores, call the function

356



cl_int clEnqueueWaitSemaphoresKHR(
    cl_command_queue command_queue,
    cl_uint num_sema_objects,
    const cl_semaphore_khr* sema_objects,
    const cl_semaphore_payload_khr* sema_payload_list,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueWaitSemaphoresKHR is provided by the cl_khr_semaphore extension.

• command_queue specifies a valid command-queue.

• num_sema_objects specifies the number of semaphore objects to wait on.

• sema_objects points to the list of semaphore objects to wait on. The length of the list must be at
least num_sema_objects.

• sema_payload_list points to the list of values of type cl_semaphore_payload_khr containing valid
semaphore payload values to wait on. This can be set to NULL or will be ignored when all
semaphores in the list of sema_objects are of type CL_SEMAPHORE_TYPE_BINARY_KHR.

• num_events_in_wait_list specifies the number of events in event_wait_list.

• event_wait_list specifies list of events that need to complete before
clEnqueueWaitSemaphoresKHR can be executed. If event_wait_list is NULL, then
clEnqueueWaitSemaphoresKHR does not wait on any event to complete. If event_wait_list is
NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of events pointed to
by event_wait_list must be valid and num_events_in_wait_list must be greater than 0. The events
specified in event_wait_list act as synchronization points. The context associated with events in
event_wait_list and that associated with command_queue must be the same.

• event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL, in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete.

The semaphore wait command waits for a list of events to complete and a list of semaphore objects
to become signaled. The semaphore wait command returns an event which can be waited on to
ensure that all events in the event_wait_list have completed and all semaphores in sema_objects
have been signaled. clEnqueueWaitSemaphoresKHR will not return until the binary semaphores
in sema_objects are in a state that makes them safe to re-signal. If necessary, implementations may
block in clEnqueueWaitSemaphoresKHR to ensure the correct state of semaphores when
returning. There are no implications from this behavior for the state of event or the events in
event_wait_list when clEnqueueWaitSemaphoresKHR returns. Waiting on the same binary
semaphore twice without an interleaving signal may lead to undefined behavior.

clEnqueueWaitSemaphoresKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE

357



◦ if command_queue is not a valid command-queue, or

◦ if the device associated with command_queue is not same as one of the devices specified by
CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR at the time of creating one or more of sema_objects.

• CL_INVALID_VALUE if num_sema_objects is 0.

• CL_INVALID_SEMAPHORE_KHR if any of the semaphore objects specified by sema_objects is not valid.

• CL_INVALID_CONTEXT if the context associated with command_queue and any of the semaphore
objects in sema_objects are not the same, or if the context associated with command_queue and
that associated with events in event_wait_list are not the same.

• CL_INVALID_VALUE if any of the semaphore objects specified by sema_objects requires a
semaphore payload and sema_payload_list is NULL.

• CL_INVALID_EVENT_WAIT_LIST

◦ if event_wait_list is NULL and num_events_in_wait_list is not 0, or

◦ if event_wait_list is not NULL and num_events_in_wait_list is 0, or

◦ if event objects in event_wait_list are not valid events.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the execution status of any of the events in
event_wait_list is a negative integer value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command to signal a set of semaphores, call the function

cl_int clEnqueueSignalSemaphoresKHR(
    cl_command_queue command_queue,
    cl_uint num_sema_objects,
    const cl_semaphore_khr* sema_objects,
    const cl_semaphore_payload_khr* sema_payload_list,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);

 clEnqueueSignalSemaphoresKHR is provided by the cl_khr_semaphore extension.

• command_queue specifies a valid command-queue.

• num_sema_objects specifies the number of semaphore objects to signal.

• sema_objects points to the list of semaphore objects to signal. The length of the list must be at
least num_sema_objects.

• sema_payload_list points to the list of values of type cl_semaphore_payload_khr containing
semaphore payload values to signal. This can be set to NULL or will be ignored when all
semaphores in the list of sema_objects are of type CL_SEMAPHORE_TYPE_BINARY_KHR.

358



• num_events_in_wait_list specifies the number of events in

• event_wait_list points to the list of events that need to complete before
clEnqueueSignalSemaphoresKHR can be executed. If event_wait_list is NULL, then
clEnqueueSignalSemaphoresKHR does not wait on any event to complete. If event_wait_list is
NULL, num_events_in_wait_list must be 0. If event_wait_list is not NULL, the list of events pointed to
by event_wait_list must be valid and num_events_in_wait_list must be greater than 0. The events
specified in event_wait_list act as synchronization points. The context associated with events in
event_wait_list and that associated with command_queue must be the same.

event returns an event object that identifies this particular command and can be used to query
or queue a wait for this particular command to complete. event can be NULL, in which case it will
not be possible for the application to query the status of this command or queue a wait for this
command to complete.

The semaphore signal command waits for a list of events to complete and then signals a list of
semaphore objects. The semaphore signal command returns an event which can be waited on to
ensure that all events in the event_wait_list have completed and all semaphores in sema_objects
have been signaled. The successful completion of the event generated by
clEnqueueSignalSemaphoresKHR called on one or more semaphore objects of type CL_SEMAPHORE_
TYPE_BINARY_KHR changes the state of the corresponding semaphore objects to signaled.
clEnqueueSignalSemaphoresKHR will not return until the binary semaphores in sema_objects are
in a state that makes them safe to wait on again. If necessary, implementations may block in
clEnqueueSignalSemaphoresKHR to ensure the correct state of semaphores when returning.
There are no implications from this behavior for the state of event or the events in event_wait_list
when clEnqueueSignalSemaphoresKHR returns. Signaling the same binary semaphore twice
without an interleaving wait may lead to undefined behavior.

clEnqueueSignalSemaphoresKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE

◦ if command_queue is not a valid command-queue, or

◦ if the device associated with command_queue is not same as one of the devices specified by
CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR at the time of creating one or more of sema_objects, or

◦ if one or more of sema_objects belong to a context that does not contain a device associated
with command_queue.

• CL_INVALID_VALUE if num_sema_objects is 0.

• CL_INVALID_SEMAPHORE_KHR if any of the semaphore objects specified by sema_objects is not valid.

• CL_INVALID_CONTEXT if the context associated with command_queue and any of the semaphore
objects in sema_objects are not the same, or if the context associated with command_queue and
that associated with events in event_wait_list are not the same.

• CL_INVALID_VALUE if any of the semaphore objects specified by sema_objects requires a
semaphore payload and sema_payload_list is NULL.

• CL_INVALID_EVENT_WAIT_LIST

◦ if event_wait_list is NULL and num_events_in_wait_list is not 0, or

359



◦ if event_wait_list is not NULL and num_events_in_wait_list is 0, or

◦ if event objects in event_wait_list are not valid events.

• CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST if the execution status of any of the events in
event_wait_list is a negative integer value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.13.7. Retaining and Releasing Semaphores

To release a semaphore object, call the function

cl_int clReleaseSemaphoreKHR(
    cl_semaphore_khr sema_object);

 clReleaseSemaphoreKHR is provided by the cl_khr_semaphore extension.

• sema_object specifies the semaphore object to be released.

The sema_object reference count is decremented.

clReleaseSemaphoreKHR returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_SEMAPHORE_KHR if sema_object is not a valid semaphore object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

After the reference count becomes zero and commands queued for execution on a command-
queue(s) that use sema_object have finished, the semaphore object is deleted. Using this function to
release a reference that was not obtained by creating the object via
clCreateSemaphoreWithPropertiesKHR or by calling clRetainSemaphoreKHR causes undefined
behavior.

To retain a semaphore object, call the function

cl_int clRetainSemaphoreKHR(
    cl_semaphore_khr sema_object);

 clRetainSemaphoreKHR is provided by the cl_khr_semaphore extension.

• sema_object specifies the semaphore object to be retained.

360



clRetainSemaphoreKHR increments the reference count of sema_object.

clRetainSemaphoreKHR returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns one of the following errors:

• CL_INVALID_SEMAPHORE_KHR if sema_object is not a valid semaphore object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.13.8. Semaphore Queries

To query information about a semaphore object, call the function

cl_int clGetSemaphoreInfoKHR(
    cl_semaphore_khr sema_object,
    cl_semaphore_info_khr param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

 clGetSemaphoreInfoKHR is provided by the cl_khr_semaphore extension.

• sema_object specifies the semaphore object being queried.

• param_name is a constant that specifies the semaphore information to query, and must be one
of the values shown in the Semaphore Queries table.

• param_value is a pointer to memory where the result of the query is returned as described in
the Semaphore Queries table. If param_value is NULL, it is ignored.

• param_value_size specifies the size in bytes of memory pointed to param_value. This size must
be greater than or equal to the size of the return type described in the Semaphore Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

Table 55. List of parameter names supported by clGetSemaphoreInfoKHR

Semaphore Info Return Type Description

CL_SEMAPHORE_CONTEXT_KHR cl_context Returns the context specified when the
semaphore is created.

CL_SEMAPHORE_REFERENCE_COUNT_
KHR [18]

cl_uint Returns the semaphore reference count.

361



Semaphore Info Return Type Description

CL_SEMAPHORE_PROPERTIES_KHR cl_semaphore_
properties_
khr[]

Return the properties argument specified in
clCreateSemaphoreWithPropertiesKHR.

The implementation must return the values
specified in the properties argument in the same
order and without including additional
properties.

CL_SEMAPHORE_TYPE_KHR cl_semaphore_
type_khr

Returns the semaphore type.

CL_SEMAPHORE_PAYLOAD_KHR cl_semaphore_
payload_khr

Returns the semaphore payload value. For
semaphores of type CL_SEMAPHORE_TYPE_BINARY_
KHR the payload value returned will be 0 if the
semaphore is in an un-signaled state, and 1 if it
is in a signaled state.

CL_SEMAPHORE_DEVICE_HANDLE_
LIST_KHR

cl_device_id[] Returns the list of OpenCL devices the
semaphore is associated with.

CL_SEMAPHORE_EXPORT_HANDLE_
TYPES_KHR

cl_external_
semaphore_
handle_type_
khr[]

Returns the list of external semaphore handle
types that may be used for exporting. The size of
this query may be 0 indicating that this
semaphore does not support any handle types
for exporting.

CL_SEMAPHORE_EXPORTABLE_KHR cl_bool[] Returns CL_TRUE if the semaphore is exportable
and CL_FALSE otherwise.

clGetSemaphoreInfoKHR returns CL_SUCCESS if the information is queried successfully. Otherwise,
it returns one of the following errors:

• CL_INVALID_SEMAPHORE_KHR

◦ if sema_object is not a valid semaphore

• CL_INVALID_VALUE

◦ if param_name is not one of the attribute defined in the Semaphore Queries table or

◦ if param_value_size is less than the size of Return Type of the corresponding param_name
attribute as defined in the Semaphore Queries table.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

362



5.14. Out-of-Order Execution of Kernels and Memory
Object Commands
The OpenCL functions that are submitted to a command-queue are enqueued in the order the calls
are made but can be configured to execute in-order or out-of-order. The properties argument in
clCreateCommandQueueWithProperties or clCreateCommandQueue can be used to specify the
execution order.

If the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of a command-queue is not set, the
commands enqueued to a command-queue execute in-order. For example, if an application calls
clEnqueueNDRangeKernel to execute kernel A followed by a clEnqueueNDRangeKernel to
execute kernel B, the application can assume that kernel A finishes first and then kernel B is
executed. If the memory objects output by kernel A are inputs to kernel B then kernel B will see the
correct data in memory objects produced by execution of kernel A. If the CL_QUEUE_OUT_OF_ORDER_
EXEC_MODE_ENABLE property of a command-queue is set, then there is no guarantee that kernel A will
finish before kernel B starts execution.

Applications can configure the commands enqueued to a command-queue to execute out-of-order
by setting the CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE property of the command-queue. This can be
specified when the command-queue is created. In out-of-order execution mode there is no
guarantee that the enqueued commands will finish execution in the order they were queued. As
there is no guarantee that kernels will be executed in-order, i.e. based on when the
clEnqueueNDRangeKernel or clEnqueueTask calls are made within a command-queue, it is
therefore possible that an earlier clEnqueueNDRangeKernel call to execute kernel A identified by
event A may execute and/or finish later than a clEnqueueNDRangeKernel call to execute kernel B
which was called by the application at a later point in time. To guarantee a specific order of
execution of kernels, a wait on a particular event (in this case event A) can be used. The wait for
event A can be specified in the event_wait_list argument to clEnqueueNDRangeKernel for kernel
B.

In addition, a marker (clEnqueueMarker or clEnqueueMarkerWithWaitList) or a barrier
(clEnqueueBarrier or clEnqueueBarrierWithWaitList) command can be enqueued to the
command-queue. The marker command ensures that previously enqueued commands identified by
the list of events to wait for (or all previous commands) have finished. A barrier command is
similar to a marker command, but additionally guarantees that no later-enqueued commands will
execute until the waited-for commands have executed.

Similarly, commands to read, write, copy or map memory objects that are enqueued after
clEnqueueNDRangeKernel, clEnqueueTask or clEnqueueNativeKernel commands are not
guaranteed to wait for kernels scheduled for execution to have completed (if the CL_QUEUE_OUT_OF_
ORDER_EXEC_MODE_ENABLE property is set). To ensure correct ordering of commands, the event object
returned by clEnqueueNDRangeKernel, clEnqueueTask or clEnqueueNativeKernel can be used
to enqueue a wait for event or a barrier command can be enqueued that must complete before
reads or writes to the memory object(s) occur.

363



5.15. Profiling Operations on Memory Objects and
Kernels
This section describes the profiling of OpenCL functions that are enqueued as commands to a
command-queue. Profiling of OpenCL commands can be enabled by using a command-queue
created with the CL_QUEUE_PROFILING_ENABLE flag set in the CL_QUEUE_PROPERTIES bitfield in the
properties argument to clCreateCommandQueueWithProperties, or in the properties argument to
clCreateCommandQueue. When profiling is enabled, the event objects that are created from
enqueuing a command store a timestamp for each of their state transitions.

To return profiling information for a command associated with an event when profiling is enabled,
call the function

cl_int clGetEventProfilingInfo(
    cl_event event,
    cl_profiling_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• event specifies the event object.

• param_name specifies the profiling data to query. The list of supported param_name types and
the information returned in param_value by clGetEventProfilingInfo is described in the Event
Profiling Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Event Profiling Queries table.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 56. List of supported param_names by clGetEventProfilingInfo

Event Profiling Info Return Type Description

CL_PROFILING_COMMAND_QUEUED cl_ulong A 64-bit value that describes the current device
time counter in nanoseconds when the
command identified by event is enqueued in a
command-queue by the host.

If the cl_khr_command_buffer_multi_device
extension is supported, for events returned by a
command-buffer enqueue operation to multiple
command-queues, the host time when the
command-buffer has been enqueued across the
command-queues is used.

364



Event Profiling Info Return Type Description

CL_PROFILING_COMMAND_SUBMIT cl_ulong A 64-bit value that describes the current device
time counter in nanoseconds when the
command identified by event that has been
enqueued is submitted by the host to the device
associated with the command-queue.

If the cl_khr_command_buffer_multi_device
extension is supported, for events returned by a
command-buffer enqueue operation to multiple
command-queues, the host time is used when
command-buffer commands have been
submitted to any command-queue.

CL_PROFILING_COMMAND_START cl_ulong A 64-bit value that describes the current device
time counter in nanoseconds when the
command identified by event starts execution
on the device.

If the cl_khr_command_buffer_multi_device
extension is supported, for events returned by a
command-buffer enqueue operation to multiple
command-queues, the host time is used when
any device starts executing a command-buffer
command.

CL_PROFILING_COMMAND_END cl_ulong A 64-bit value that describes the current device
time counter in nanoseconds when the
command identified by event has finished
execution on the device.

If the cl_khr_command_buffer_multi_device
extension is supported, for events returned by a
command-buffer enqueue operation to multiple
command-queues, the host time is used when
the last command-buffer command finishes
execution on any device.

365



Event Profiling Info Return Type Description

CL_PROFILING_COMMAND_COMPLETE

missing before version 2.0.

cl_ulong A 64-bit value that describes the current device
time counter in nanoseconds when the
command identified by event and any child
commands enqueued by this command on the
device have finished execution.

If the cl_khr_command_buffer_multi_device
extension is supported, for events returned by a
command-buffer enqueue operation to multiple
command-queues, the host time is used when
the command-buffer has completed execution
across all command-queues.

The unsigned 64-bit values returned can be used to measure the time in nano-seconds consumed by
OpenCL commands.

OpenCL devices are required to correctly track time across changes in device frequency and power
states. The CL_DEVICE_PROFILING_TIMER_RESOLUTION specifies the resolution of the timer i.e. the
number of nanoseconds elapsed before the timer is incremented.



If the cl_khr_command_buffer_multi_device extension is supported, and if no reliable
device timer sources are available to inform the host side, or parallel runtime
scheduling makes it impossible to identify a first/last command, then an
implementation may fallback to reporting CL_PROFILING_COMMAND_SUBMIT and
CL_PROFILING_COMMAND_COMPLETE for CL_PROFILING_COMMAND_START and CL_PROFILING_
COMMAND_END respectively.

clGetEventProfilingInfo returns CL_SUCCESS if the function is executed successfully and the
profiling information has been recorded. Otherwise, it returns one of the following errors:

• CL_PROFILING_INFO_NOT_AVAILABLE if the CL_QUEUE_PROFILING_ENABLE flag is not set for the
command-queue, if the execution status of the command identified by event is not CL_COMPLETE
or if event is a user event object. Prior to OpenCL 3.0, implementations may return
CL_PROFILING_INFO_NOT_AVAILABLE for an event created by clEnqueueSVMFree. 
If the cl_khr_command_buffer_multi_device extension is supported, and if event was created from
a call to clEnqueueCommandBufferKHR, CL_PROFILING_INFO_NOT_AVAILABLE is returned if all the
queues passed do not have CL_QUEUE_PROFILING_ENABLE set.

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Event Profiling Queries table and param_value is not NULL.

• CL_INVALID_EVENT if event is a not a valid event object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

366



5.16. Flush and Finish
To flush commands to a device, call the function

cl_int clFlush(
    cl_command_queue command_queue);

• command_queue is the command-queue to flush.

All previously queued OpenCL commands in command_queue are issued to the device associated
with command_queue. clFlush only guarantees that all queued commands to command_queue will
eventually be submitted to the appropriate device. There is no guarantee that they will be complete
after clFlush returns.

Any blocking commands queued in a command-queue and clReleaseCommandQueue perform an
implicit flush of the command-queue. These blocking commands are clEnqueueReadBuffer,
clEnqueueReadBufferRect, clEnqueueReadImage, with blocking_read set to CL_TRUE;
clEnqueueWriteBuffer, clEnqueueWriteBufferRect, clEnqueueWriteImage with blocking_write
set to CL_TRUE; clEnqueueMapBuffer, clEnqueueMapImage with blocking_map set to CL_TRUE;
clEnqueueSVMMemcpy with blocking_copy set to CL_TRUE; clEnqueueSVMMap with blocking_map
set to CL_TRUE or clWaitForEvents.

To use event objects that refer to commands enqueued in a command-queue as event objects to
wait on by commands enqueued in a different command-queue, the application must call a clFlush
or any blocking commands that perform an implicit flush of the command-queue where the
commands that refer to these event objects are enqueued.

clFlush returns CL_SUCCESS if the function call was executed successfully. Otherwise, it returns one
of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To wait for completion of commands on a device, call the function

cl_int clFinish(
    cl_command_queue command_queue);

• command_queue is the command-queue to wait for.

All previously queued OpenCL commands in command_queue are issued to the associated device,
and the function blocks until all previously queued commands have completed. clFinish does not
return until all previously queued commands in command_queue have been processed and
completed. clFinish is also a synchronization point.

367



clFinish returns CL_SUCCESS if the function call was executed successfully. Otherwise, it returns one
of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not a valid host command-queue.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.17. Command-Buffers
A command-buffer object represents a series of operations to be enqueued on one or more
command-queues without any application code interaction. Grouping the operations together
allows efficient enqueuing of repetitive operations, as well as enabling driver optimizations.

Command-buffers are sequential use by default, but may also be set to simultaneous use on creation
if the device optionally supports this capability. A sequential use command-buffer must have a
Pending Count of 0 or 1. The simultaneous use capability removes this restriction and allows
command-buffers to have a Pending Count greater than 1.

Command-buffers are created using an ordered list of command-queues that commands are
recorded to and execute on by default. These command-queues can be replaced on command-
buffer enqueue with different command-queues, provided for each element in the replacement list
the substitute command-queue is compatible with the command-queue used on command-buffer
creation. A compatible command-queue is defined as a command-queue with identical properties
targeting the same device and in the same OpenCL context.

While constructing a command-buffer it is valid for the user to interleave calls to the same queue
which create commands, such as clCommandNDRangeKernelKHR, with queue submission calls,
such as clEnqueueNDRangeKernel or clEnqueueCommandBufferKHR. That is, there is no effect
on queue state from recording commands. The purpose of the queue parameter is to define the
device and properties of the command, which are constant queries on the queue object.

A command-buffer object should increment the reference count of attached OpenCL objects such as
queues, buffers, images, and kernels referenced in commands recorded to the command-buffer.
This enables correct behavior of the command-buffer when its attached objects have been released.
On destruction of the command-buffer it should decrement these reference counts, allowing the
attached objects to be freed if appropriate.



A command-buffer object does not update the reference count of objects set as
arguments on kernels recorded into the command-buffer. This is consistent with
the reference counting behavior of clSetKernelArg.

Applications should ensure that objects passed as arguments to kernels recorded
to a command-buffer are not deleted until the command-buffer has been released.
Undefined behavior may result from the failure to follow this usage requirement
for all the command-buffers an object is used as a kernel argument in.

368



If using layered extension cl_khr_command_buffer_mutable_dispatch, see related
note on safe usage.

5.17.1. Command-Buffers and Multiple Devices

If the cl_khr_command_buffer_multi_device extension is supported, a command-buffer can contain
commands recorded to the queues of different devices if a vendor provides support for inter-device
cl_sync_point_khr synchronization. This feature is reported either through CL_DEVICE_COMMAND_
BUFFER_SYNC_DEVICES_KHR, which informs the user what devices can synchronize with each other
natively on the device-side, or through CL_COMMAND_BUFFER_PLATFORM_UNIVERSAL_SYNC_KHR, which
allows synchronization between all devices in a platform, falling back to host-side synchronization
when device-side synchronization is not available. These two mechanisms are referred to as
device-side sync and universal sync respectively.

If these mechanisms do not report that more than one device can be used in a command-buffer, it
will still be possible to perform multiple queue recording in a command-buffer if the CL_COMMAND_
BUFFER_CAPABILITY_MULTIPLE_QUEUE_KHR capability is reported for a device. However, with this
capability all the queues commands are recorded to must target the same device.

Commands recorded to different command-queues in the same command-buffer may be executed
concurrently to each other unless synchronized explicitly with sync-points. Ordering of other
commands submitted to the same command-queues as used to enqueue a command-buffer is the
responsibility of the programmer. A command-buffer enqueue spanning multiple queues can
return an event to use for synchronization, which will complete once all commands in the
command-buffer have completed. If ordering restrictions are required, this event (or command-
queue barriers) may be used by the user to synchronize the command-buffer enqueue with regular
commands, or another command-buffer enqueue.

5.17.2. Command-Buffer Lifecycle

A command-buffer is always in one of the following states:

Recording

Initial state of a command-buffer on creation, where commands can be recorded to the
command-buffer.

Executable

State after command recording has finished with clFinalizeCommandBufferKHR and the
command-buffer may be enqueued.

Pending

Once a command-buffer has been enqueued to a command-queue it enters the Pending state
until completion, at which point it moves back to the Executable state.

369



Figure 5. Lifecycle of a command-buffer.

The Pending Count is the number of copies of the command buffer in the Pending state. By default a
command-buffer’s Pending Count must be 0 or 1. If the command-buffer was created with
CL_COMMAND_BUFFER_SIMULTANEOUS_USE_KHR then the command-buffer may have a Pending Count
greater than 1.

5.17.3. Creating Command-Buffer Objects

To create a command-buffer that can record commands to the specified queues, call the function

cl_command_buffer_khr clCreateCommandBufferKHR(
    cl_uint num_queues,
    const cl_command_queue* queues,
    const cl_command_buffer_properties_khr* properties,
    cl_int* errcode_ret);


clCreateCommandBufferKHR is provided by the cl_khr_command_buffer
extension.

• num_queues is the number of command-queues listed in queues. If the cl_khr_command_buffer_
multi_device extension is not supported, this must be one.

• queues is a pointer to a list of command-queues that the command-buffer commands will be
recorded to. queues must be a non-NULL value and the length of the list equal to num_queues.

• properties specifies a list of properties for the command-buffer and their corresponding values.
Each property name is immediately followed by the corresponding desired value. The list is
terminated with 0. The list of supported properties is described in the table below. If a

370



supported property and its value is not specified in properties, its default value will be used.
properties can be NULL in which case the default values for supported command-buffer
properties will be used.

Table 57. clCreateCommandBufferKHR properties

Recording Properties Property
Value

Description

CL_COMMAND_BUFFER_FLAGS_KHR

provided by the
cl_khr_command_buffer
extension.

cl_command_
buffer_flags_
khr

This is a bitfield and can be set to a
combination of the following values:

CL_COMMAND_BUFFER_SIMULTANEOUS_USE_KHR -
Allow multiple instances of the command-
buffer to be submitted to the device for
execution. If set, devices must support
CL_COMMAND_BUFFER_CAPABILITY_SIMULTANEOUS_
USE_KHR.

provided by the cl_khr_command_buffer
extension.

CL_COMMAND_BUFFER_DEVICE_SIDE_SYNC_KHR - All
commands in the command-buffer must use
native synchronization, as reported by
CL_DEVICE_COMMAND_BUFFER_SYNC_DEVICES_KHR.
This can be used as a safeguard for
performant applications that do not want to
accidentally fallback to host synchronization
when passing multiple queues.

provided by the
cl_khr_command_buffer_multi_device extension.

CL_COMMAND_BUFFER_MUTABLE_KHR - Enables
modification of the command-buffer, by
default command-buffers are immutable. If
set, commands in the command-buffer may be
updated via
clUpdateMutableCommandsKHR.

provided by the
cl_khr_command_buffer_mutable_dispatch
extension.

The default value of this property is 0.

371



Recording Properties Property
Value

Description

CL_COMMAND_BUFFER_MUTABLE_
DISPATCH_ASSERTS_KHR

provided by the
cl_khr_command_buffer_mutable
_dispatch extension.

cl_mutable_
dispatch_
asserts_khr

This is a bitfield and can be set to a
combination of the following values:

CL_MUTABLE_DISPATCH_ASSERT_NO_ADDITIONAL_
WORK_GROUPS_KHR - An assertion by the user that
the number of work-groups of any ND-range
kernel recorded in this command buffer will
not be updated beyond the number defined
when the ND-range kernel was recorded. If the
user’s update to the values of local_work_size
and/or global_work_size result in an increase
in the number of work-groups in the ND-range
over the number specified when the ND-range
kernel was recorded, the behavior is
undefined.

provided by the
cl_khr_command_buffer_mutable_dispatch
extension.

• errcode_ret will return an appropriate error code. If errcode_ret is NULL, no error code is
returned.

Table 58. Summary of command-buffer creation configurations, for the cl_khr_command_buffer_multi_device
extension

All Devices Associated
With Queues can
Device-side Sync

Platform Supports
Universal Sync

Condition Result

Yes Yes or No Any device does not
support the multi-
queue capability, and
has more than one
queue targeting it

Error -
CL_INCOMPATIBLE_
COMMAND_QUEUE_KHR

User sets CL_COMMAND_
BUFFER_DEVICE_SIDE_
SYNC_KHR flag

OK

Otherwise OK

372



All Devices Associated
With Queues can
Device-side Sync

Platform Supports
Universal Sync

Condition Result

No Yes Any device does not
support the multi-
queue capability, and
has more than one
queue targeting it

Error -
CL_INCOMPATIBLE_
COMMAND_QUEUE_KHR

User sets CL_COMMAND_
BUFFER_DEVICE_SIDE_
SYNC_KHR flag

Error -
CL_INCOMPATIBLE_
COMMAND_QUEUE_KHR

Otherwise OK - May be
performance
implications when
synchronizing
commands between
devices without device-
side sync support.

No No Always Error -
CL_INCOMPATIBLE_
COMMAND_QUEUE_KHR



Upon creation the command-buffer is defined as being in the Recording state, in
order for the command-buffer to be enqueued it must first be finalized using
clFinalizeCommandBufferKHR after which no further commands can be
recorded. A command-buffer is submitted for execution on command-queues with
a call to clEnqueueCommandBufferKHR.

clCreateCommandBufferKHR returns a valid non-zero command-buffer and errcode_ret is set to
CL_SUCCESS if the command-buffer is created successfully. Otherwise, it returns a NULL value with
one of the following error values returned in errcode_ret:

• CL_INVALID_COMMAND_QUEUE if any command-queue in queues is not a valid command-queue.

• CL_INCOMPATIBLE_COMMAND_QUEUE_KHR if any command-queue in queues is an out-of-order
command-queue and the device associated with the command-queue does not support the
CL_COMMAND_BUFFER_CAPABILITY_OUT_OF_ORDER_KHR capability.

• CL_INCOMPATIBLE_COMMAND_QUEUE_KHR if the properties of any command-queue in queues does not
contain the minimum properties specified by CL_DEVICE_COMMAND_BUFFER_REQUIRED_QUEUE_
PROPERTIES_KHR.

• CL_INVALID_CONTEXT if all the command-queues in queues do not have the same OpenCL context.

• CL_INVALID_VALUE if the cl_khr_command_buffer_multi_device extension is supported and
num_queues is zero, or if the cl_khr_command_buffer_multi_device extension is not supported and
num_queues is not one.

• CL_INVALID_VALUE if queues is NULL.

373



• CL_INVALID_VALUE if values specified in properties are not valid, or if the same property name is
specified more than once.

• CL_INVALID_PROPERTY if values specified in properties are valid but are not supported by all the
devices associated with command-queues in queues.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

If the cl_khr_command_buffer_multi_device extension is supported:

• CL_INCOMPATIBLE_COMMAND_QUEUE_KHR if queues includes more than one command-queue
associated with a device that does not support capability CL_COMMAND_BUFFER_CAPABILITY_
MULTIPLE_QUEUE_KHR.

• CL_INCOMPATIBLE_COMMAND_QUEUE_KHR if the CL_COMMAND_BUFFER_DEVICE_SIDE_SYNC_KHR flag is set, and
any device associated with a command-queue in queues cannot natively synchronize with the
other devices associated with queues as reported by CL_DEVICE_COMMAND_BUFFER_SYNC_DEVICES_KHR.

• CL_INCOMPATIBLE_COMMAND_QUEUE_KHR if the platform does not support the CL_COMMAND_BUFFER_
PLATFORM_UNIVERSAL_SYNC_KHR capability, and any device associated with a command-queue in
queues cannot natively synchronize with the other devices associated with queues as reported
by CL_DEVICE_COMMAND_BUFFER_SYNC_DEVICES_KHR.

To increment a command-buffer’s reference count, call the function

cl_int clRetainCommandBufferKHR(
    cl_command_buffer_khr command_buffer);


clRetainCommandBufferKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer specifies the command-buffer to retain.

clRetainCommandBufferKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To decrement a command-buffer’s reference count, call the function

374



cl_int clReleaseCommandBufferKHR(
    cl_command_buffer_khr command_buffer);


clReleaseCommandBufferKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer specifies the command-buffer to release.


After the command_buffer reference count becomes zero and has finished
execution, the command-buffer is deleted.

clReleaseCommandBufferKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.17.4. Enqueuing a Command-Buffer

To finalize command recording ready for enqueuinga command-buffer on a command-queue, call
the function

cl_int clFinalizeCommandBufferKHR(
    cl_command_buffer_khr command_buffer);


clFinalizeCommandBufferKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer refers to a valid command-buffer object.


clFinalizeCommandBufferKHR places the command-buffer in the Executable
state where commands can no longer be recorded, at this point the command-
buffer is ready to be enqueued.

clFinalizeCommandBufferKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer is not in the Recording state.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

375



• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To enqueue a command-buffer to execute on command-queues, call the function

cl_int clEnqueueCommandBufferKHR(
    cl_uint num_queues,
    cl_command_queue* queues,
    cl_command_buffer_khr command_buffer,
    cl_uint num_events_in_wait_list,
    const cl_event* event_wait_list,
    cl_event* event);


clEnqueueCommandBufferKHR is provided by the cl_khr_command_buffer
extension.

• num_queues is the number of command-queues listed in queues.

• queues is a pointer to an ordered list of command-queues compatible with the command-queues
used on recording. queues can be NULL, in which case the default command-queues used on
command-buffer creation are used and num_queues must be 0.

• command_buffer refers to a valid command-buffer object.

• event_wait_list, num_events_in_wait_list specify events that need to complete before this
particular command can be executed. If event_wait_list is NULL, then this particular command
does not wait on any event to complete. If event_wait_list is NULL, num_events_in_wait_list must
be 0. If event_wait_list is not NULL, the list of events pointed to by event_wait_list must be valid
and num_events_in_wait_list must be greater than 0. The events specified in event_wait_list act
as synchronization points. The context associated with events in event_wait_list and
command_queue must be the same. The memory associated with event_wait_list can be reused
or freed after the function returns.

• event will return an event object that identifies this command and can be used to query for
profiling information or queue a wait for this particular command to complete. event can be
NULL in which case it will not be possible for the application to wait on this command or query it
for profiling information.


To enqueue a command-buffer it must be in a Executable state, see
clFinalizeCommandBufferKHR.

clEnqueueCommandBufferKHR returns CL_SUCCESS if the command-buffer execution was
successfully queued, or one of the errors below:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has not been finalized.

• CL_INVALID_OPERATION if command_buffer was not created with the CL_COMMAND_BUFFER_
SIMULTANEOUS_USE_KHR flag and is in the Pending state.

• CL_INVALID_VALUE if queues is NULL and num_queues is > 0, or queues is not NULL and num_queues is

376



0.

• CL_INVALID_VALUE if num_queues is > 0 and not the same value as num_queues set on
command_buffer creation.

• CL_INVALID_COMMAND_QUEUE if any element of queues is not a valid command-queue.

• CL_INCOMPATIBLE_COMMAND_QUEUE_KHR if any element of queues is not compatible with the
command-queue set on command_buffer creation at the same list index.

• CL_INVALID_CONTEXT if any element of queues does not have the same context as the command-
queue set on command_buffer creation at the same list index.

• CL_INVALID_CONTEXT if context associated with command_buffer and events in event_wait_list are
not the same.

• CL_OUT_OF_RESOURCES if there is a failure to queue the execution instance of command_buffer on
the command-queues because of insufficient resources needed to execute command_buffer.

• CL_INVALID_EVENT_WAIT_LIST if event_wait_list is NULL and num_events_in_wait_list > 0, or
event_wait_list is not NULL and num_events_in_wait_list is 0, or if event objects in event_wait_list
are not valid events.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.17.5. Recording Commands to a Command-Buffer

To record a barrier operation used as a synchronization point, call the function

cl_int clCommandBarrierWithWaitListKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);


clCommandBarrierWithWaitListKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. This
parameter is unused, as only a single command-queue is supported, and must be NULL.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and

377



num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

If sync_point_wait_list is NULL, then this particular command waits until all previous recorded
commands to command_queue have completed.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this barrier command
later on. sync_point can be NULL in which case it will not be possible for the application to record
a wait for this command to complete. If the sync_point_wait_list and the sync_point arguments
are not NULL, the sync_point argument should not refer to an element of the sync_point_wait_list
array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.



clCommandBarrierWithWaitListKHR waits for either a list of synchronization-
points to complete, or if the list is empty it waits for all commands previously
recorded in command_buffer to complete before it completes. This command
blocks command execution, that is, any following commands recorded after it do
not execute until it completes.

clCommandBarrierWithWaitListKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_QUEUE if command_queue is not NULL.

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_CONTEXT if the context associated with command_queue and command_buffer is not
the same.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To record a command to copy from one buffer object to another, call the function

378



cl_int clCommandCopyBufferKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    cl_mem src_buffer,
    cl_mem dst_buffer,
    size_t src_offset,
    size_t dst_offset,
    size_t size,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);

 clCommandCopyBufferKHR is provided by the cl_khr_command_buffer extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• src_buffer, dst_buffer, src_offset, dst_offset, size refer to clEnqueueCopyBuffer.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and
num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.

clCommandCopyBufferKHR returns CL_SUCCESS if the function is executed successfully. Otherwise,
it returns the errors defined by clEnqueueCopyBuffer except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

379



• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, src_buffer,
and dst_buffer are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

To record a command to copy a rectangular region from a buffer object to another buffer object,
call the function

cl_int clCommandCopyBufferRectKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    cl_mem src_buffer,
    cl_mem dst_buffer,
    const size_t* src_origin,
    const size_t* dst_origin,
    const size_t* region,
    size_t src_row_pitch,
    size_t src_slice_pitch,
    size_t dst_row_pitch,
    size_t dst_slice_pitch,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);


clCommandCopyBufferRectKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-

380



queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• src_origin, dst_origin, region, src_row_pitch, src_slice_pitch, dst_row_pitch, dst_slice_pitch refer to
clEnqueueCopyBufferRect.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and
num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.



clCommandCopyBufferRectKHR records a command to copy a 2D or 3D
rectangular region from the buffer object identified by src_buffer to a 2D or 3D
region in the buffer object identified by dst_buffer. Copying begins at the source
offset and destination offset which are computed as described in the description
for src_origin and dst_origin.

Each byte of the region’s width is copied from the source offset to the destination
offset. After copying each width, the source and destination offsets are
incremented by their respective source and destination row pitches. After copying
each 2D rectangle, the source and destination offsets are incremented by their
respective source and destination slice pitches.

clCommandCopyBufferRectKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns the errors defined by clEnqueueCopyBufferRect except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

381



• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, src_buffer,
and dst_buffer are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

To record a command to copy a buffer object to an image object, call the function

cl_int clCommandCopyBufferToImageKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    cl_mem src_buffer,
    cl_mem dst_image,
    size_t src_offset,
    const size_t* dst_origin,
    const size_t* region,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);


clCommandCopyBufferToImageKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• src_buffer, dst_image, src_offset, dst_origin, region refer to clEnqueueCopyBufferToImage

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and

382



num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.

clCommandCopyBufferToImageKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns the errors defined by clEnqueueCopyBufferToImage except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, src_buffer,
and dst_image are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

To record a command to copy between two image objects, call the function

383



cl_int clCommandCopyImageKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    cl_mem src_image,
    cl_mem dst_image,
    const size_t* src_origin,
    const size_t* dst_origin,
    const size_t* region,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);

 clCommandCopyImageKHR is provided by the cl_khr_command_buffer extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• src_image, dst_image, src_origin, dst_origin, region refer to clEnqueueCopyImage.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and
num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.



It is currently a requirement that the src_image and dst_image image memory
objects for clCommandCopyImageKHR must have the exact same image format,
i.e. the cl_image_format descriptor specified when src_image and dst_image are
created must match.

clCommandCopyImageKHR returns CL_SUCCESS if the function is executed successfully. Otherwise,

384



it returns the errors defined by clEnqueueCopyImage except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, src_image,
and dst_image are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

To record a command to copy an image object to a buffer object, call the function

cl_int clCommandCopyImageToBufferKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    cl_mem src_image,
    cl_mem dst_buffer,
    const size_t* src_origin,
    const size_t* region,
    size_t dst_offset,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);


clCommandCopyImageToBufferKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 

385



If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• src_image, dst_buffer, src_origin, region, dst_offset refer to clEnqueueCopyImageToBuffer.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and
num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.

clCommandCopyImageToBufferKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns the errors defined by clEnqueueCopyImageToBuffer except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, src_image,
and dst_buffer are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

386



• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

To record a command to fill a buffer object with a pattern of a given pattern size, call the function

cl_int clCommandFillBufferKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    cl_mem buffer,
    const void* pattern,
    size_t pattern_size,
    size_t offset,
    size_t size,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);

 clCommandFillBufferKHR is provided by the cl_khr_command_buffer extension.


The usage information which indicates whether the memory object can be read or
written by a kernel and/or the host and is given by the cl_mem_flags argument
value specified when buffer is created is ignored by clCommandFillBufferKHR.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• buffer, pattern, pattern_size, offset, size refer to clEnqueueFillBuffer.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and
num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not

387



NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.

clCommandFillBufferKHR returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns the errors defined by clEnqueueFillBuffer except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, and buffer
are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

To record a command to fill an image object with a specified color, call the function

cl_int clCommandFillImageKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    cl_mem image,
    const void* fill_color,
    const size_t* origin,
    const size_t* region,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);

 clCommandFillImageKHR is provided by the cl_khr_command_buffer extension.

388




The usage information which indicates whether the memory object can be read or
written by a kernel and/or the host and is given by the cl_mem_flags argument
value specified when image is created is ignored by clCommandFillImageKHR.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• image, fill_color, origin, region refer to clEnqueueFillImage.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and
num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.

clCommandFillImageKHR returns CL_SUCCESS if the function is executed successfully. Otherwise, it
returns the errors defined by clEnqueueFillImage except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, and image
are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and

389



num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

To record a command to execute a kernel on a device, call the function

cl_int clCommandNDRangeKernelKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    const cl_ndrange_kernel_command_properties_khr* properties,
    cl_kernel kernel,
    cl_uint work_dim,
    const size_t* global_work_offset,
    const size_t* global_work_size,
    const size_t* local_work_size,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);


clCommandNDRangeKernelKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• properties specifies a list of properties for the kernel command and their corresponding values.
Each property name is immediately followed by the corresponding desired value. The list is
terminated with 0. If a supported property and its value is not specified in properties, its default
value will be used. properties may be NULL, in which case the default values for supported
properties will be used. The cl_khr_command_buffer extension does not define any properties, but
supported properties defined by extensions are defined in the List of supported properties by
clCommandNDRangeKernelKHR table.

• kernel is a valid kernel object which must have its arguments set. Any changes to kernel after
calling clCommandNDRangeKernelKHR, such as with clSetKernelArg or
clSetKernelExecInfo, have no effect on the recorded command. If kernel is recorded to a

390



following clCommandNDRangeKernelKHR command however, then that command will
capture the updated state of kernel.

• work_dim, global_work_offset, global_work_size, local_work_size Refer to
clEnqueueNDRangeKernel.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and
num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. If the cl_khr_command_buffer_mutable_
dispatch extension is supported, and mutable_handle is not NULL, it can be used in the
cl_mutable_dispatch_config_khr struct to update the command configuration between
recordings. The lifetime of this handle is tied to the parent command-buffer, such that freeing
the command-buffer will also free this handle.

Table 59. List of supported properties by clCommandNDRangeKernelKHR

Recording
Properties

Property
Value

Description

CL_MUTABLE_
DISPATCH_ASSERTS_
KHR

provided by the
cl_khr_command_buf
fer_mutable_dispat
ch extension.

cl_mutable_
dispatch_
asserts_khr

This is a bitfield and can be set to a combination of the following
values:

CL_MUTABLE_DISPATCH_ASSERT_NO_ADDITIONAL_WORK_GROUPS_KHR

An assertion by the user that the number of work-groups of this
ND-range kernel will not be updated beyond the number defined
when the ND-range kernel was recorded. The number of work-
groups is defined as the product for each i from 0 to work_dim - 1
of ceil(global_work_size[i]/local_work_size[i]).

391



Recording
Properties

Property
Value

Description

CL_MUTABLE_
DISPATCH_
UPDATABLE_FIELDS_
KHR

provided by the
cl_khr_command_buf
fer_mutable_dispat
ch extension.

cl_mutable_
dispatch_
fields_khr

This is a bitfield and can be set to a combination of the following
values:

CL_MUTABLE_DISPATCH_GLOBAL_OFFSET_KHR determines whether the
global_work_offset of kernel execution can be modified after
recording. If set, the global_work_offset of the kernel execution
can be changed with clUpdateMutableCommandsKHR using
the cl_mutable_dispatch_config_khr field of the mutable_config
parameter. Otherwise, the global_work_offset cannot be
modified.

CL_MUTABLE_DISPATCH_GLOBAL_SIZE_KHR determines whether the
global_work_size of kernel execution can be modified after
recording. If set, the global_work_size of the kernel execution can
be changed with clUpdateMutableCommandsKHR using the
cl_mutable_dispatch_config_khr field of the mutable_config
parameter. Otherwise, the global_work_size cannot be modified.

CL_MUTABLE_DISPATCH_LOCAL_SIZE_KHR determines whether the
local_work_size of kernel execution can be modified after
recording. If set, the local_work_size of the kernel execution can
be changed with clUpdateMutableCommandsKHR using the
cl_mutable_dispatch_config_khr field of the mutable_config
parameter. Otherwise, the local_work_size cannot be modified.

CL_MUTABLE_DISPATCH_ARGUMENTS_KHR determines whether the
kernel arguments set on kernel can be updated between
executions. If set, the kernel arguments normally set with
clSetKernelArg and clSetKernelArgSVMPointer can be
changed with clUpdateMutableCommandsKHR using the
cl_mutable_dispatch_config_khr field of the mutable_config
parameter. Otherwise, the kernel arguments cannot be modified
between executions.

CL_MUTABLE_DISPATCH_EXEC_INFO_KHR determines whether the
information passed to kernel can be updated between executions.
If set, the execution information of the kernel can be changed
with clUpdateMutableCommandsKHR using the cl_mutable_
dispatch_config_khr field of the mutable_config parameter.
Otherwise, the kernel execution information cannot be modified.

If CL_MUTABLE_DISPATCH_UPDATABLE_FIELDS_KHR is not specified then
it defaults to the value returned by the CL_DEVICE_MUTABLE_
DISPATCH_CAPABILITIES_KHR device query.

392





The work-group size to be used for kernel can also be specified in the program
source using the __attribute__((reqd_work_group_size(X, Y, Z))) qualifier. In this
case the size of work-group specified by local_work_size must match the value
specified by the reqd_work_group_size __attribute__ qualifier.

These work-group instances are executed in parallel across multiple compute units
or concurrently on the same compute unit.

Each work-item is uniquely identified by a global identifier. The global ID, which
can be read inside the kernel, is computed using the value given by
global_work_size and global_work_offset. In addition, a work-item is also identified
within a work-group by a unique local ID. The local ID, which can also be read by
the kernel, is computed using the value given by local_work_size. The starting local
ID is always (0, 0, … 0).

clCommandNDRangeKernelKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns the errors defined by clEnqueueNDRangeKernel except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, and kernel
are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_VALUE if values specified in properties are not valid

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if the cl_khr_command_buffer_mutable_dispatch extension is not supported and
mutable_handle is not NULL.

• CL_INVALID_OPERATION if the device associated with command_queue does not support CL_COMMAND_
BUFFER_CAPABILITY_KERNEL_PRINTF_KHR and kernel contains a printf call.

393



• CL_INVALID_OPERATION if the device associated with command_queue does not support CL_COMMAND_
BUFFER_CAPABILITY_DEVICE_SIDE_ENQUEUE_KHR and kernel contains a kernel-enqueue call.

If the cl_khr_command_buffer_mutable_dispatch extension is supported:

• CL_INVALID_OPERATION if the requested CL_MUTABLE_DISPATCH_UPDATABLE_FIELDS_KHR properties are
not reported by CL_DEVICE_MUTABLE_DISPATCH_CAPABILITIES_KHR for the device associated with
command_queue. If command_queue is NULL, the device associated with command_buffer must
report support for these properties.

• CL_INVALID_VALUE if command_buffer was created with the CL_COMMAND_BUFFER_MUTABLE_DISPATCH_
ASSERTS_KHR property with CL_MUTABLE_DISPATCH_ASSERT_NO_ADDITIONAL_WORK_GROUPS_KHR and
local_work_size is NULL, or if properties includes the CL_MUTABLE_DISPATCH_ASSERTS_KHR property
with CL_MUTABLE_DISPATCH_ASSERT_NO_ADDITIONAL_WORK_GROUPS_KHR and local_work_size is NULL.

To record a command to do an SVM memcpy operation, call the function

cl_int clCommandSVMMemcpyKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    void* dst_ptr,
    const void* src_ptr,
    size_t size,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);

 clCommandSVMMemcpyKHR is provided by the cl_khr_command_buffer extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• dst_ptr is the pointer to a host (if the device supports system SVM) or SVM memory allocation
where data is copied to.

• src_ptr is the pointer to a host (if the device supports system SVM) or SVM memory allocation
where data is copied from.

• size is the size in bytes of data being copied.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and

394



num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.

clCommandSVMMemcpyKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns the errors defined by clEnqueueSVMMemcpy except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, and kernel
are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

To record a command to fill a region in SVM with a pattern of a given pattern size, call the function

395



cl_int clCommandSVMMemFillKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_queue command_queue,
    void* svm_ptr,
    const void* pattern,
    size_t pattern_size,
    size_t size,
    cl_uint num_sync_points_in_wait_list,
    const cl_sync_point_khr* sync_point_wait_list,
    cl_sync_point_khr* sync_point,
    cl_mutable_command_khr* mutable_handle);

 clCommandSVMMemFillKHR is provided by the cl_khr_command_buffer extension.

• command_buffer refers to a valid command-buffer object.

• command_queue specifies the command-queue the command will be recorded to. 
If the cl_khr_command_buffer_multi_device extension is not supported, only a single command-
queue is supported, and command_queue must be NULL. 
If the cl_khr_command_buffer_multi_device extension is supported and command_queue is NULL,
then only one command-queue must have been set on command_buffer creation; otherwise,
command_queue must not be NULL.

• svm_ptr is a pointer to a (if the device supports system SVM) or SVM memory region that will be
filled with pattern. It must be aligned to pattern_size bytes. If svm_ptr is allocated using
clSVMAlloc, then it must be allocated from the same context from which command_queue was
created. Otherwise the behavior is undefined.

• pattern is a pointer to the data pattern of size pattern_size in bytes. pattern will be used to fill a
region in buffer starting at svm_ptr and is size bytes in size. The data pattern must be a scalar or
vector integer or floating-point data type supported by OpenCL. For example, if the region
pointed to by svm_ptr is to be filled with a pattern of float4 values, then pattern will be a
pointer to a cl_float4 value and pattern_size will be sizeof(cl_float4). The maximum value of
pattern_size is the size of the largest integer or floating-point vector data type supported by the
OpenCL device. The memory associated with pattern can be reused or freed after the function
returns.

• size is the size in bytes of region being filled starting with svm_ptr and must be a multiple of
pattern_size.

• sync_point_wait_list, num_sync_points_in_wait_list specify synchronization-points that need to
complete before this particular command can be executed.

If sync_point_wait_list is NULL, num_sync_points_in_wait_list must be 0. If sync_point_wait_list is
not NULL, the list of synchronization-points pointed to by sync_point_wait_list must be valid and
num_sync_points_in_wait_list must be greater than 0. The synchronization-points specified in
sync_point_wait_list are device-side synchronization-points. The command-buffer associated
with synchronization-points in sync_point_wait_list must be the same as command_buffer. The
memory associated with sync_point_wait_list can be reused or freed after the function returns.

396



• sync_point returns a synchronization-point ID that identifies this particular command.
Synchronization-point objects are unique and can be used to identify this command later on.
sync_point can be NULL in which case it will not be possible for the application to record a wait
for this command to complete. If the sync_point_wait_list and the sync_point arguments are not
NULL, the sync_point argument should not refer to an element of the sync_point_wait_list array.

• mutable_handle returns a handle to the command. This parameter is unused, and must be NULL.

clCommandSVMMemFillKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns the errors defined by clEnqueueSVMMemFill except:

CL_INVALID_COMMAND_QUEUE is replaced with:

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is not supported
and command_queue is not NULL.

• CL_INVALID_COMMAND_QUEUE if the cl_khr_command_buffer_multi_device extension is supported; and
either command_queue is NULL and command_buffer was created with more than one queue, or
command_queue is not NULL and not a command-queue listed on command_buffer creation.

CL_INVALID_CONTEXT is replaced with:

• CL_INVALID_CONTEXT if the context associated with command_queue, command_buffer, and kernel
are not the same.

CL_INVALID_EVENT_WAIT_LIST is replaced with:

• CL_INVALID_SYNC_POINT_WAIT_LIST_KHR if sync_point_wait_list is NULL and
num_sync_points_in_wait_list is > 0, or sync_point_wait_list is not NULL and
num_sync_points_in_wait_list is 0, or if synchronization-point objects in sync_point_wait_list are
not valid synchronization-points.

New errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has been finalized.

• CL_INVALID_VALUE if mutable_handle is not NULL.

5.17.6. Remapping Command-Buffers

If the cl_khr_command_buffer_multi_device extension is supported, platforms reporting the
CL_COMMAND_BUFFER_PLATFORM_REMAP_QUEUES_KHR capability support generating a deep copy of a
command-buffer with its commands remapped to a list of command-queues that are potentially
incompatible with the queues used to create the command-buffer. That is, the remapped command-
buffer can execute on queues that differ in terms of properties and/or associated device from the
original command-buffer queues.

This functionality is invoked through a new synchronous entry-point
clRemapCommandBufferKHR which takes a list of queues to which the commands should now
target. It then returns a command-buffer containing the same commands as the original, with the
same command dependencies, but targeting different queues. A list of command handles may also

397



be passed to the entry-point, which allows handles to the equivalent commands in the remapped
command-buffer to be returned by an output parameter.

Device properties restrict remapping possibilities, as existing commands can have a configuration
which is not supported by another device, and so remapping may fail with an error relating to this
incompatibility. Examples of command configurations which can introduce incompatibilities when
trying to map to a new device are:

• Program language features used in a kernel not supported by the new device.

• ND-Range configuration, e.g exceeds new the device max work-group size.

• Misalignment of sub-buffers based on minimum alignment of new device.

In additional to this functionality, platforms reporting CL_COMMAND_BUFFER_PLATFORM_AUTOMATIC_REMAP_
KHR allow the user to create a remapped command-buffer where the mapping of queues to
commands is determined by the OpenCL runtime in a way it determines as optimal. This is
particularly useful in hot plugging environments where devices may appear and disappear during
runtime.

To create a deep copy of the input command-buffer with the copied commands remapped to target
the passed command-queues, call the function

cl_command_buffer_khr clRemapCommandBufferKHR(
    cl_command_buffer_khr command_buffer,
    cl_bool automatic,
    cl_uint num_queues,
    const cl_command_queue* queues,
    cl_uint num_handles,
    const cl_mutable_command_khr* handles,
    cl_mutable_command_khr* handles_ret,
    cl_int* errcode_ret);


clRemapCommandBufferKHR is provided by the
cl_khr_command_buffer_multi_device extension.

• command_buffer specifies the command-buffer to create a remapped deep copy of.

• automatic indicates if the remapping is done explicitly by the user, or automatically by the
OpenCL runtime. If automatic is CL_FALSE, then each element of queues will replace the queue
used on command_buffer creation at the same index. If CL_TRUE and CL_COMMAND_BUFFER_PLATFORM_
AUTOMATIC_REMAP_KHR is supported, then the OpenCL runtime will decide in a way it determines
optimal which of the elements in queues each command in the returned command-buffer will
be associated with.

• num_queues is the number of command-queues listed in queues, must not be 0.

• queues is a pointer to an ordered list of command-queues for the returned command-buffer to
target, must be a non-NULL value.

• num_handles is the number of command handles passed in both handles and handles_ret lists,
may be 0.

398



• handles is an ordered list of handles belonging to command_buffer to create remapped copies of,
may be NULL.

• handles_ret returns an ordered list of handles where each handle is equivalent to the handle at
the same index in handles, but belonging to the returned command-buffer.

• errcode_ret returns an appropriate error code. If errcode_ret is NULL, no error code is returned.

The returned command-buffer has the same state as the input command-buffer, unless the input
command-buffer is in the Pending state, in which case the returned command-buffer has state
Executable.

clRemapCommandBufferKHR returns a valid command-buffer with errcode_ret set to CL_SUCCESS
if the command-buffer is created successfully. Otherwise, it returns a NULL value without setting
handles_ret, and with one of the following error values returned in errcode_ret:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_VALUE if num_queues is 0, or if queues is NULL.

• CL_INVALID_VALUE if automatic is CL_FALSE and num_queues is not equal to the number of queues
used on creation of command_buffer.

• CL_INVALID_VALUE if handles or handles_ret is NULL and num_handles is > 0, or either handles or
handles_ret is not NULL and num_handles is 0.

• CL_INVALID_VALUE if any handle in handles is not a valid command handle belonging to
command_buffer.

• CL_INVALID_COMMAND_QUEUE if any command-queue in queues is not a valid command-queue.

• CL_INVALID_CONTEXT if command_buffer and all the command-queues in queues do not have the
same OpenCL context.

• CL_INVALID_OPERATION if the platform does not support the CL_COMMAND_BUFFER_PLATFORM_REMAP_
QUEUES_KHR flag.

• CL_INVALID_OPERATION if the platform does not support the CL_COMMAND_BUFFER_PLATFORM_
AUTOMATIC_REMAP_KHR flag and automatic is CL_TRUE.

• CL_INCOMPATIBLE_COMMAND_QUEUE_KHR if such an error would be returned by passing queues to
clCreateCommandBufferKHR.

• Any error relating to device support that can be returned by a command recording entry-point
may also be returned. As a command in command_buffer can have a configuration that is not
supported by a device that is associated with the queue in queues the command is being
remapped to.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.17.7. Mutable Commands:

A generic cl_mutable_command_khr handle is called a mutable-command object as it can be returned

399



from any command recording entry-point in the cl_khr_command_buffer family of extensions. The
mutable-command handles returned by clCommandNDRangeKernelKHR in particular are
referred to as mutable-dispatch objects, and can be modified through the fields of cl_mutable_
dispatch_config_khr.

Mutable-command handles are updated between enqueues using entry-point
clUpdateMutableCommandsKHR. To enable performant usage, all aspects of mutation are
encapsulated inside a single cl_mutable_base_config_khr parameter. This means that the runtime
has access to all the information about how the command-buffer will change, allowing the
command-buffer to be rebuilt as efficiently as possible. Any modifications to the arguments or
execution info of a mutable-dispatch handle using cl_mutable_dispatch_arg_khr or cl_mutable_
dispatch_exec_info_khr have no affect on the original kernel object used when the command was
recorded, and only influence the clCommandNDRangeKernelKHR command associated with the
mutable-dispatch.



The base cl_khr_command_buffer extension notes that a command-buffer does not
update the reference count of objects set as arguments on kernels recorded into
the command-buffer.

The implications for applications using clUpdateMutableCommandsKHR is that
it is safe to delete objects used as kernel command arguments, if all the kernel
commands using that object as an argument have had their arguments replaced
with a different object.

To facilitate performant usage for pipelined work flows, where applications repeatedly call
command-buffer update then enqueue, implementations may defer some of the work to allow
clUpdateMutableCommandsKHR to return immediately. Deferring any recompilation until
clEnqueueCommandBufferKHR avoids blocking in host code and keeps device occupancy high.
This is only possible with a command-buffer created with the CL_COMMAND_BUFFER_SIMULTANEOUS_USE_
KHR flag, as without this the enqueued command-buffer must complete before any modification
occurs.

To modify the configuration of mutable-command handles returned during command_buffer
recording, updating the behavior of those commands in future enqueues of command_buffer, call
the function

cl_int clUpdateMutableCommandsKHR(
    cl_command_buffer_khr command_buffer,
    const cl_mutable_base_config_khr* mutable_config);


clUpdateMutableCommandsKHR is provided by the
cl_khr_command_buffer_mutable_dispatch extension.

• command_buffer refers to a valid command-buffer object.

• mutable_config is a pointer to a cl_mutable_base_config_khr structure defining updates to make
to mutable-commands.

400



clUpdateMutableCommandsKHR returns CL_SUCCESS if all the mutable-command objects were
updated successfully. Otherwise, none of the updates to mutable-command objects are preserved
and one of the errors below is returned:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_OPERATION if command_buffer has not been finalized.

• CL_INVALID_OPERATION if command_buffer was not created with the CL_COMMAND_BUFFER_MUTABLE_KHR
flag.

• CL_INVALID_VALUE if the type member of mutable_config is not CL_STRUCTURE_TYPE_MUTABLE_BASE_
CONFIG_KHR.

• CL_INVALID_VALUE if the mutable_dispatch_list member of mutable_config is NULL and
num_mutable_dispatch > 0, or mutable_dispatch_list is not NULL and num_mutable_dispatch is 0.

• CL_INVALID_VALUE if the next member of mutable_config is not NULL and any iteration of the
structure pointer chain does not contain valid type and next members.

• CL_INVALID_VALUE if mutable_config is NULL, or if both next and mutable_dispatch_list members of
mutable_config are NULL.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

Using this function when command_buffer is in the pending state and not created with the
CL_COMMAND_BUFFER_SIMULTANEOUS_USE_KHR flag causes undefined behavior.


Performant usage is to call clUpdateMutableCommandsKHR only when the
desired state of all commands is known, rather than iteratively updating each
command individually.



If the command buffer has been created with CL_MUTABLE_DISPATCH_ASSERT_NO_
ADDITIONAL_WORK_GROUPS_KHR, or the updated ND-range command has been recorded
with this flag, and the ND-range parameters are updated so that the new number
of work-groups exceeds the number when the ND-range command was recorded,
the behavior is undefined.

If the mutable_dispatch_list member of mutable_config is non-NULL, then errors defined by
clEnqueueNDRangeKernel, clSetKernelExecInfo, clSetKernelArg, and
clSetKernelArgSVMPointer are returned by clUpdateMutableCommandsKHR if any of the array
elements are set to an invalid value. Additionally, the following errors are returned if any
cl_mutable_dispatch_config_khr element of the array violates the defined conditions:

• CL_INVALID_MUTABLE_COMMAND_KHR if command is not a valid mutable command object, or created
from command_buffer.

• CL_INVALID_VALUE if type is not CL_STRUCTURE_TYPE_MUTABLE_DISPATCH_CONFIG_KHR.

• CL_INVALID_OPERATION if the values of local_work_size and/or global_work_size result in a change

401



to work-group uniformity.

• CL_INVALID_OPERATION if the work_dim is different from the work_dim set on command recording.

• CL_INVALID_OPERATION if the CL_MUTABLE_DISPATCH_GLOBAL_OFFSET_KHR property was not set on
command recording and global_work_offset is not NULL.

• CL_INVALID_OPERATION if the CL_MUTABLE_DISPATCH_GLOBAL_SIZE_KHR property was not set on
command recording and global_work_size is not NULL.

• CL_INVALID_OPERATION if the CL_MUTABLE_DISPATCH_LOCAL_SIZE_KHR property was not set on
command recording and local_work_size is not NULL.

• CL_INVALID_OPERATION if the CL_MUTABLE_DISPATCH_ARGUMENTS_KHR property was not set on
command recording and num_args or num_svm_args is non-zero.

• CL_INVALID_OPERATION if the CL_MUTABLE_DISPATCH_EXEC_INFO_KHR property was not set on
command recording and num_exec_infos is non-zero.

• CL_INVALID_VALUE if arg_list is NULL and num_args > 0, or arg_list is not NULL and num_args is 0.

• CL_INVALID_VALUE if arg_svm_list is NULL and num_svm_args > 0, or arg_svm_list is not NULL and
num_svm_args is 0.

• CL_INVALID_VALUE if exec_info_list is NULL and num_exec_infos > 0, or exec_info_list is not NULL and
num_exec_infos is 0.

The cl_mutable_base_config_khr structure encapsulates all aspects of mutation and is defined as:

typedef struct cl_mutable_base_config_khr {
    cl_command_buffer_structure_type_khr     type;
    const void*                              next;
    cl_uint                                  num_mutable_dispatch;
    const cl_mutable_dispatch_config_khr*    mutable_dispatch_list;
} cl_mutable_base_config_khr;

• type is the type of this structure, and must be CL_STRUCTURE_TYPE_MUTABLE_BASE_CONFIG_KHR

• next is NULL or a pointer to an extending structure.

• num_mutable_dispatch is the number of mutable-dispatch objects to configure in this enqueue
of the command-buffer.

• mutable_dispatch_list is an array containing num_mutable_dispatch elements describing the
configurations of mutable kernel execution commands in the command-buffer. For a
description of struct members making up each array element see cl_mutable_dispatch_config_
khr.

The cl_mutable_dispatch_arg_khr structure is passed to clUpdateMutableCommandsKHR to set the
kernel configuration of a mutable clCommandNDRangeKernelKHR command, and is defined as:

402



typedef struct cl_mutable_dispatch_config_khr {
    cl_command_buffer_structure_type_khr        type;
    const void*                                 next;
    cl_mutable_command_khr                      command;
    cl_uint                                     num_args;
    cl_uint                                     num_svm_args;
    cl_uint                                     num_exec_infos;
    cl_uint                                     work_dim;
    const cl_mutable_dispatch_arg_khr*          arg_list;
    const cl_mutable_dispatch_arg_khr*          arg_svm_list;
    const cl_mutable_dispatch_exec_info_khr*    exec_info_list;
    const size_t*                               global_work_offset;
    const size_t*                               global_work_size;
    const size_t*                               local_work_size;
} cl_mutable_dispatch_config_khr;

• type is the type of this structure, and must be CL_STRUCTURE_TYPE_MUTABLE_DISPATCH_CONFIG_KHR.

• next is NULL or a pointer to an extending structure.

• command is a mutable-command object returned by clCommandNDRangeKernelKHR
representing a kernel execution as part of a command-buffer.

• num_args is the number of kernel arguments being changed.

• num_svm_args is the number of SVM kernel arguments being changed.

• num_exec_infos is the number of kernel execution info objects to set for this dispatch.

• work_dim is the number of dimensions used to specify the global work-items and work-items in
the work-group. See clEnqueueNDRangeKernel for valid usage.

• arg_list is an array describing the new kernel arguments for this enqueue. It must contain
num_args array elements, each of which encapsulates parameters passed to clSetKernelArg.
See clSetKernelArg for usage of cl_mutable_dispatch_arg_khr members.

• arg_svm_list is an array describing the new SVM kernel arguments for this enqueue. It must
contain num_svm_args array elements, each of which encapsulates parameters passed to
clSetKernelArgSVMPointer. See clSetKernelArgSVMPointer for usage of cl_mutable_dispatch_
arg_khr members, arg_size is ignored.

• exec_info_list is an array containing num_exec_infos elements specifying the list of execution
info objects use for this command-buffer enqueue. See clSetKernelExecInfo for usage of
cl_mutable_dispatch_exec_info_khr members.

• global_work_offset can be used to specify an array of work_dim unsigned values that describe
the offset used to calculate the global ID of a work-item. If global_work_offset is NULL then the
global offset of the dispatch is not changed. See clEnqueueNDRangeKernel for valid usage.

• global_work_size points to an array of work_dim unsigned values that describe the number of
global work-items in work_dim dimensions that will execute the kernel function. If
global_work_size is NULL then the number of global work-items in the dispatch is not changed.
See clEnqueueNDRangeKernel for valid usage.

• local_work_size points to an array of work_dim unsigned values that describe the number of

403



work-items that make up a work-group that will execute the kernel. If local_work_size is NULL
then the number of local work-items in the dispatch is not changed. See
clEnqueueNDRangeKernel for valid usage.

The cl_mutable_dispatch_arg_khr structure sets kernel arguments normally passed using
clSetKernelArg and clSetKernelArgSVMPointer, and is defined as:

typedef struct cl_mutable_dispatch_arg_khr {
    cl_uint        arg_index;
    size_t         arg_size;
    const void*    arg_value;
} cl_mutable_dispatch_arg_khr;

The cl_mutable_dispatch_exec_info_khr structure sets kernel execution info normally passed using
clSetKernelExecInfo, and is defined as:

typedef struct cl_mutable_dispatch_exec_info_khr {
    cl_uint        param_name;
    size_t         param_value_size;
    const void*    param_value;
} cl_mutable_dispatch_exec_info_khr;


param_name is of type cl_uint rather than cl_kernel_exec_info so that the
extension can be implemented on OpenCL 1.2 where the cl_kernel_exec_info
typedef is unavailable.

5.17.8. Command-Buffer Queries

To query information about a command-buffer, call the function

cl_int clGetCommandBufferInfoKHR(
    cl_command_buffer_khr command_buffer,
    cl_command_buffer_info_khr param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);


clGetCommandBufferInfoKHR is provided by the cl_khr_command_buffer
extension.

• command_buffer specifies the command-buffer being queried.

• param_name specifies the information to query.

• param_value_size specifies the size in bytes of memory pointed to by param_value. This size
must be ≥ size of return type as described in the table below. If param_value is NULL, it is ignored.

404



• param_value is a pointer to a memory location where the appropriate result being queried is
returned. If param_value is NULL, it is ignored.

• param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

The list of supported param_name values and the information returned in param_value by
clGetCommandBufferInfoKHR is described in the table below.

Table 60. clGetCommandBufferInfoKHR values

Command Buffer Info Return Type Description

CL_COMMAND_BUFFER_NUM_QUEUES_
KHR

provided by the
cl_khr_command_buffer
extension.

cl_uint The number of command-
queues specified when
command_buffer was created.

CL_COMMAND_BUFFER_QUEUES_KHR

provided by the
cl_khr_command_buffer
extension.

cl_command_queue[] Return the list of command-
queues specified when the
command_buffer was created.

CL_COMMAND_BUFFER_REFERENCE_
COUNT_KHR [19]

provided by the
cl_khr_command_buffer
extension.

cl_uint Return the command_buffer
reference count.

405



Command Buffer Info Return Type Description

CL_COMMAND_BUFFER_STATE_KHR

provided by the
cl_khr_command_buffer
extension.

cl_command_buffer_state_khr Return the state of
command_buffer.

CL_COMMAND_BUFFER_STATE_
RECORDING_KHR is returned when
command_buffer has not been
finalized.

provided by the
cl_khr_command_buffer
extension.

CL_COMMAND_BUFFER_STATE_
EXECUTABLE_KHR is returned
when command_buffer has been
finalized and there is not a
Pending instance of
command_buffer awaiting
completion on a
command_queue.

provided by the
cl_khr_command_buffer
extension.

CL_COMMAND_BUFFER_STATE_
PENDING_KHR is returned when
an instance of command_buffer
has been enqueued for
execution but not yet
completed.

provided by the
cl_khr_command_buffer
extension.

406



Command Buffer Info Return Type Description

CL_COMMAND_BUFFER_PROPERTIES_
ARRAY_KHR

provided by the
cl_khr_command_buffer
extension.

cl_command_buffer_properties_
khr[]

Return the properties argument
specified in
clCreateCommandBufferKHR.

If the properties argument
specified in
clCreateCommandBufferKHR
used to create command_buffer
was not NULL, the
implementation must return
the values specified in the
properties argument.

If the properties argument
specified in
clCreateCommandBufferKHR
used to create command_buffer
was NULL, the implementation
may return either a
param_value_size_ret of 0 (i.e.
there is are no properties to be
returned), or the
implementation may return a
property value of 0 (where 0 is
used to terminate the
properties list).

CL_COMMAND_BUFFER_CONTEXT_KHR

provided by the
cl_khr_command_buffer
extension.

cl_context Return the context associated
with command_buffer.

clGetCommandBufferInfoKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_COMMAND_BUFFER_KHR if command_buffer is not a valid command-buffer.

• CL_INVALID_VALUE if param_name is not one of the supported values or if size in bytes specified
by param_value_size is less than size of return type and param_value is not a NULL value.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

To query information about a mutable command object, call the function

407



cl_int clGetMutableCommandInfoKHR(
    cl_mutable_command_khr command,
    cl_mutable_command_info_khr param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);


clGetMutableCommandInfoKHR is provided by the
cl_khr_command_buffer_mutable_dispatch extension.

• command specifies the mutable-command object being queried.

• param_name specifies the information to query. The list of supported param_name types and the
information returned in param_value by clGetMutableCommandInfoKHR is described in the
Mutable Command Object Queries table.

• param_value_size is used to specify the size in bytes of memory pointed to by param_value. This
size must be ≥ size of return type as described in the Mutable Command Object Queries table.

• param_value is a pointer to memory where the appropriate result being queried is returned. If
param_value is NULL, it is ignored.

• param_value_size_ret returns the actual size in bytes of data being queried by param_name. If
param_value_size_ret is NULL, it is ignored.

Table 61. Mutable Command Object Queries

Mutable Command Info Return Type Description

CL_MUTABLE_COMMAND_COMMAND_
QUEUE_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

cl_command_
queue

Return the command-queue associated with
command. If NULL was passed as the queue when
command was recorded, then the queue
associated with the command-buffer that
command belongs to is returned.

CL_MUTABLE_COMMAND_COMMAND_
BUFFER_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

cl_command_
buffer_khr

Return the command-buffer associated with
command.

CL_MUTABLE_COMMAND_COMMAND_
TYPE_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

cl_command_type Return the command-type associated with
command.

The list of supported event command types
defined by clGetEventInfo is used with the
matching command.

408



Mutable Command Info Return Type Description

CL_MUTABLE_DISPATCH_
PROPERTIES_ARRAY_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

cl_ndrange_
kernel_command_
properties_
khr[]

Return the properties argument specified on
command recording with
clCommandNDRangeKernelKHR.

If the properties argument specified on creation
of command was not NULL, the implementation
must return the values specified in the
properties argument in the same order and
without including additional properties.

If the properties argument specified on creation
of command was NULL, or command was not
recorded from a
clCommandNDRangeKernelKHR command,
the implementation must return
param_value_size_ret equal to 0, indicating that
there are no properties to be returned.

CL_MUTABLE_DISPATCH_KERNEL_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

cl_kernel Return the kernel associated with command
when recorded with
clCommandNDRangeKernelKHR.

If command was not recorded from a
clCommandNDRangeKernelKHR command,
the implementation must return
param_value_size_ret equal to 0, indicating that
the value returned in param_value is not valid.

CL_MUTABLE_DISPATCH_
DIMENSIONS_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

cl_uint Return the number of work-item dimensions
specified when command was created.

If command was not recorded from a
clCommandNDRangeKernelKHR command,
the implementation must return
param_value_size_ret equal to 0, indicating that
the value returned in param_value is not valid.

409



Mutable Command Info Return Type Description

CL_MUTABLE_DISPATCH_GLOBAL_
WORK_OFFSET_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

size_t[] Return the global work-item offset set on
command creation, or from the most recent
update via clUpdateMutableCommandsKHR
where this value was modified. The output array
contains work_dim values, where work_dim is
returned by the query CL_MUTABLE_DISPATCH_
DIMENSIONS_KHR. If a global work-item offset was
not set, zero is returned for each element in the
array.

If command was not recorded from a
clCommandNDRangeKernelKHR command,
the implementation must return
param_value_size_ret equal to 0, indicating that
the value returned in param_value is not valid.

CL_MUTABLE_DISPATCH_GLOBAL_
WORK_SIZE_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

size_t[] Return the global work-item size set on
command creation, or from the most recent
update via clUpdateMutableCommandsKHR
where this value was modified. The output array
contains work_dim values, where work_dim is
returned by the query CL_MUTABLE_DISPATCH_
DIMENSIONS_KHR. If a global work-item size was
not set, zero is returned for each element in the
array.

If command was not recorded from a
clCommandNDRangeKernelKHR command,
the implementation must return
param_value_size_ret equal to 0, indicating that
the value returned in param_value is not valid.

CL_MUTABLE_DISPATCH_LOCAL_
WORK_SIZE_KHR

provided by the
cl_khr_command_buffer_mutable_
dispatch extension.

size_t[] Return the local work-item size set on command
creation, or from the most recent update via
clUpdateMutableCommandsKHR where this
value was modified. The output array contains
work_dim values, where work_dim is returned
by the query CL_MUTABLE_DISPATCH_DIMENSIONS_
KHR. If a local work-item size was not set, zero is
returned for each element in the array.

If command was not recorded from a
clCommandNDRangeKernelKHR command,
the implementation must return
param_value_size_ret equal to 0, indicating that
the value returned in param_value is not valid.

410



clGetMutableCommandInfoKHR returns CL_SUCCESS if the function is executed successfully.
Otherwise, it returns one of the following errors:

• CL_INVALID_VALUE if param_name is not valid, or if size in bytes specified by param_value_size is <
size of return type as described in the Mutable Command Object Queries table and param_value
is not NULL.

• CL_INVALID_MUTABLE_COMMAND_KHR if command is not a valid mutable command object.

• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device.

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

5.18. Querying Devices That Support Sharing With
OpenGL
OpenCL device(s) corresponding to an OpenGL context may be queried. Such a device may not
always exist (for example, if an OpenGL context is specified on a GPU not supporting OpenCL
command-queues, but which does support shared OpenCL/OpenGL memory objects), and if it does
exist, may change over time. When such a device does exist, acquiring and releasing shared
OpenCL/OpenGL memory objects may be faster on a command-queue corresponding to this device
than on command-queues corresponding to other devices available to an OpenCL context.

To query the OpenCL device corresponding to an OpenGL context, call the function

cl_int clGetGLContextInfoKHR(
    const cl_context_properties* properties,
    cl_gl_context_info param_name,
    size_t param_value_size,
    void* param_value,
    size_t* param_value_size_ret);

• properties points to an property list whose format and valid contents are identical to the
properties argument of clCreateContext. properties must identify a single valid GL context or
GL share group object.

• param_name is a constant that specifies the device types to query, and must be one of the values
shown in the Supported Device Types table below.

• param_value is a pointer to memory where the result of the query is returned, as described in
the Supported Device Types table. If param_value is NULL, it is ignored.

• param_value_size specifies the size in bytes of memory pointed to by param_value. This size
must be greater than or equal to the size of the return type described in the table below.

• param_value_size_ret returns the actual size in bytes of data being queried by param_value. If
param_value_size_ret is NULL, it is ignored.

Table 62. Supported Device Types for clGetGLContextInfoKHR

411



param_name Return Type Information returned in
param_value

CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR

provided by the cl_khr_gl_sharing
extension.

cl_device_id Return the OpenCL device currently
associated with the specified OpenGL
context.

CL_DEVICES_FOR_GL_CONTEXT_KHR

provided by the cl_khr_gl_sharing
extension.

cl_device_id[] Return all OpenCL devices which may
be associated with the specified
OpenGL context.

clGetGLContextInfoKHR returns CL_SUCCESS if the function is executed successfully. If no device(s)
exist corresponding to param_name, the call will not fail, but the value of param_value_size_ret will
be zero. Otherwise, it returns one of the following errors:

• CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a context was specified for an OpenGL or OpenGL ES
implementation using the EGL, GLX, or WGL binding APIs, as described for clCreateContext; and
any of the following conditions hold:

◦ The specified display and context properties do not identify a valid OpenGL or OpenGL ES
context.

◦ The specified context does not support buffer and renderbuffer objects.

◦ The specified context is not compatible with the OpenCL context being created (for example,
it exists in a physically distinct address space, such as another hardware device; or it does
not support sharing data with OpenCL due to implementation restrictions).

• CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR if a share group was specified for a CGL-based OpenGL
implementation by setting the property CL_CGL_SHAREGROUP_KHR, and the specified share group
does not identify a valid CGL share group object.

• CL_INVALID_OPERATION if a context was specified as described above and any of the following
conditions hold:

◦ A context or share group object was specified for one of CGL, EGL, GLX, or WGL and the
OpenGL implementation does not support that window-system binding API.

◦ More than one of the properties CL_CGL_SHAREGROUP_KHR, CL_EGL_DISPLAY_KHR, CL_GLX_DISPLAY_
KHR, and CL_WGL_HDC_KHR is set to a non-default value.

◦ Both of the properties CL_CGL_SHAREGROUP_KHR and CL_GL_CONTEXT_KHR are set to non-default
values.

◦ Any of the devices specified in the <devices> argument cannot support OpenCL objects
which share the data store of an OpenGL object.

• CL_INVALID_VALUE if an property name other than those specified in table 4.5 is specified in
properties.

• CL_INVALID_VALUE if param_name is not one of the values listed in the GL context information
that can be queried with_ clGetGLContextInfoKHR table, or if the size in bytes specified by
param_value_size is less than the size of the return type shown in the table and param_value is
not a NULL value

412



• CL_OUT_OF_RESOURCES if there is a failure to allocate resources required by the OpenCL
implementation on the device

• CL_OUT_OF_HOST_MEMORY if there is a failure to allocate resources required by the OpenCL
implementation on the host.

[1] Only out-of-order device queues are supported.

[2] The application must create a default device queue if any kernels containing calls to get_default_queue are enqueued. There can
only be one default device queue for each device within a context. If a default device queue has already been created, calling
clCreateCommandQueueWithProperties with CL_QUEUE_PROPERTIES set to CL_QUEUE_ON_DEVICE and CL_QUEUE_ON_DEVICE_DEFAULT will
return the default device queue that has already been created and increment its reference count by 1.

[3] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

[4] Note that reading and writing 2D image arrays from a kernel with image_array_size equal to one may perform worse than 2D
images.

[5] To create a 2D image from a buffer object that share the data store between the image and buffer object.

[6] To create an image object from another image object that share the data store between these image objects.

[7] Support for the CL_DEPTH image channel order is required only for 2D images and 2D image arrays.

[8] Support for reading from the CL_sRGBA image channel order is optional for 1D image buffers. Support for writing to the CL_sRGBA
image channel order is optional for all image types.

[9] The map count returned should be considered immediately stale. It is unsuitable for general use in applications. This feature is
provided for debugging.

[10] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

[11] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

[12] As per the definition of -cl-denorms-are-zero, the inclusion of this option with -cl-unsafe-math-optimizations means that the
implementation may flush denormal numbers to zero but is not required to.

[13] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

[14] Implementations are encouraged to favor this option as it makes it more likely that errors will be managed by applications.

[15] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

[16] The error code values are negative, and event state values are positive. The event state values are ordered from the largest
value CL_QUEUED for the first or initial state to the smallest value (CL_COMPLETE or negative integer value) for the last or complete
state. The value of CL_COMPLETE and CL_SUCCESS are the same.

[17] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

[18] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

[19] The reference count returned should be considered immediately stale. It is unsuitable for general use in applications. This
feature is provided for identifying memory leaks.

413



Chapter 6. Associated OpenCL specification

6.1. SPIR-V Intermediate Language
OpenCL 2.1 and 2.2 require support for the SPIR-V intermediate language that allows offline
compilation to a binary format that may be consumed by the clCreateProgramWithIL interface.

The OpenCL specification includes a specification for the SPIR-V intermediate language as a cross-
platform input language. In addition, platform vendors may support their own IL if this is
appropriate. The OpenCL runtime will return a list of supported IL versions using the CL_DEVICE_IL_
VERSION or CL_DEVICE_ILS_WITH_VERSION parameter to the clGetDeviceInfo query.

6.2. Extensions to OpenCL
In addition to the specification of core features, OpenCL provides a number of extensions to the
API, kernel language or intermediate representation. These features are defined in the OpenCL
extension specification document.

Extensions defined against earlier versions of the OpenCL specifications, whether the API or
language specification, are defined in the matching versions of the extension specification
document.

6.3. The OpenCL C Kernel Language
The OpenCL C kernel language is not defined in the OpenCL unified specification. The OpenCL C
kernel languages are instead defined in the OpenCL 1.0, OpenCL 1.1, OpenCL 1.2, OpenCL C 2.0
Kernel Language, and OpenCL C 3.0 Kernel Language specifications. When OpenCL devices support
one or more versions of the OpenCL C kernel language (see CL_DEVICE_OPENCL_C_VERSION and
CL_DEVICE_OPENCL_C_ALL_VERSIONS), OpenCL program objects may be created by passing OpenCL C
source strings to clCreateProgramWithSource.

414



Chapter 7. OpenCL Embedded Profile
The OpenCL specification describes the feature requirements for desktop platforms. This section
describes the OpenCL embedded profile that allows us to target a subset of the OpenCL
specification for handheld and embedded platforms. The optional extensions defined in the
OpenCL Extension Specification apply to both profiles.

The OpenCL embedded profile has the following restrictions until version 2.0 (i.e. the optionality
described below was deprecated by version 2.0):

1. Support for 3D images is optional.

If CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT and CL_DEVICE_IMAGE3D_MAX_DEPTH
are zero, calls to clCreateImage or clCreateImageWithProperties will fail to create the 3D
image, and the errcode_ret argument will return CL_INVALID_OPERATION. Declaring arguments of
type image3d_t in a kernel will result in a compilation error.

If CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT and CL_DEVICE_IMAGE3D_MAX_DEPTH
are greater than zero 0, calls to clCreateImage and clCreateImageWithProperties will behave
as described for full profile implementations, and the image3d_t data type can be used in a
kernel.

2. Support for 2D image array writes is optional. If the cles_khr_2d_image_array_writes
extension is supported by the embedded profile, writes to 2D image arrays are supported.

3. Image and image arrays created with an image_channel_data_type value of CL_FLOAT or CL_HALF_
FLOAT can only be used with samplers that use a filter mode of CL_FILTER_NEAREST. The values
returned by read_imagef [1] for 2D and 3D images if image_channel_data_type value is CL_FLOAT
or CL_HALF_FLOAT and sampler with filter_mode = CL_FILTER_LINEAR are undefined.

Furthermore, the OpenCL embedded profile has the following restrictions for all versions:

1. 64 bit integers i.e. long, ulong including the appropriate vector data types and operations on 64-
bit integers are optional. The cles_khr_int64 [2] extension string will be reported if the
embedded profile implementation supports 64-bit integers. If double precision is supported i.e.
CL_DEVICE_DOUBLE_FP_CONFIG is not zero, then cles_khr_int64 must also be supported.

2. The mandated minimum single precision floating-point capability given by CL_DEVICE_SINGLE_
FP_CONFIG is CL_FP_ROUND_TO_ZERO or CL_FP_ROUND_TO_NEAREST. If CL_FP_ROUND_TO_NEAREST is
supported, the default rounding mode will be round to nearest even; otherwise the default
rounding mode will be round to zero.

3. The single precision floating-point operations (addition, subtraction and multiplication) shall be
correctly rounded. Zero results may always be positive 0.0. The accuracy of division and sqrt are
given in the OpenCL C and OpenCL SPIR-V Environment specifications.

If CL_FP_INF_NAN is not set in CL_DEVICE_SINGLE_FP_CONFIG, and one of the operands or the result of
addition, subtraction, multiplication or division would signal the overflow or invalid exception
(see IEEE 754 specification), the value of the result is implementation-defined. Likewise, single
precision comparison operators (<, >, <=, >=, ==, !=) return implementation-defined values when
one or more operands is a NaN.

415



In all cases, conversions (see the OpenCL C and OpenCL SPIR-V Environment specifications)
shall be correctly rounded as described for the FULL_PROFILE, including those that consume or
produce an INF or NaN. The built-in math functions shall behave as described for the
FULL_PROFILE, including edge case behavior, but with slightly different accuracy rules. Edge
case behavior and accuracy rules are described in the OpenCL C and OpenCL SPIR-V
Environment specifications.



If addition, subtraction and multiplication have default round to zero rounding
mode, then fract, fma and fdim shall produce the correctly rounded result for
round to zero rounding mode.

This relaxation of the requirement to adhere to IEEE 754 requirements for
basic floating-point operations, though extremely undesirable, is to provide
flexibility for embedded devices that have lot stricter requirements on
hardware area budgets.

4. Denormalized numbers for the half data type which may be generated when converting a float
to a half using variants of the vstore_half function or when converting from a half to a float
using variants of the vload_half function can be flushed to zero. The OpenCL SPIR-V
Environment Specification for details.

5. The precision of conversions from CL_UNORM_INT8, CL_SNORM_INT8, CL_UNORM_INT16, CL_SNORM_INT16,
CL_UNORM_INT_101010, and CL_UNORM_INT_101010_2 to float is ≤ 2 ulp for the embedded profile
instead of ≤ 1.5 ulp as defined in the full profile. The exception cases described in the full profile
and given below apply to the embedded profile.

For CL_UNORM_INT8

◦ 0 must convert to 0.0f and

◦ 255 must convert to 1.0f

For CL_UNORM_INT16

◦ 0 must convert to 0.0f and

◦ 65535 must convert to 1.0f

For CL_SNORM_INT8

◦ -128 and -127 must convert to -1.0f,

◦ 0 must convert to 0.0f and

◦ 127 must convert to 1.0f

For CL_SNORM_INT16

◦ -32768 and -32767 must convert to -1.0f,

◦ 0 must convert to 0.0f and

◦ 32767 must convert to 1.0f

416



For CL_UNORM_INT_101010

◦ 0 must convert to 0.0f and

◦ 1023 must convert to 1.0f

For CL_UNORM_INT_101010_2

◦ 0 must convert to 0.0f and

◦ 1023 must convert to 1.0f (for RGB)

◦ 3 must convert to 1.0f (for A)

CL_PLATFORM_PROFILE defined in the OpenCL Platform Queries table will return the string
EMBEDDED_PROFILE if the OpenCL implementation supports the embedded profile only.

The minimum maximum values specified in the OpenCL Device Queries table that have been
modified for the OpenCL embedded profile are listed in the OpenCL Embedded Device Queries
table.

Table 63. List of supported param_names by clGetDeviceInfo for embedded profile

Device Info Return Type Description

CL_DEVICE_MAX_READ_IMAGE_ARGS cl_uint Max number of image objects arguments of a
kernel declared with the read_only qualifier. The
minimum value is 8 if CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE, the value is 0 otherwise.

CL_DEVICE_MAX_WRITE_IMAGE_ARGS cl_uint Max number of image objects arguments of a
kernel declared with the write_only qualifier.
The minimum value is 8 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_MAX_READ_WRITE_
IMAGE_ARGS

cl_uint Max number of image objects arguments of a
kernel declared with the write_only or
read_write qualifier. The minimum value is 8 if
CL_DEVICE_IMAGE_SUPPORT is CL_TRUE, the value is 0
otherwise.

CL_DEVICE_IMAGE2D_MAX_WIDTH size_t Max width of 2D image in pixels. The minimum
value is 2048 if CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE2D_MAX_HEIGHT size_t Max height of 2D image in pixels. The minimum
value is 2048 if CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE3D_MAX_WIDTH size_t Max width of 3D image in pixels. The minimum
value is 2048 if CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE3D_MAX_HEIGHT size_t Max height of 3D image in pixels. The minimum
value is 2048 if CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE, the value is 0 otherwise.

417



Device Info Return Type Description

CL_DEVICE_IMAGE3D_MAX_DEPTH size_t Max depth of 3D image in pixels. The minimum
value is 2048 if CL_DEVICE_IMAGE_SUPPORT is
CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE_MAX_BUFFER_
SIZE

size_t Max number of pixels for a 1D image created
from a buffer object.

The minimum value is 2048 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_IMAGE_MAX_ARRAY_SIZE size_t Max number of images in a 1D or 2D image
array.

The minimum value is 256 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_MAX_SAMPLERS cl_uint Maximum number of samplers that can be used
in a kernel.

The minimum value is 8 if CL_DEVICE_IMAGE_
SUPPORT is CL_TRUE, the value is 0 otherwise.

CL_DEVICE_MAX_PARAMETER_SIZE size_t Max size in bytes of all arguments that can be
passed to a kernel. The minimum value is 256
bytes for devices that are not of type CL_DEVICE_
TYPE_CUSTOM.

A maximum of 255 arguments can be passed to
a kernel.

418



Device Info Return Type Description

CL_DEVICE_SINGLE_FP_CONFIG cl_device_fp_
config

Describes single precision floating-point
capability of the device. This is a bit-field that
describes one or more of the following values:

CL_FP_DENORM - denorms are supported

CL_FP_INF_NAN - INF and quiet NaNs are
supported.

CL_FP_ROUND_TO_NEAREST - round to nearest even
rounding mode supported

CL_FP_ROUND_TO_ZERO - round to zero rounding
mode supported

CL_FP_ROUND_TO_INF - round to positive and
negative infinity rounding modes supported

CL_FP_FMA - IEEE754-2008 fused multiply-add is
supported.

CL_FP_CORRECTLY_ROUNDED_DIVIDE_SQRT - divide
and sqrt are correctly rounded as defined by the
IEEE754 specification.

CL_FP_SOFT_FLOAT - Basic floating-point
operations (such as addition, subtraction,
multiplication) are implemented in software.

The mandated minimum floating-point
capability is: CL_FP_ROUND_TO_ZERO or CL_FP_
ROUND_TO_NEAREST for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_CONSTANT_BUFFER_
SIZE

cl_ulong Max size in bytes of a constant buffer allocation.
The minimum value is 1 KB for devices that are
not of type CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_MAX_CONSTANT_ARGS cl_uint Max number of arguments declared with the
__constant qualifier in a kernel. The minimum
value is 4 for devices that are not of type
CL_DEVICE_TYPE_CUSTOM.

CL_DEVICE_LOCAL_MEM_SIZE cl_ulong Size of local memory arena in bytes. The
minimum value is 1 KB for devices that are not
of type CL_DEVICE_TYPE_CUSTOM.

419



Device Info Return Type Description

CL_DEVICE_COMPILER_AVAILABLE cl_bool Is CL_FALSE if the implementation does not have
a compiler available to compile the program
source.

Is CL_TRUE if the compiler is available. This can
be CL_FALSE for the embedded platform profile
only.

CL_DEVICE_LINKER_AVAILABLE cl_bool Is CL_FALSE if the implementation does not have
a linker available. Is CL_TRUE if the linker is
available.

This can be CL_FALSE for the embedded platform
profile only.

This must be CL_TRUE if CL_DEVICE_COMPILER_
AVAILABLE is CL_TRUE.

CL_DEVICE_QUEUE_ON_DEVICE_MAX_
SIZE

cl_uint The max. size of the device queue in bytes. The
minimum value is 64 KB for the embedded
profile

CL_DEVICE_PRINTF_BUFFER_SIZE size_t Maximum size in bytes of the internal buffer
that holds the output of printf calls from a
kernel. The minimum value for the EMBEDDED
profile is 1 KB.

If CL_DEVICE_IMAGE_SUPPORT specified in the OpenCL Device Queries table is CL_TRUE, the values
assigned to CL_DEVICE_MAX_READ_IMAGE_ARGS, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, CL_DEVICE_IMAGE2D_MAX_
WIDTH, CL_DEVICE_IMAGE2D_MAX_HEIGHT, CL_DEVICE_IMAGE3D_MAX_WIDTH, CL_DEVICE_IMAGE3D_MAX_HEIGHT,
CL_DEVICE_IMAGE3D_MAX_DEPTH, and CL_DEVICE_MAX_SAMPLERS by the implementation must be greater
than or equal to the minimum values specified in the OpenCL Embedded Device Queries table.

If CL_DEVICE_IMAGE_SUPPORT specified in the OpenCL Device Queries table is CL_TRUE, the minimum
list of supported image formats for either reading or writing in a kernel for embedded profile
devices is:

Table 64. Minimum list of supported image formats for reading or writing (embedded profile)

420



num_channels channel_order channel_data_type

4 CL_RGBA CL_UNORM_INT8
CL_UNORM_INT16
CL_SIGNED_INT8
CL_SIGNED_INT16
CL_SIGNED_INT32
CL_UNSIGNED_INT8
CL_UNSIGNED_INT16
CL_UNSIGNED_INT32
CL_HALF_FLOAT
CL_FLOAT

For embedded profiles devices that support reading from and writing to the same image object
from the same kernel instance (see CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS) there is no required
minimum list of supported image formats.

[1] And read_imageh, if the cl_khr_fp16 extension is supported.

[2] Note that the performance of 64-bit integer arithmetic can vary significantly between embedded devices.

421



Appendix A: Host environment and thread
safety

Shared OpenCL Objects
This section describes which objects can be shared across multiple command-queues created
within a host process.

OpenCL memory objects, program objects and kernel objects are created using a context and can be
shared across multiple command-queues created using the same context. Event objects can be
created when a command is queued to a command-queue. These event objects can be shared across
multiple command-queues created using the same context.

The application needs to implement appropriate synchronization across threads on the host
processor to ensure that the changes to the state of a shared object (such as a command-queue
object, memory object, program or kernel object) happen in the correct order (deemed correct by
the application) when multiple command-queues in multiple threads are making changes to the
state of a shared object.

A command-queue can cache changes to the state of a memory object on the device associated with
the command-queue. To synchronize changes to a memory object across command-queues, the
application must do the following:

In the command-queue that includes commands that modify the state of a memory object, the
application must do the following:

• Get appropriate event objects for commands that modify the state of the shared memory object.

• Call the clFlush (or clFinish) API to issue any outstanding commands from this command-
queue.

In the command-queue that wants to synchronize to the latest state of a memory object, commands
queued by the application must use the appropriate event objects that represent commands that
modify the state of the shared memory object as event objects to wait on. This is to ensure that
commands that use this shared memory object complete in the previous command-queue before
the memory objects are used by commands executing in this command-queue.

The results of modifying a shared resource in one command-queue while it is being used by
another command-queue are undefined.

Multiple Host Threads
All OpenCL API calls are thread-safe [1] except those that modify the state of cl_kernel objects:
clSetKernelArg, clSetKernelArgSVMPointer, clSetKernelExecInfo and clCloneKernel.
clSetKernelArg, clSetKernelArgSVMPointer, clSetKernelExecInfo and clCloneKernel are safe to
call from any host thread, and safe to call re-entrantly so long as concurrent calls to any
combination of these API calls operate on different cl_kernel objects. The state of the cl_kernel
object is undefined if clSetKernelArg, clSetKernelArgSVMPointer, clSetKernelExecInfo or

422



clCloneKernel are called from multiple host threads on the same cl_kernel object at the same time
[2]. Please note that there are additional limitations as to which OpenCL APIs may be called from
OpenCL callback functions.

The behavior of OpenCL APIs called from an interrupt or signal handler is implementation-defined

The OpenCL implementation should be able to create multiple command-queues for a given
OpenCL context and multiple OpenCL contexts in an application running on the host processor.

Global Constructors and Destructors
The execution order of global constructors and destructors is left undefined by the C and C++
standards. It is therefore not possible to know the relative execution order of an OpenCL
implementation’s global constructors and destructors with respect to an OpenCL application’s or
library’s.

The behavior of OpenCL API functions called from global constructors or destructors is therefore
implementation-defined.

[1] Please refer to the OpenCL glossary for the OpenCL definition of thread-safe. This definition may be different from usage of the
term in other contexts.

[2] There is an inherent race condition in the design of OpenCL that occurs between setting a kernel argument and using the kernel
with clEnqueueNDRangeKernel. Another host thread might change the kernel arguments between when a host thread sets the
kernel arguments and then enqueues the kernel, causing the wrong kernel arguments to be enqueued. Rather than attempt to
share cl_kernel objects among multiple host threads, applications are strongly encouraged to make additional cl_kernel objects for
kernel functions for each host thread.

423



Appendix B: Portability
OpenCL is designed to be portable to other architectures and hardware designs. OpenCL has used at
its core a C99 based programming language and follows rules based on that heritage. Floating-point
arithmetic is based on the IEEE-754 and IEEE-754-2008 standards. The memory objects, pointer
qualifiers and weakly ordered memory are designed to provide maximum compatibility with
discrete memory architectures implemented by OpenCL devices. Command-queues and barriers
allow for synchronization between the host and OpenCL devices. The design, capabilities and
limitations of OpenCL are very much a reflection of the capabilities of underlying hardware.

Unfortunately, there are a number of areas where idiosyncrasies of one hardware platform may
allow it to do some things that do not work on another. By virtue of the rich operating system
resident on the CPU, on some implementations the kernels executing on a CPU may be able to call
out to system services whereas the same calls on the GPU will likely fail for now. Since there is some
advantage to having these services available for debugging purposes, implementations can use the
OpenCL extension mechanism to implement these services.

Likewise, the heterogeneity of computing architectures might mean that a particular loop construct
might execute at an acceptable speed on the CPU but very poorly on a GPU, for example. CPUs are
designed in general to work well on latency sensitive algorithms on single threaded tasks, whereas
common GPUs may encounter extremely long latencies, potentially orders of magnitude worse.
Developers interested in writing portable code may need to test their software on a diversity of
hardware designs to make sure that key algorithms are structured in a way that works well on a
diversity of hardware. We suggest favoring more work-items over fewer. It is anticipated that over
the coming months and years experience will produce a set of best practices that will help foster a
uniformly favorable experience on a diversity of computing devices.

Of somewhat more concern is the topic of endianness. Since a majority of devices supported by the
initial implementation of OpenCL are little-endian, developers need to make sure that their kernels
are tested on both big-endian and little-endian devices to ensure source compatibility with OpenCL
devices now and in the future. The endian attribute qualifier is supported by the SPIR-V IL to allow
developers to specify whether the data uses the endianness of the host or the OpenCL device. This
allows the OpenCL compiler to do appropriate endian-conversion on load and store operations
from or to this data.

We also describe how endianness can leak into an implementation causing kernels to produce
unintended results:

When a big-endian vector machine (e.g. AltiVec, CELL SPE) loads a vector, the order of the data is
retained. That is both the order of the bytes within each element and the order of the elements in
the vector are the same as in memory. When a little-endian vector machine (e.g. SSE) loads a vector,
the order of the data in register (where all the work is done) is reversed. Both the order of the bytes
within each element and the order of the elements with respect to one another in the vector are
reversed.

Memory:

uint4 a =

424



0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F

In register (big-endian):

uint4 a =

0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F

In register (little-endian):

uint4 a =

0x0F0E0D0C 0x0B0A0908 0x07060504 0x03020100

This allows little-endian machines to use a single vector load to load little-endian data, regardless of
how large each piece of data is in the vector. That is the transformation is equally valid whether
that vector was a uchar16 or a ulong2. Of course, as is well known, little-endian machines actually [1]

store their data in reverse byte order to compensate for the little-endian storage format of the array
elements:

Memory (big-endian):

uint4 a =

0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F

Memory (little-endian):

uint4 a =

0x03020100 0x07060504 0x0B0A0908 0x0F0E0D0C

Once that data is loaded into a vector, we end up with this:

In register (big-endian):

uint4 a =

0x00010203 0x04050607 0x08090A0B 0x0C0D0E0F

In register (little-endian):

uint4 a =

0x0C0D0E0F 0x08090A0B 0x04050607 0x00010203

That is, in the process of correcting the endianness of the bytes within each element, the machine
ends up reversing the order that the elements appear in the vector with respect to each other
within the vector. 0x00010203 appears at the left of the big-endian vector and at the right of the
little-endian vector.

425



When the host and device have different endianness, the developer must ensure that kernel
argument values are processed correctly. The implementation may or may not automatically
convert endianness of kernel arguments. Developers should consult vendor documentation for
guidance on how to handle kernel arguments in these situations.

OpenCL provides a consistent programming model across architectures by numbering elements
according to their order in memory. Concepts such as even/odd and high/low follow accordingly. Once
the data is loaded into registers, we find that element 0 is at the left of the big-endian vector and
element 0 is at the right of the little-endian vector:

float x[4];
float4 v = vload4( 0, x );

Big-endian:

v contains { x[0], x[1], x[2], x[3] }

Little-endian:

v contains { x[3], x[2], x[1], x[0] }

The compiler is aware that this swap occurs and references elements accordingly. So long as we
refer to them by a numeric index such as .s0123456789abcdef or by descriptors such as .xyzw, .hi,
.lo, .even and .odd, everything works transparently. Any ordering reversal is undone when the data
is stored back to memory. The developer should be able to work with a big-endian programming
model and ignore the element ordering problem in the vector … for most problems. This
mechanism relies on the fact that we can rely on a consistent element numbering. Once we change
numbering system, for example by conversion-free casting (using as_type_n) a vector to another
vector of the same size but a different number of elements, then we get different results on
different implementations depending on whether the system is big-endian, or little-endian or
indeed has no vector unit at all. (Thus, the behavior of bitcasts to vectors of different numbers of
elements is implementation-defined, see section 6.4.4 of OpenCL C specification.)

An example follows:

float x[4] = { 0.0f, 1.0f, 2.0f, 3.0f };
float4 v = vload4( 0, x );
uint4 y = as_uint4(v);      // legal, portable
ushort8 z = as_ushort8(v);  // legal, not portable
                            // element size changed

Big-endian:

v contains { 0.0f, 1.0f, 2.0f, 3.0f }
y contains { 0x00000000, 0x3f800000,

426



             0x40000000, 0x40400000 }
z contains { 0x0000, 0x0000, 0x3f80, 0x0000,
             0x4000, 0x0000, 0x4040, 0x0000 }
z.z is 0x3f80

Little-endian:

v contains { 3.0f, 2.0f, 1.0f, 0.0f }
y contains { 0x40400000, 0x40000000,
             0x3f800000, 0x00000000 }
z contains { 0x4040, 0x0000, 0x4000, 0x0000,
             0x3f80, 0x0000, 0x0000, 0x0000 }
z.z is 0

Here, the value in z.z is not the same between big- and little-endian vector machines

OpenCL could have made it illegal to do a conversion free cast that changes the number of elements
in the name of portability. However, while OpenCL provides a common set of operators drawing
from the set that are typically found on vector machines, it cannot provide access to everything
every ISA may offer in a consistent uniform portable manner. Many vector ISAs provide special
purpose instructions that greatly accelerate specific operations such as DCT, SAD, or 3D geometry. It
is not intended for OpenCL to be so heavy handed that time-critical performance sensitive
algorithms cannot be written by knowledgeable developers to perform at near peak performance.
Developers willing to throw away portability should be able to use the platform-specific
instructions in their code. For this reason, OpenCL is designed to allow traditional vector C
language programming extensions, such as the AltiVec C Programming Interface or the Intel C
programming interfaces (such as those found in emmintrin.h) to be used directly in OpenCL with
OpenCL data types as an extension to OpenCL. As these interfaces rely on the ability to do
conversion-free casts that change the number of elements in the vector to function properly,
OpenCL allows them too.

As a general rule, any operation that operates on vector types in segments that are not the same
size as the vector element size may break on other hardware with different endianness or different
vector architecture.

Examples might include:

• Combining two uchar8's containing high and low bytes of a ushort, to make a ushort8 using .even
and .odd operators (please use upsample() for this)

• Any bitcast that changes the number of elements in the vector. (Operations on the new type are
non-portable.)

• Swizzle operations that change the order of data using chunk sizes that are not the same as the
element size

Examples of operations that are portable:

• Combining two uint8's to make a uchar16 using .even and .odd operators. For example to
interleave left and right audio streams.

427



• Any bitcast that does not change the number of elements (e.g. (float4) uint4) — we define the
storage format for floating-point types)

• Swizzle operations that swizzle elements of the same size as the elements of the vector.

OpenCL has made some additions to C to make application behavior more dependable than C. Most
notably in a few cases OpenCL defines the behavior of some operations that are undefined in C99:

• OpenCL provides convert_ functions for conversion between all types. C99 does not define what
happens when a floating-point type is converted to an integer type and the floating-point value
lies outside the representable range of the integer type after rounding. When the sat variant of
the conversion is used, the float shall be converted to the nearest representable integer value.
Similarly, OpenCL also makes recommendations about what should happen with NaN.
Hardware manufacturers that provide the saturated conversion in hardware may use the
saturated conversion hardware for both the saturated and non-saturated versions of the
OpenCL convert_ functions. OpenCL does not define what happens for the non-saturated
conversions when floating-point operands are outside the range representable integers after
rounding.

• The format of half, float, and double types is defined to be the binary16, binary32 and binary64
formats in the draft IEEE-754 standard. (The latter two are identical to the existing IEEE-754
standard.) You may depend on the positioning and meaning of the bits in these types.

• OpenCL defines behavior for oversized shift values. Shift operations that shift greater than or
equal to the number of bits in the first operand reduce the shift value modulo the number of
bits in the element. For example, if we shift an int4 left by 33 bits, OpenCL treats this as shift left
by 33%32 = 1 bit.

• A number of edge cases for math library functions are more rigorously defined than in C99.
Please see section 7.5 of the OpenCL C specification.

[1] Note that we are talking about the programming model here. In reality, little endian systems might choose to simply address
their bytes from "the right" or reverse the "order" of the bits in the byte. Either of these choices would mean that no big swap
would need to occur in hardware.

428



Appendix C: Application Data Types
This section documents the provided host application types and constant definitions. The
documented material describes the commonly defined data structures, types and constant values
available to all platforms and architectures. The addition of these details demonstrates our
commitment to maintaining a portable programming environment and potentially deters changes
to the supplied headers.

Supported Application Scalar Data Types
The following application scalar types are provided for application convenience.

cl_char
cl_uchar
cl_short
cl_ushort
cl_int
cl_uint
cl_long
cl_ulong
cl_half
cl_float
cl_double

Supported Application Vector Data Types
Application vector types are unions used to create vectors of the above application scalar types. The
following application vector types are provided for application convenience.

cl_char<n>
cl_uchar<n>
cl_short<n>
cl_ushort<n>
cl_int<n>
cl_uint<n>
cl_long<n>
cl_ulong<n>
cl_half<n>
cl_float<n>
cl_double<n>

n can be 2, 3, 4, 8 or 16.

The application scalar and vector data types are defined in the cl_platform.h header file.

429



Alignment of Application Data Types
The user is responsible for ensuring that pointers passed into and out of OpenCL kernels are
natively aligned relative to the data type of the parameter as defined in the kernel language and
SPIR-V specifications. This implies that OpenCL buffers created with CL_MEM_USE_HOST_PTR need to
provide an appropriately aligned host memory pointer that is aligned to the data types used to
access these buffers in a kernel(s), that SVM allocations must correctly align and that pointers into
SVM allocations must also be correctly aligned. The user is also responsible for ensuring image data
passed is aligned to the granularity of the data representing a single pixel (e.g. image_num_channels *
sizeof(image_channel_data_type)) except for CL_RGB and CL_RGBx images where the data must be
aligned to the granularity of a single channel in a pixel (i.e. sizeof(image_channel_data_type)). This
implies that OpenCL images created with CL_MEM_USE_HOST_PTR must align correctly. The image
alignment value can be queried using the CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT query. In
addition, source pointers for clEnqueueWriteImage and other operations that copy to the OpenCL
runtime, as well as destination pointers for clEnqueueReadImage and other operations that copy
from the OpenCL runtime must follow the same alignment rules.

OpenCL makes no requirement about the alignment of OpenCL application defined data types
outside of buffers and images, except that the underlying vector primitives (e.g. __cl_float4) where
defined shall be directly accessible as such using appropriate named fields in the cl_type union (see
Vector Components. Nevertheless, it is recommended that the cl_platform.h header should attempt
to naturally align OpenCL defined application data types (e.g. cl_float4) according to their type.

Vector Literals
Application vector literals may be used in assignments of individual vector components. Literal
usage follows the convention of the underlying application compiler.

cl_float2 foo = { .s[1] = 2.0f };
cl_int8 bar = {{ 2, 4, 6, 8, 10, 12, 14, 16 }};

Vector Components
The components of application vector types can be addressed using the <vector_name>.s[<index>]
notation.

For example:

foo.s[0] = 1.0f; // Sets the 1st vector component of foo
pos.s[6] = 2;    // Sets the 7th vector component of bar

In some cases vector components may also be accessed using the following notations. These
notations are not guaranteed to be supported on all implementations, so their use should be
accompanied by a check of the corresponding preprocessor symbol.

430



Named Vector Components Notation

Vector data type components may be accessed using the .sN, .sn or .xyzw field naming convention,
similar to how they are used within the OpenCL C language. Use of the .xyzw field naming
convention only allows accessing of the first 4 component fields. Support of these notations is
identified by the CL_HAS_NAMED_VECTOR_FIELDS preprocessor symbol. For example:

#ifdef CL_HAS_NAMED_VECTOR_FIELDS
    cl_float4 foo;
    cl_int16 bar;
    foo.x = 1.0f;  // Set first component
    foo.s0 = 1.0f; // Same as above
    bar.z = 3;     // Set third component
    bar.se = 11;   // Same as bar.s[0xe]
    bar.sD = 12;   // Same as bar.s[0xd]
#endif

Vector data type components may also be accessed using the .rgba field naming convention, similar
to how they are used within the OpenCL C 3.0 language. Use of the .rgba field naming convention
only allows accessing of the first 4 component fields. Support of these notations is identified by the
CL_HAS_NAMED_RGBA_VECTOR_FIELDS preprocessor symbol. For example:

#ifdef CL_HAS_NAMED_RGBA_VECTOR_FIELDS
    cl_float4 foo;
    cl_int16 bar;
    foo.r = 1.0f;  // Set first component
    bar.b = 3;     // Set third component
#endif

Unlike the OpenCL C language type usage of named vector fields, only one component field may be
accessed at a time. This restriction prevents the ability to swizzle or replicate components as is
possible with the OpenCL C language types. Attempting to access beyond the number of
components for a type also results in a failure.

foo.xy    // illegal - illegal field name combination
bar.s1234 // illegal - illegal field name combination
foo.s7    // illegal - no component s7

High/Low Vector Component Notation

Vector data type components may be accessed using the .hi and .lo notation similar to that
supported within the language types. Support of this notation is identified by the
CL_HAS_HI_LO_VECTOR_FIELDS preprocessor symbol. For example:

#ifdef CL_HAS_HI_LO_VECTOR_FIELDS
    cl_float4 foo;

431



    cl_float2 new_hi = 2.0f, new_lo = 4.0f;
    foo.hi = new_hi;
    foo.lo = new_lo;
#endif

Native Vector Type Notation

Certain native vector types are defined for providing a mapping of vector types to architecturally
built-in vector types. Unlike the above described application vector types, these native types are
supported on a limited basis depending on the supporting architecture and compiler.

These types are not unions, but rather convenience mappings to the underlying architectures' built-
in vector types. The native types share the name of their application counterparts but are preceded
by a double underscore "__".

For example, __cl_float4 is the native built-in vector type equivalent of the cl_float4 application
vector type. The __cl_float4 type may provide direct access to the architectural built-in __m128 or
vector float type, whereas the cl_float4 is treated as a union.

In addition, the above described application data types may have native vector data type members
for access convenience. The native components are accessed using the .vN sub-vector notation,
where N is the number of elements in the sub-vector. In cases where the native type is a subset of a
larger type (more components), the notation becomes an index based array of the sub-vector type.

Support of the native vector types is identified by a __CL_TYPEN__ preprocessor symbol matching the
native type name. For example:

#ifdef __CL_FLOAT4__ // Check for native cl_float4 type
    cl_float8 foo;
    __cl_float4 bar; // Use of native type
    bar = foo.v4[1]; // Access the second native float4 vector
#endif

Implicit Conversions
Implicit conversions between application vector types are not supported.

Explicit Casts
Explicit casting of application vector types (cl_typen) is not supported. Explicit casting of native
vector types (__cl_typen) is defined by the external compiler.

Other Operators and Functions
The behavior of standard operators and function on both application vector types (cl_typen) and
native vector types (__cl_typen) is defined by the external compiler.

432



Application Constant Definitions
In addition to the above application type definitions, the following literal definitions are also
available.

CL_CHAR_BIT Bit width of a character

CL_SCHAR_MAX Maximum value of a type cl_char

CL_SCHAR_MIN Minimum value of a type cl_char

CL_CHAR_MAX Maximum value of a type cl_char

CL_CHAR_MIN Minimum value of a type cl_char

CL_UCHAR_MAX Maximum value of a type cl_uchar

CL_SHRT_MAX Maximum value of a type cl_short

CL_SHRT_MIN Minimum value of a type cl_short

CL_USHRT_MAX Maximum value of a type cl_ushort

CL_INT_MAX Maximum value of a type cl_int

CL_INT_MIN Minimum value of a type cl_int

CL_UINT_MAX Maximum value of a type cl_uint

CL_LONG_MAX Maximum value of a type cl_long

CL_LONG_MIN Minimum value of a type cl_long

CL_ULONG_MAX Maximum value of a type cl_ulong

CL_FLT_DIG Number of decimal digits of precision for the
type cl_float

CL_FLT_MANT_DIG Number of digits in the mantissa of type
cl_float

CL_FLT_MAX_10_EXP Maximum positive integer such that 10 raised to
this power minus one can be represented as a
normalized floating-point number of type
cl_float

CL_FLT_MAX_EXP Maximum exponent value of type cl_float

CL_FLT_MIN_10_EXP Minimum negative integer such that 10 raised to
this power minus one can be represented as a
normalized floating-point number of type
cl_float

CL_FLT_MIN_EXP Minimum exponent value of type cl_float

CL_FLT_RADIX Base value of type cl_float

CL_FLT_MAX Maximum value of type cl_float

CL_FLT_MIN Minimum value of type cl_float

433



CL_CHAR_BIT Bit width of a character

CL_FLT_EPSILON Minimum positive floating-point number of type
cl_float such that 1.0 + CL_FLT_EPSILON != 1 is
true.

CL_DBL_DIG

missing before version 1.2. Also see cl_khr_fp64.

Number of decimal digits of precision for the
type cl_double

CL_DBL_MANT_DIG

missing before version 1.2. Also see cl_khr_fp64.

Number of digits in the mantissa of type
cl_double

CL_DBL_MAX_10_EXP

missing before version 1.2. Also see cl_khr_fp64.

Maximum positive integer such that 10 raised to
this power minus one can be represented as a
normalized floating-point number of type
cl_double

CL_DBL_MAX_EXP

missing before version 1.2. Also see cl_khr_fp64.

Maximum exponent value of type cl_double

CL_DBL_MIN_10_EXP

missing before version 1.2. Also see cl_khr_fp64.

Minimum negative integer such that 10 raised to
this power minus one can be represented as a
normalized floating-point number of type
cl_double

CL_DBL_MIN_EXP

missing before version 1.2. Also see cl_khr_fp64.

Minimum exponent value of type cl_double

CL_DBL_RADIX

missing before version 1.2. Also see cl_khr_fp64.

Base value of type cl_double

CL_DBL_MAX

missing before version 1.2. Also see cl_khr_fp64.

Maximum value of type cl_double

CL_DBL_MIN

missing before version 1.2. Also see cl_khr_fp64.

Minimum value of type cl_double

CL_DBL_EPSILON

missing before version 1.2. Also see cl_khr_fp64.

Minimum positive floating-point number of type
cl_double such that 1.0 + CL_DBL_EPSILON != 1 is
true.

CL_NAN

missing before version 1.1.

Macro expanding to a value representing NaN

CL_HUGE_VALF

missing before version 1.1.

Largest representative value of type cl_float

434



CL_CHAR_BIT Bit width of a character

CL_HUGE_VAL

missing before version 1.1.

Largest representative value of type cl_double

CL_MAXFLOAT

missing before version 1.1.

Maximum value of type cl_float

CL_INFINITY

missing before version 1.1.

Macro expanding to a value representing
infinity

These literal definitions are defined in the cl_platform.h header.

435



Appendix D: Checking for Memory Copy
Overlap
The following code describes how to determine if there is overlap between the source and
destination rectangles specified to clEnqueueCopyBufferRect provided the source and destination
buffers refer to the same buffer object.

unsigned int
check_copy_overlap(const size_t src_origin[],
                   const size_t dst_origin[],
                   const size_t region[],
                   const size_t row_pitch,
                   const size_t slice_pitch )
{
  const size_t slice_size = (region[1] - 1) * row_pitch + region[0];
  const size_t block_size = (region[2] - 1) * slice_pitch + slice_size;
  const size_t src_start = src_origin[2] * slice_pitch
                           + src_origin[1] * row_pitch
                           + src_origin[0];
  const size_t src_end = src_start + block_size;
  const size_t dst_start = dst_origin[2] * slice_pitch
                           + dst_origin[1] * row_pitch
                           + dst_origin[0];
  const size_t dst_end = dst_start + block_size;

  /* No overlap if dst ends before src starts or if src ends
   * before dst starts.
   */
  if( (dst_end <= src_start) || (src_end <= dst_start) ){
    return 0;
  }

  /* No overlap if region[0] for dst or src fits in the gap
   * between region[0] and row_pitch.
   */
  {
    const size_t src_dx = src_origin[0] % row_pitch;
    const size_t dst_dx = dst_origin[0] % row_pitch;

    if( ((dst_dx >= src_dx + region[0]) &&
        (dst_dx + region[0] <= src_dx + row_pitch)) ||
        ((src_dx >= dst_dx + region[0]) &&
        (src_dx + region[0] <= dst_dx + row_pitch)) )
      {
        return 0;
      }
  }

436



  /* No overlap if region[1] for dst or src fits in the gap
   * between region[1] and slice_pitch.
   */
   {
      const size_t src_dy =
        (src_origin[1] * row_pitch + src_origin[0]) % slice_pitch;
      const size_t dst_dy =
        (dst_origin[1] * row_pitch + dst_origin[0]) % slice_pitch;

      if( ((dst_dy >= src_dy + slice_size) &&
          (dst_dy + slice_size <= src_dy + slice_pitch)) ||
          ((src_dy >= dst_dy + slice_size) &&
          (src_dy + slice_size <= dst_dy + slice_pitch)) ) {
        return 0;
      }
   }

 /* Otherwise src and dst overlap. */
 return 1;
}

437



Appendix E: Changes to OpenCL
Changes to the OpenCL API and OpenCL C specifications between successive versions are
summarized below.

Summary of Changes from OpenCL 1.0 to OpenCL 1.1
The following features are added to the OpenCL 1.1 platform layer and runtime (sections 4 and 5):

• Following queries to table 4.3

◦ CL_DEVICE_NATIVE_VECTOR_WIDTH_CHAR, CL_DEVICE_NATIVE_VECTOR_WIDTH_SHORT, CL_DEVICE_NATIVE_
VECTOR_WIDTH_INT, CL_DEVICE_NATIVE_VECTOR_WIDTH_LONG, CL_DEVICE_NATIVE_VECTOR_WIDTH_FLOAT,
CL_DEVICE_NATIVE_VECTOR_WIDTH_DOUBLE, CL_DEVICE_NATIVE_VECTOR_WIDTH_HALF

◦ CL_DEVICE_HOST_UNIFIED_MEMORY

◦ CL_DEVICE_OPENCL_C_VERSION

• CL_CONTEXT_NUM_DEVICES to the list of queries specified to clGetContextInfo.

• Optional image formats: CL_Rx, CL_RGx, and CL_RGBx.

• Support for sub-buffer objects ability to create a buffer object that refers to a specific region in
another buffer object using clCreateSubBuffer.

• clEnqueueReadBufferRect, clEnqueueWriteBufferRect and clEnqueueCopyBufferRect APIs
to read from, write to and copy a rectangular region of a buffer object respectively.

• clSetMemObjectDestructorCallback API to allow a user to register a callback function that
will be called when the memory object is deleted and its resources freed.

• Options that control the OpenCL C version used when building a program executable.

• CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE to the list of queries specified to
clGetKernelWorkGroupInfo.

• Support for user events. User events allow applications to enqueue commands that wait on a
user event to finish before the command is executed by the device. Following new APIs are
added - clCreateUserEvent and clSetUserEventStatus.

• clSetEventCallback API to register a callback function for a specific command execution status.

The following modifications are made to the OpenCL 1.1 platform layer and runtime (sections 4 and
5):

• Following queries in table 4.3

◦ The minimum FULL_PROFILE value for CL_DEVICE_MAX_PARAMETER_SIZE increased from 256 to
1024 bytes

◦ The minimum FULL_PROFILE value for CL_DEVICE_LOCAL_MEM_SIZE increased from 16 KB to
32 KB.

• The global_work_offset argument in clEnqueueNDRangeKernel can be a non-NULL value.

• All API calls except clSetKernelArg are thread-safe.

438



The following features are added to the OpenCL C programming language (section 6) in OpenCL 1.1:

• 3-component vector data types.

• New built-in functions

◦ get_global_offset work-item function defined in section 6.15.1.

◦ minmag, maxmag math functions defined in section 6.15.2.

◦ clamp integer function defined in section 6.15.3.

◦ (vector, scalar) variant of integer functions min and max in section 6.12.3.

◦ async_work_group_strided_copy defined in section 6.15.11.

◦ vec_step, shuffle and shuffle2 defined in section 6.15.13.

• cl_khr_byte_addressable_store extension is a core feature.

• cl_khr_global_int32_base_atomics, cl_khr_global_int32_extended_atomics, cl_khr_local_int32_
base_atomics and cl_khr_local_int32_extended_atomics extensions are core features. The built-in
atomic function names are changed to use the atomic_ prefix instead of atom_.

• Macros CL_VERSION_1_0 and CL_VERSION_1_1.

The following features in OpenCL 1.0 are deprecated (see glossary) in OpenCL 1.1:

• The clSetCommandQueueProperty API is deprecated, which simplifies implementations and
possibly improves performance by enforcing that command-queue properties are invariant.
Applications are encouraged to create multiple command-queues with different properties
versus modifying the properties of a single command-queue.

• The -cl-strict-aliasing build option has been deprecated. It is no longer required after
defining type-based aliasing rules.

• The cl_khr_select_fprounding_mode extension is deprecated and its use is no longer
recommended.

The following new extensions are added to section 9 in OpenCL 1.1:

• cl_khr_gl_event for creating a CL event object from a GL sync object.

• cl_khr_d3d10_sharing for sharing memory objects with Direct3D 10.

The following modifications are made to the OpenCL ES Profile described in section 10 in OpenCL
1.1:

• 64-bit integer support is optional.

Summary of Changes from OpenCL 1.1 to OpenCL 1.2
The following features are added to the OpenCL 1.2 platform layer and runtime (sections 4 and 5):

• Custom devices and built-in kernels are supported. clCreateProgramWithBuiltInKernels has
been added to allow creation of a cl_program using built-in kernels.

• Device partitioning that allows a device to be partitioned based on a number of partitioning

439



schemes supported by the device. This is done by using clCreateSubDevices to create a new
cl_device_id based on a partitioning.

• clCompileProgram and clLinkProgram to allow handling these aspects clBuildProgram
separately.

• Extend cl_mem_flags to describe how the host accesses the data in a cl_mem object.

• clEnqueueFillBuffer and clEnqueueFillImage to support filling a buffer with a pattern or an
image with a color.

• Add CL_MAP_WRITE_INVALIDATE_REGION to cl_map_flags. Appropriate clarification to the behavior of
CL_MAP_WRITE has been added to the spec.

• New image types: 1D image, 1D image from a buffer object, 1D image array and 2D image
arrays.

• clCreateImage to create an image object.

• clEnqueueMigrateMemObjects API that allows a developer to have explicit control over the
location of memory objects or to migrate a memory object from one device to another.

• Support separate compilation and linking of programs.

• Additional queries to get the number of kernels and kernel names in a program have been
added to clGetProgramInfo.

• Additional queries to get the compile and link status and options have been added to
clGetProgramBuildInfo.

• clGetKernelArgInfo API that returns information about the arguments of a kernel.

• clEnqueueMarkerWithWaitList and clEnqueueBarrierWithWaitList APIs.

• clUnloadPlatformCompiler to request that a single platform’s compiler is unloaded. This is
compatible with the cl_khr_icd extension if that is supported, unlike clUnloadCompiler.

The following features are added to the OpenCL C programming language (section 6) in OpenCL 1.2:

• Double-precision is now an optional core feature instead of an extension.

• New built in image types: image1d_t, image1d_buffer_t, image1d_array_t, and
image2d_array_t.

• New built-in functions

◦ Functions to read from and write to a 1D image, 1D and 2D image arrays described in
sections 6.15.15.2, 6.15.15.3 and 6.15.15.4.

◦ Sampler-less image read functions described in section 6.15.15.3.

◦ popcount integer function described in section 6.15.3.

◦ printf function described in section 6.15.14.

• Storage class specifiers extern and static as described in section 6.10.

• Macros CL_VERSION_1_2 and __OPENCL_C_VERSION__.

The following APIs in OpenCL 1.1 are deprecated (see glossary) in OpenCL 1.2:

• The clEnqueueMarker, clEnqueueBarrier and clEnqueueWaitForEvents APIs are deprecated

440



to simplify the API. The clEnqueueMarkerWithWaitList and clEnqueueBarrierWithWaitList
APIs provide equivalent functionality and support explicit event wait lists.

• The clCreateImage2D, clCreateImage3D, clCreateFromGLTexture2D and
clCreateFromGLTexture3D APIs are deprecated to simplify the API. The clCreateImage and
clCreateFromGLTexture APIs provide equivalent functionality and support additional image
types and properties.

• clUnloadCompiler and clGetExtensionFunctionAddress APIs are deprecated. The
clUnloadPlatformCompiler and clGetExtensionFunctionAddressForPlatform APIs provide
equivalent functionality are compatible with the cl_khr_icd extension.

The following queries are deprecated (see glossary) in OpenCL 1.2:

• The CL_DEVICE_MIN_DATA_TYPE_ALIGN_SIZE query is deprecated. The minimum data type
alignment can be derived from CL_DEVICE_MEM_BASE_ADDR_ALIGN.

Summary of Changes from OpenCL 1.2 to OpenCL 2.0
The following features are added to the OpenCL 2.0 platform layer and runtime (sections 4 and 5):

• Shared virtual memory. The associated API additions are:

◦ clSetKernelArgSVMPointer to control which shared virtual memory (SVM) pointer to
associate with a kernel instance.

◦ clSVMAlloc, clSVMFree and clEnqueueSVMFree to allocate and free memory for use with
SVM.

◦ clEnqueueSVMMap and clEnqueueSVMUnmap to map and unmap to update regions of an
SVM buffer from host.

◦ clEnqueueSVMMemcpy and clEnqueueSVMMemFill to copy or fill SVM memory regions.

• Device queues used to enqueue kernels on the device.

◦ clCreateCommandQueueWithProperties is added to allow creation of a command-queue
with properties that affect both host command-queues and device queues.

• Pipes.

◦ clCreatePipe and clGetPipeInfo have been added to the API for host side creation and
querying of pipes.

• Images support for 2D image from buffer, depth images and sRGB images.

• clCreateSamplerWithProperties.

The following modifications are made to the OpenCL 2.0 platform layer and runtime (sections 4 and
5):

• All API calls except clSetKernelArg, clSetKernelArgSVMPointer and clSetKernelExecInfo are
thread-safe. Note that this statement does not imply that other API calls were not thread-safe in
earlier versions of the specification.

The following features are added to the OpenCL C programming language (section 6) in OpenCL 2.0:

441



• Clang Blocks.

• Kernels enqueuing kernels to a device queue.

• Program scope variables in global address space.

• Generic address space.

• C1x atomics.

• New built-in functions (sections 6.15.10, 6.15.12, and 6.15.16).

• Support images with the read_write qualifier.

• 3D image writes are a core feature.

• The CL_VERSION_2_0 and NULL macros.

• The opencl_unroll_hint attribute.

The following APIs are deprecated (see glossary) in OpenCL 2.0:

• The clCreateCommandQueue API has been deprecated to simplify the API. The
clCreateCommandQueueWithProperties API provides equivalent functionality and supports
specifying additional command-queue properties.

• The clCreateSampler API has been deprecated to simplify the API. The
clCreateSamplerWithProperties API provides equivalent functionality and supports
specifying additional sampler properties.

• The clEnqueueTask API has been deprecated to simplify the API. The
clEnqueueNDRangeKernel API provides equivalent functionality.

The following queries are deprecated (see glossary) in OpenCL 2.0:

• The CL_DEVICE_HOST_UNIFIED_MEMORY query is deprecated. This query was purely informational
and had different meanings for different implementations. Its use is no longer recommended.

• The CL_IMAGE_BUFFER query has been deprecated to simplify the API. The CL_MEM_ASSOCIATED_
MEMOBJECT query provides equivalent functionality.

• The CL_DEVICE_QUEUE_PROPERTIES query has been deprecated and replaced by CL_DEVICE_QUEUE_
ON_HOST_PROPERTIES.

• Atomics and Fences

◦ The Explicit Memory Fence Functions defined in section 6.12.9 of the OpenCL 1.2
specification have been deprecated to simplify the programming language. The
atomic_work_item_fence function provides equivalent functionality. The deprecated
functions are still described in section 6.15.9 of this specification.

◦ The Atomic Functions defined in section 6.12.11 of the OpenCL 1.2 specification have been
deprecated to simplify the programming language. The atomic_fetch and modify functions
provide equivalent functionality. The deprecated functions are still described in section
6.15.12.8 of this specification.

442



Summary of Changes from OpenCL 2.0 to OpenCL 2.1
The following features are added to the OpenCL 2.1 platform layer and runtime (sections 4 and 5):

• clGetKernelSubGroupInfo API call.

• CL_KERNEL_MAX_NUM_SUB_GROUPS, CL_KERNEL_COMPILE_NUM_SUB_GROUPS additions to table 5.21 of the
API specification.

• clCreateProgramWithIL API call.

• clGetHostTimer and clGetDeviceAndHostTimer API calls.

• clEnqueueSVMMigrateMem API call.

• clCloneKernel API call.

• clSetDefaultDeviceCommandQueue API call.

• CL_PLATFORM_HOST_TIMER_RESOLUTION added to table 4.1 of the API specification.

• CL_DEVICE_IL_VERSION, CL_DEVICE_MAX_NUM_SUB_GROUPS, CL_DEVICE_SUB_GROUP_INDEPENDENT_FORWARD_
PROGRESS added to table 4.3 of the API specification.

• CL_PROGRAM_IL to table 5.17 of the API specification.

• CL_QUEUE_DEVICE_DEFAULT added to table 5.2 of the API specification.

• Added table 5.22 to the API specification with the enums: CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_
NDRANGE, CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE and CL_KERNEL_LOCAL_SIZE_FOR_SUB_GROUP_COUNT

The following modifications are made to the OpenCL 2.1 platform layer and runtime (sections 4 and
5):

• All API calls except clSetKernelArg, clSetKernelArgSVMPointer, clSetKernelExecInfo and
clCloneKernel are thread-safe. Note that this statement does not imply that other API calls were
not thread-safe in earlier versions of the specification.

Note that the OpenCL C kernel language is not updated for OpenCL 2.1. The OpenCL 2.0 kernel
language will still be consumed by OpenCL 2.1 runtimes.

The SPIR-V and OpenCL SPIR-V Environment specifications have been added.

Summary of Changes from OpenCL 2.1 to OpenCL 2.2
The following changes have been made to the OpenCL 2.2 execution model (section 3)

• Added the third prerequisite (executing non-trivial constructors for program scope global
variables).

The following features are added to the OpenCL 2.2 platform layer and runtime (sections 4 and 5):

• clSetProgramSpecializationConstant API call

• clSetProgramReleaseCallback API call

• Queries for CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT and CL_PROGRAM_SCOPE_GLOBAL_DTORS_PRESENT

443



The following modifications are made to the OpenCL 2.2 platform layer and runtime (section 4 and
5):

• Modified description of CL_DEVICE_MAX_CLOCK_FREQUENCY query.

• Added a new error code CL_MAX_SIZE_RESTRICTION_EXCEEDED to clSetKernelArg API call

Added definition of Deprecation and Specialization constants to the glossary.

Summary of Changes from OpenCL 2.2 to OpenCL 3.0
OpenCL 3.0 is a major revision that breaks backwards compatibility with previous versions of
OpenCL, see OpenCL 3.0 Backwards Compatibility for details.

OpenCL 3.0 adds new queries to determine optional capabilities for a device:

• CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES and CL_DEVICE_ATOMIC_FENCE_CAPABILITIES to determine
the atomic memory and atomic fence capabilities of a device.

• CL_DEVICE_NON_UNIFORM_WORK_GROUP_SUPPORT to determine if a device supports non-uniform work-
group sizes.

• CL_DEVICE_WORK_GROUP_COLLECTIVE_FUNCTIONS_SUPPORT to determine whether a device supports
optional work-group collective functions, such as broadcasts, scans, and reductions.

• CL_DEVICE_GENERIC_ADDRESS_SPACE_SUPPORT to determine whether a device supports the generic
address space.

• CL_DEVICE_DEVICE_ENQUEUE_CAPABILITIES to determine the device-side enqueue capabilities of a
device.

• CL_DEVICE_PIPE_SUPPORT to determine whether a device supports pipe memory objects.

• CL_DEVICE_PREFERRED_WORK_GROUP_SIZE_MULTIPLE to determine the the preferred work-group size
multiple for a device.

OpenCL 3.0 adds new queries to conveniently and precisely describe supported features and
versions:

• CL_PLATFORM_NUMERIC_VERSION to describe the platform version as a numeric value.

• CL_PLATFORM_EXTENSIONS_WITH_VERSION to describe supported platform extensions and their
supported version.

• CL_DEVICE_NUMERIC_VERSION to describe the device version as a numeric value.

• CL_DEVICE_EXTENSIONS_WITH_VERSION to describe supported device extensions and their supported
version.

• CL_DEVICE_ILS_WITH_VERSION to describe supported intermediate languages (ILs) and their
supported version.

• CL_DEVICE_BUILT_IN_KERNELS_WITH_VERSION to describe supported built-in kernels and their
supported version.

OpenCL 3.0 adds a new API to register a function that will be called when a context is destroyed,

444



enabling an application to safely free user data associated with a context callback function.

• clSetContextDestructorCallback

OpenCL 3.0 adds two new APIs to support creating buffer and image memory objects with
additional properties. Although no new properties are added in OpenCL 3.0, these APIs enable new
buffer and image extensions to be added easily and consistently:

• clCreateBufferWithProperties

• clCreateImageWithProperties

OpenCL 3.0 adds new queries for the properties arrays specified when creating buffers, images,
pipes, samplers, and command-queues:

• CL_MEM_PROPERTIES

• CL_PIPE_PROPERTIES

• CL_SAMPLER_PROPERTIES

• CL_QUEUE_PROPERTIES_ARRAY

Program initialization and clean-up kernels are not supported in OpenCL 3.0 due to
implementation complexity and lack of demand. The following APIs and queries for program
initialization and clean-up kernels are deprecated in OpenCL 3.0:

• CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT

• CL_PROGRAM_SCOPE_GLOBAL_DTORS_PRESENT

• clSetProgramReleaseCallback

OpenCL 3.0 adds the OpenCL 3.0 C kernel language, which includes feature macros to describe
OpenCL C language support. Please refer to the OpenCL C specification for details.

Scalar input arguments to the any and all built-in functions have been deprecated in the OpenCL
3.0 C kernel language. These functions behaved inconsistently with the C language’s use of scalar
integers as logical values.

OpenCL 3.0 adds new queries to determine supported OpenCL C language versions and supported
OpenCL C features:

• CL_DEVICE_OPENCL_C_ALL_VERSIONS to determine the set of OpenCL C language versions supported
by a device.

• CL_DEVICE_OPENCL_C_FEATURES to determine optional OpenCL C language features supported by a
device.

OpenCL 3.0 adds an event command type to identify events associated with the OpenCL 2.1
command clEnqueueSVMMigrateMem:

• CL_COMMAND_SVM_MIGRATE_MEM

OpenCL 3.0 adds a new query to determine the latest version of the conformance test suite that the

445



device has fully passed in accordance with the official conformance process:

• CL_DEVICE_LATEST_CONFORMANCE_VERSION_PASSED

Summary of Changes from OpenCL 3.0
The first non-provisional version of the OpenCL 3.0 specifications was v3.0.5.

Changes from v3.0.5:

• Fixed the calculation in "mapping work-items onto an ND-range".

• Added new extensions:

◦ cl_khr_extended_versioning

◦ cl_khr_subgroup_extended_types

◦ cl_khr_subgroup_non_uniform_vote

◦ cl_khr_subgroup_ballot

◦ cl_khr_subgroup_non_uniform_arithmetic

◦ cl_khr_subgroup_shuffle

◦ cl_khr_subgroup_shuffle_relative

◦ cl_khr_subgroup_clustered_reduce

Changes from v3.0.6:

• Removed erroneous condition for CL_INVALID_KERNEL_ARGS.

• Fixed the spelling of -cl-no-signed-zeros.

• Clarified the table structure in the backwards compatibility appendix.

• Clarified that -cl-unsafe-math-optimizations also implies -cl-denorms-are-zero.

• Added new extensions:

◦ cl_khr_extended_bit_ops

◦ cl_khr_pci_bus_info

◦ cl_khr_spirv_extended_debug_info

◦ cl_khr_spirv_linkonce_odr

◦ cl_khr_suggested_local_work_size

Changes from v3.0.7:

• Clarified optionality support for double-precision literals.

• Removed unnecessary phrase from sub-group mask function descriptions.

• Added input_slice_pitch error condition for read and write image APIs.

• Added new extension:

◦ cl_khr_integer_dot_product

446



Changes from v3.0.8:

• Added a missing error condition for clGetKernelSuggestedLocalWorkSizeKHR.

• Clarified requirements for CL_DEVICE_DOUBLE_FP_CONFIG prior to OpenCL 2.0.

• Clarified the behavior of ballot operations for remainder sub-groups.

• Added new extensions:

◦ cl_khr_integer_dot_product (version 2)

◦ cl_khr_semaphore (provisional)

◦ cl_khr_external_semaphore (provisional)

◦ cl_khr_external_semaphore_dx_fence (provisional)

◦ cl_khr_external_semaphore_opaque_fd (provisional)

◦ cl_khr_external_semaphore_sync_fd (provisional)

◦ cl_khr_external_semaphore_win32 (provisional)

◦ cl_khr_external_memory (provisional)

◦ cl_khr_external_memory_dma_buf (provisional)

◦ cl_khr_external_memory_dx (provisional)

◦ cl_khr_external_memory_opaque_fd (provisional)

◦ cl_khr_external_memory_win32 (provisional)

Changes from v3.0.9:

• Relaxed memory object acquire error checking requirements for OpenGL, EGL, and DirectX
interop extensions.

• Added a missing error condition for clGetSemaphoreHandleForTypeKHR.

• Clarified that clCompileProgram is valid for programs created from SPIR.

• Documented the possible state of a kernel object after a failed call to clSetKernelArg.

• Added new extensions:

◦ cl_khr_async_work_group_copy_fence (final)

◦ cl_khr_extended_async_copies (final)

◦ cl_khr_expect_assume

◦ cl_khr_command_buffer (provisional)

Changes from v3.0.10:

• Added a requirement for implementations supporting device-side enqueue to also support
program scope global variables.

• Added missing device scope atomic feature guards to several atomic function overloads.

• Added a possible error condition for clGetEventProfilingInfo for pre-OpenCL 3.0 devices.

• Added several missing error conditions for clGetKernelSubGroupInfo.

447



• Clarified the expected return value for the of CL_IMAGE_ROW_PITCH and CL_IMAGE_SLICE_PITCH
queries.

• Updated descriptions of the extended async copies functions to remove references to
nonexistent function arguments.

• Clarified that the extended versioning extension is a core OpenCL 3.0 feature.

• Clarified sub-group clustered reduction behavior when the cluster size is not an integer
constant or a power of two.

• Added new extensions:

◦ cl_khr_subgroup_rotate

◦ cl_khr_work_group_uniform_arithmetic

Changes from v3.0.11:

• Added a definition for a valid object and requirements for testing for valid objects.

• Added a maximum limit for the number of arguments supported by a kernel.

• Clarified requirements for comparability and uniqueness of object handles.

• Clarified behavior for invalid device-side enqueue clk_event_t handles.

• Clarified cl_khr_command_buffer interactions with other extensions.

• Specified error behavior when a command buffer is finalized multiple times.

• Added new extension:

◦ cl_khr_command_buffer_mutable_dispatch (provisional)

Changes from v3.0.12:

• Fixed the accuracy requirements description for half-precision math functions (those prefixed
by half_).

• Clarified that the semaphore type must always be provided when creating a semaphore.

• Removed an unnecessary and contradictory error condition when creating a semaphore.

• Added an issue regarding non-linear image import to the cl_khr_external_memory extension.

• Added missing calls to clBuildProgram to the cl_khr_command_buffer and cl_khr_command_
buffer_mutable_dispatch sample code.

• Fixed a copy-paste error in the extensions quick reference appendix.

• Fixed typos and improved formatting consistency in the extensions spec.

Changes from v3.0.13:

• Corrected the precision for cross and dot to be based on HALF_EPSILON in cl_khr_fp16, see #893.

• Added a context query for command-buffers to cl_khr_command_buffer, see #899.

• Updated the semaphore wait and signal rules for binary semaphores in cl_khr_semaphore, see
#882.

• Removed redundant error conditions from cl_khr_external_semaphore and cl_khr_external_

448

https://github.com/KhronosGroup/OpenCL-Docs/pull/893
https://github.com/KhronosGroup/OpenCL-Docs/pull/899
https://github.com/KhronosGroup/OpenCL-Docs/pull/882


memory, see #903 and #904.

• Added new extension:

◦ cl_khr_command_buffer_multi_device (provisional)

Changes from v3.0.14:

• Clarified which error code should be returned when calling clCreateBuffer with a pointer to an
SVM allocation that is too small, see #879.

• Improved capitalization and hyphenation consistency throughout the specs, see #902.

• Clarified that SVM is optional for all OpenCL 3.0 devices, see #913.

• Clarified that clSetCommandQueueProperty is only required for OpenCL 1.0 devices and may
return an error otherwise, see #980.

• Clarified that the application must ensure the free function passed to clEnqueueSVMFree is
thread safe, see #1016.

• Clarified that the application must ensure the user function passed to clEnqueueNativeKernel
is thread safe, see #1026.

• cl_khr_command_buffer (provisional):

◦ Removed the "invalid" command buffer state, see #885.

◦ Added support for recording SVM memory copies and memory fills in a command buffer,
see #915.

• cl_khr_command_buffer_multi_device (provisional):

◦ Clarified that the sync devices query should only return root devices, see #925.

• cl_khr_external_memory (provisional):

◦ Disallowed specifying a device handle list without also specifying an external memory
handle, see #922.

◦ Added a query to determine the handle types an implementation will assume have a linear
memory layout, see #940.

◦ Added an external memory-specific device handle list enum, see #956.

◦ Clarified that implementations may acquire information about an image from an external
memory handle when the image is created, see #970.

• cl_khr_external_semaphore (provisional):

◦ Added the ability to re-import "sync fd" handles into an existing semaphore, see #939.

◦ Clarified that a semaphore may only export one handle type, and that a semaphore created
from an external handle cannot also export a handle, see #975.

◦ Clarified that cl_khr_external_semaphore requires support for cl_khr_semaphore, see #976.

◦ Added a query to determine if a semaphore may export an external handle, see #997.

• cl_khr_semaphore (provisional):

◦ Added an semaphore-specific device handle list enum, see #956.

◦ Restricted semaphores to a single associated device, see #996.

449

https://github.com/KhronosGroup/OpenCL-Docs/pull/903
https://github.com/KhronosGroup/OpenCL-Docs/pull/904
https://github.com/KhronosGroup/OpenCL-Docs/pull/879
https://github.com/KhronosGroup/OpenCL-Docs/pull/902
https://github.com/KhronosGroup/OpenCL-Docs/pull/913
https://github.com/KhronosGroup/OpenCL-Docs/pull/980
https://github.com/KhronosGroup/OpenCL-Docs/pull/1016
https://github.com/KhronosGroup/OpenCL-Docs/pull/1026
https://github.com/KhronosGroup/OpenCL-Docs/pull/885
https://github.com/KhronosGroup/OpenCL-Docs/pull/915
https://github.com/KhronosGroup/OpenCL-Docs/pull/925
https://github.com/KhronosGroup/OpenCL-Docs/pull/922
https://github.com/KhronosGroup/OpenCL-Docs/pull/940
https://github.com/KhronosGroup/OpenCL-Docs/pull/956
https://github.com/KhronosGroup/OpenCL-Docs/pull/970
https://github.com/KhronosGroup/OpenCL-Docs/pull/939
https://github.com/KhronosGroup/OpenCL-Docs/pull/975
https://github.com/KhronosGroup/OpenCL-Docs/pull/976
https://github.com/KhronosGroup/OpenCL-Docs/pull/997
https://github.com/KhronosGroup/OpenCL-Docs/pull/956
https://github.com/KhronosGroup/OpenCL-Docs/pull/996


• cl_khr_subgroup_rotate:

◦ Clarified that only rotating within a subgroup is supported, see #967.

Changes from v3.0.15:

• Moved all KHR extension text out of the OpenCL Extension specification and into the main
specifications. The OpenCL Extension specification will be removed in a subsequent revision.

• Clarified several error conditions that could return CL_INVALID_PLATFORM, see #1063.

• Strengthened requirements for the CL_DEVICE_TYPE query, see #1069.

• Clarified clSetEventCallback behavior for command errors, see #1071.

• Moved footnote text for CL_KERNEL_ARG_TYPE_QUALIFIER into the main spec, see #1097.

• cl_khr_command_buffer_mutable_dispatch (provisional):

◦ Added CL_MUTABLE_DISPATCH_ASSERTS_KHR, see #992.

• cl_khr_semaphore:

◦ Removed a redundant error condition, see #1052

• The following extensions have been finalized and are no longer provisional:

◦ cl_khr_semaphore

◦ cl_khr_external_semaphore

◦ cl_khr_external_semaphore_opaque_fd

◦ cl_khr_external_semaphore_sync_fd

◦ cl_khr_external_memory

◦ cl_khr_external_memory_dma_buf

◦ cl_khr_external_memory_opaque_fd

◦ cl_khr_external_memory_win32

• Added new extension:

◦ cl_khr_kernel_clock (provisional)

450

https://github.com/KhronosGroup/OpenCL-Docs/pull/967
https://github.com/KhronosGroup/OpenCL-Docs/pull/1063
https://github.com/KhronosGroup/OpenCL-Docs/pull/1069
https://github.com/KhronosGroup/OpenCL-Docs/pull/1071
https://github.com/KhronosGroup/OpenCL-Docs/pull/1097
https://github.com/KhronosGroup/OpenCL-Docs/pull/992
https://github.com/KhronosGroup/OpenCL-Docs/pull/1052


Appendix F: Error Codes
This section lists OpenCL error codes and their meanings.

Error Code Brief Description

CL_SUCCESS This is a special error code to indicate that the API
executed successfully, without errors.

CL_BUILD_PROGRAM_FAILURE Returned when clBuildProgram failed to build the
specified program.

CL_COMPILE_PROGRAM_FAILURE

missing before version 1.2.

Returned when clCompileProgram failed to compile the
specified program.

CL_COMPILER_NOT_AVAILABLE Returned when compiling or building a program from
source or IL when CL_DEVICE_COMPILER_AVAILABLE is
CL_FALSE.

CL_DEVICE_NOT_FOUND Returned when no devices were found that match the
specified device type.

CL_DEVICE_NOT_AVAILABLE Returned when attempting to use a device when
CL_DEVICE_AVAILABLE is CL_FALSE.

CL_DEVICE_PARTITION_FAILED

missing before version 1.2.

Returned when device partitioning is supported but the
device could not be further partitioned.

CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_
WAIT_LIST

missing before version 1.1.

Returned by blocking APIs when an event in the event
wait list has a negative value, indicating it is in an error
state.

CL_IMAGE_FORMAT_MISMATCH Returned when attempting to copy images that do not use
the same image format.

CL_IMAGE_FORMAT_NOT_SUPPORTED Returned when attempting to create or use an image
format that is not supported.

CL_INVALID_ARG_INDEX Returned when attempting to get or set a kernel argument
using an invalid index for the specified kernel.

CL_INVALID_ARG_SIZE Returned when the specified size of a kernel argument
does not match the size of the kernel argument.

CL_INVALID_ARG_VALUE Returned when attempting to set a kernel argument that is
not valid.

CL_INVALID_BINARY Returned when a program binary is not valid for a device.

CL_INVALID_BUFFER_SIZE Returned when attempting to create a buffer or a sub-
buffer with an invalid size.

CL_INVALID_BUILD_OPTIONS Returned when build options passed to clBuildProgram
are not valid.

451



Error Code Brief Description

CL_INVALID_COMMAND_QUEUE Returned when the specified command-queue is not a
valid command-queue.

CL_INVALID_COMPILER_OPTIONS

missing before version 1.2.

Returned when compiler options passed to
clCompileProgram are not valid.

CL_INVALID_CONTEXT Returned when a specified context is not a valid context,
or when mixing objects from multiple contexts.

CL_INVALID_DEVICE Returned when a specified device is not a valid device.

CL_INVALID_DEVICE_PARTITION_COUNT

missing before version 1.2.

Returned when the requested device partitioning using
CL_DEVICE_PARTITION_BY_COUNTS is not valid.

CL_INVALID_DEVICE_QUEUE

missing before version 2.0.

Returned when setting a device queue kernel argument to
a value that is not a valid device command-queue.

CL_INVALID_DEVICE_TYPE Returned when the requested device type is not a valid
value.

CL_INVALID_EVENT Returned when a specified event object is not a valid event
object.

CL_INVALID_EVENT_WAIT_LIST Returned when the specified event wait list or number of
events in the wait list is not valid.

CL_INVALID_GLOBAL_OFFSET Returned when the specified global offset and global work
size exceeds the limits of the device.

CL_INVALID_GLOBAL_WORK_SIZE Returned when the specified global work size exceeds the
limits of the device.

CL_INVALID_HOST_PTR Returned when the specified host pointer is not valid for
the specified flags.

CL_INVALID_IMAGE_DESCRIPTOR

missing before version 1.2.

Returned when the specified image descriptor is NULL or
specifies invalid values.

CL_INVALID_IMAGE_FORMAT_DESCRIPTOR Returned when the specified image format descriptor is
NULL or specifies invalid value.

CL_INVALID_IMAGE_SIZE Returned when the specified image dimensions exceed the
maximum dimensions for a device or all devices in a
context.

CL_INVALID_KERNEL Returned when the specified kernel is not a valid kernel
object.

CL_INVALID_KERNEL_ARGS Returned when enqueing a kernel when some kernel
arguments have not been set or are invalid.

452



Error Code Brief Description

CL_INVALID_KERNEL_DEFINITION Returned when creating a kernel for multiple devices
where the number of kernel arguments or kernel
argument types are not the same for all devices.

CL_INVALID_KERNEL_NAME Returned when creating a kernel when no kernel with the
specified name exists in the program object.

CL_INVALID_LINKER_OPTIONS

missing before version 1.2.

Returned when build options passed to clLinkProgram
are not valid.

CL_INVALID_MEM_OBJECT Returned when a specified memory object is not a valid
memory object.

CL_INVALID_OPERATION This is a generic error code that is returned when the
requested operation is not a valid operation.

CL_INVALID_PIPE_SIZE

missing before version 2.0.

Returned when attempting to create a pipe with an invalid
packet size or number of packets.

CL_INVALID_PLATFORM Returned when the specified platform is not a valid
platform.

CL_INVALID_PROGRAM Returned when a specified program is not a valid program
object.

CL_INVALID_PROGRAM_EXECUTABLE Returned when the specified program is valid but has not
been successfully built.

CL_INVALID_PROPERTY

missing before version 1.1.

Returned when a specified property name is invalid, when
the value for a property name is invalid, or when the same
property name is specified more than once.

CL_INVALID_QUEUE_PROPERTIES Returned when specified queue properties are valid but
are not supported by the device.

CL_INVALID_SAMPLER Returned when a specified sampler is not a valid sampler
object.

CL_INVALID_SPEC_ID

missing before version 2.2.

Returned when the specified specialization constant ID is
not valid for the specified program.

CL_INVALID_VALUE This is a generic error that is returned when a specified
value is not a valid value.

CL_INVALID_WORK_DIMENSION Returned by clEnqueueNDRangeKernel when the
specified work dimension is not valid.

CL_INVALID_WORK_GROUP_SIZE Returned by clEnqueueNDRangeKernel when the
specified total work-group size is not valid for the
specified kernel or device.

453



Error Code Brief Description

CL_INVALID_WORK_ITEM_SIZE Returned by clEnqueueNDRangeKernel when the
specified work-group size in one dimension is not valid for
the device.

CL_KERNEL_ARG_INFO_NOT_AVAILABLE

missing before version 1.2.

Returned by clGetKernelArgInfo when kernel argument
information is not available for the specified kernel.

CL_LINK_PROGRAM_FAILURE

missing before version 1.2.

Returned by clLinkProgram when there is a failure to
link the specified binaries or libraries.

CL_LINKER_NOT_AVAILABLE

missing before version 1.2.

Returned by clLinkProgram when CL_DEVICE_LINKER_
AVAILABLE is CL_FALSE.

CL_MAP_FAILURE Returned when there is a failure to map the specified
region into the host address space.

CL_MEM_COPY_OVERLAP Returned when copying from one region of a memory
object to another where the source and destination
regions overlap.

CL_MEM_OBJECT_ALLOCATION_FAILURE Returned when there is a failure to allocate memory for a
memory object.

CL_MISALIGNED_SUB_BUFFER_OFFSET

missing before version 1.1.

Returned when a sub-buffer object is created or used that
is not aligned to CL_DEVICE_MEM_BASE_ADDR_ALIGN for the
device.

CL_OUT_OF_HOST_MEMORY This is a generic error that is returned when memory
could not be allocated on the host.

CL_OUT_OF_RESOURCES This is a generic error that is returned when resources
could not be allocated on the device.

CL_MAX_SIZE_RESTRICTION_EXCEEDED

missing before version 2.2.

Returned when the size of the specified kernel argument
value exceeds the maximum size defined for the kernel
argument.

CL_PROFILING_INFO_NOT_AVAILABLE Returned by clGetEventProfilingInfo when the command
associated with the specified event was not enqueued into
a command-queue with CL_QUEUE_PROFILING_ENABLE.

CL_INVALID_COMMAND_BUFFER_KHR

provided by the cl_khr_command_buffer
extension.

Returned when the specified command-buffer is not a
valid command-buffer.

CL_INVALID_SYNC_POINT_WAIT_LIST_KHR

provided by the cl_khr_command_buffer
extension.

Returned when the specified sync point wait list or
number of sync points in the wait list is not valid.

454



Error Code Brief Description

CL_INCOMPATIBLE_COMMAND_QUEUE_KHR

provided by the cl_khr_command_buffer
extension.

Returned when one or more command-queues is
incompatible with a command-buffer.

CL_INVALID_MUTABLE_COMMAND_KHR

provided by the
cl_khr_command_buffer_mutable_dispatc
h extension.

Returned when a specified command is not a valid
mutable-command object.

CL_INVALID_D3D10_DEVICE_KHR

provided by the cl_khr_d3d10_sharing
extension.

Returned when a Direct3D 10 device cannot interoperate
with OpenCL device IDs.

CL_INVALID_D3D10_RESOURCE_KHR

provided by the cl_khr_d3d10_sharing
extension.

Returned when an OpenCL object cannot be created from
a Direct3D 10 resource.

CL_D3D10_RESOURCE_ALREADY_ACQUIRED_
KHR

provided by the cl_khr_d3d10_sharing
extension.

Returned when attempting to acquire an OpenCL object
created from a Direct3D 10 resource that was already
acquired.

CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR

provided by the cl_khr_d3d10_sharing
extension.

Returned when attempting to release an OpenCL object
created from a Direct3D 10 resource that has not been
acquired.

CL_INVALID_D3D11_DEVICE_KHR

provided by the cl_khr_d3d11_sharing
extension.

Returned when a Direct3D 11 device cannot interoperate
with OpenCL device IDs.

CL_INVALID_D3D11_RESOURCE_KHR

provided by the cl_khr_d3d11_sharing
extension.

Returned when an OpenCL object cannot be created from
a Direct3D 11 resource.

CL_D3D11_RESOURCE_ALREADY_ACQUIRED_
KHR

provided by the cl_khr_d3d11_sharing
extension.

Returned when attempting to acquire an OpenCL object
created from a Direct3D 11 resource that was already
acquired.

CL_D3D11_RESOURCE_NOT_ACQUIRED_KHR

provided by the cl_khr_d3d11_sharing
extension.

Returned when attempting to release an OpenCL object
created from a Direct3D 11 resource that has not been
acquired.

455



Error Code Brief Description

CL_INVALID_DX9_MEDIA_ADAPTER_KHR

provided by the
cl_khr_dx9_media_sharing extension.

Returned when a DirectX 9 media adapter cannot
interoperate with OpenCL device IDs.

CL_INVALID_DX9_MEDIA_SURFACE_KHR

provided by the
cl_khr_dx9_media_sharing extension.

Returned when an OpenCL object cannot be created from
a DirectX 9 media surface.

CL_DX9_MEDIA_SURFACE_ALREADY_
ACQUIRED_KHR

provided by the
cl_khr_dx9_media_sharing extension.

Returned when attempting to acquire an OpenCL object
created from a DirectX 9 media surface that was already
acquired.

CL_DX9_MEDIA_SURFACE_NOT_ACQUIRED_KHR

provided by the
cl_khr_dx9_media_sharing extension.

Returned when attempting to release an OpenCL object
created from a DirectX 9 media surface that has not been
acquired.

CL_EGL_RESOURCE_NOT_ACQUIRED_KHR

provided by the cl_khr_egl_image
extension.

Possible event status if an EGL resource is used without
being acquired.

CL_INVALID_EGL_OBJECT_KHR

provided by the cl_khr_egl_image
extension.

Returned when the specified EGL object is not valid.

CL_INVALID_GL_OBJECT Returned when the specified OpenGL object is not valid, or
when there is no associated OpenGL object for an OpenCL
object.

CL_INVALID_GL_SHAREGROUP_REFERENCE_
KHR

provided by the cl_khr_gl_sharing
extension.

Returned when the specified OpenGL sharing context
creation property is not valid.

CL_PLATFORM_NOT_FOUND_KHR

provided by the cl_khr_icd extension.

Returned by clGetPlatformIDs when no platforms are
available.

CL_INVALID_SEMAPHORE_KHR

provided by the cl_khr_semaphore
extension.

Returned when the specified semaphore is not a valid
semaphore.

456



Error Code Brief Description

CL_CONTEXT_TERMINATED_KHR

provided by the
cl_khr_terminate_context extension.

Returned when the specified context has already been
terminated, or as an event status for terminated
commands.

457



Appendix G: Other Miscellaneous Enums
This section lists other miscellaneous OpenCL enumerants and their meanings.

Enumerant Brief Description

CL_TRUE Indicates a boolean "true" value.

CL_FALSE Indicates a boolean "false" value.

CL_NONE Indicates that none of the other enumerations or
conditions are applicable.

CL_BLOCKING

missing before version 1.2.

Alias of CL_TRUE that can be used to improve the
readability of calls to enqueue functions that can block.

CL_NON_BLOCKING

missing before version 1.2.

Alias of CL_FALSE that can be used to improve the
readability of calls to enqueue function that can block.

458



Appendix H: OpenCL 3.0 Backwards
Compatibility
OpenCL 3.0 breaks backwards compatibility with earlier versions of OpenCL by making some
features that were previously required for FULL_PROFILE or EMBEDDED_PROFILE devices
optional. This appendix describes the features that were previously required that are now optional,
how to detect whether an optional feature is supported, and expected behavior when an optional
feature is not supported.



Informally, in the tables below the first row usually describes a feature detection
mechanism ("May return this value indicating that the feature is not supported")
and subsequent rows usually describe behavior when a feature is not supported
("Returns this value if the feature is not supported").

Shared Virtual Memory
Shared Virtual Memory (SVM) is optional for devices supporting OpenCL 3.0. When Shared Virtual
Memory is not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_SVM_CAPABILITIES

May return 0, indicating that device does not support
Shared Virtual Memory.

clGetMemObjectInfo, passing
CL_MEM_USES_SVM_POINTER

Returns CL_FALSE if no devices in the context associated
with memobj support Shared Virtual Memory.

clSVMAlloc Returns NULL if no devices in context support Shared
Virtual Memory.

clSVMFree Is a NOP if no devices in context support Shared Virtual
Memory.

clEnqueueSVMFree,
clEnqueueSVMMemcpy,
clEnqueueSVMMemFill,
clEnqueueSVMMap,
clEnqueueSVMUnmap,
clEnqueueSVMMigrateMem

Returns CL_INVALID_OPERATION if the device associated with
command_queue does not support Shared Virtual Memory.

clSetKernelArgSVMPointer,
clSetKernelExecInfo

Returns CL_INVALID_OPERATION if no devices in the context
associated with kernel support Shared Virtual Memory.

Memory Consistency Model
Some aspects of the OpenCL memory consistency model are optional for devices supporting
OpenCL 3.0. New device queries were added to clGetDeviceInfo to allow capabilities to be
precisely reported. When the full memory consistency model is not supported:

459



API Behavior

clGetDeviceInfo, passing
CL_DEVICE_ATOMIC_MEMORY_CAPABILITIES

May return:

CL_DEVICE_ATOMIC_ORDER_RELAXED |
CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP

indicating that device does not support the full memory
consistency model for atomic memory operations.

Note that a device that provides the same level of
capabilities as an OpenCL 2.x device would be expected to
return:

CL_DEVICE_ATOMIC_ORDER_RELAXED |
CL_DEVICE_ATOMIC_ORDER_ACQ_REL |
CL_DEVICE_ATOMIC_ORDER_SEQ_CST |
CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP |
CL_DEVICE_ATOMIC_SCOPE_DEVICE |
CL_DEVICE_ATOMIC_SCOPE_ALL_DEVICES

clGetDeviceInfo, passing
CL_DEVICE_ATOMIC_FENCE_CAPABILITIES

May return:

CL_DEVICE_ATOMIC_ORDER_RELAXED |
CL_DEVICE_ATOMIC_ORDER_ACQ_REL |
CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP

indicating that device does not support the full memory
consistency model for atomic fence operations.

Note that a device that provides the same level of
capabilities as an OpenCL 2.x device would be expected to
return:

CL_DEVICE_ATOMIC_ORDER_RELAXED |
CL_DEVICE_ATOMIC_ORDER_ACQ_REL |
CL_DEVICE_ATOMIC_ORDER_SEQ_CST |
CL_DEVICE_ATOMIC_SCOPE_WORK_ITEM |
CL_DEVICE_ATOMIC_SCOPE_WORK_GROUP |
CL_DEVICE_ATOMIC_SCOPE_DEVICE |
CL_DEVICE_ATOMIC_SCOPE_ALL_DEVICES

OpenCL C compilers supporting atomics orders or scopes beyond the mandated minimum will
define some or all of following feature macros as appropriate:

__opencl_c_atomic_order_ — Indicating atomic operations support acquire-release orderings.

__opencl_c_atomic_order_seq_cst — Indicating atomic operations and fences support acquire
sequentially consistent orderings.

460



__opencl_c_atomic_scope_device — Indicating atomic operations and fences support device-wide
memory ordering constraints.

__opencl_c_atomic_scope_all_devices — Indicating atomic operations and fences support all-
device memory ordering constraints, across any host threads and all devices that can share SVM
memory with each other and the host process.

Device-Side Enqueue
Device-side enqueue and on-device queues are optional for devices supporting OpenCL 3.0. When
device-side enqueue is not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_DEVICE_ENQUEUE_CAPABILITIES

May return 0, indicating that device does not support
device-side enqueue and on-device queues.

clGetDeviceInfo, passing
CL_DEVICE_QUEUE_ON_DEVICE_PROPERTIES

Returns 0 if device does not support device-side enqueue
and on-device queues.

clGetDeviceInfo, passing
CL_DEVICE_QUEUE_ON_DEVICE_PREFERRED_
SIZE,
CL_DEVICE_QUEUE_ON_DEVICE_MAX_SIZE,
CL_DEVICE_MAX_ON_DEVICE_QUEUES, or
CL_DEVICE_MAX_ON_DEVICE_EVENTS

Returns 0 if device does not support device-side enqueue
and on-device queues.

clGetCommandQueueInfo, passing
CL_QUEUE_SIZE

Returns CL_INVALID_COMMAND_QUEUE since command_queue
cannot be a valid device command-queue.

clGetCommandQueueInfo, passing
CL_QUEUE_DEVICE_DEFAULT

Returns NULL if the device associated with command_queue
does not support on-device queues.

clGetEventProfilingInfo, passing
CL_PROFILING_COMMAND_COMPLETE

Returns a value equivalent to passing CL_PROFILING_
COMMAND_END if the device associated with event does not
support device-side enqueue.

clSetDefaultDeviceCommandQueue Returns CL_INVALID_OPERATION if device does not support
on-device queues.

When device-side enqueue is supported but a replaceable default on-device queue is not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_DEVICE_ENQUEUE_CAPABILITIES

May omit CL_DEVICE_QUEUE_REPLACEABLE_DEFAULT, indicating
that device does not support a replaceable default on-
device queue.

clSetDefaultDeviceCommandQueue Returns CL_INVALID_OPERATION if device does not support a
replaceable default on-device queue.

OpenCL C compilers supporting device-side enqueue and on-device queues will define the feature
macro __opencl_c_device_enqueue. OpenCL C compilers that define the feature macro __opencl_c_
device_enqueue must also define the feature macro __opencl_c_generic_address_space because some

461



OpenCL C functions for device-side enqueue accept pointers to the generic address space. OpenCL C
compilers that define the feature macro __opencl_c_device_enqueue must also define the feature
macro __opencl_c_program_scope_global_variables because an implementation of blocks may
interact with program scope variables in global address space as part of ABI.

Pipes
Pipe memory objects are optional for devices supporting OpenCL 3.0. When pipes are not
supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_PIPE_SUPPORT

May return CL_FALSE, indicating that device does not
support pipes.

clGetDeviceInfo, passing
CL_DEVICE_MAX_PIPE_ARGS,
CL_DEVICE_PIPE_MAX_ACTIVE_
RESERVATIONS, or
CL_DEVICE_PIPE_MAX_PACKET_SIZE

Returns 0 if device does not support pipes.

clCreatePipe Returns CL_INVALID_OPERATION if no devices in context
support pipes.

clGetPipeInfo Returns CL_INVALID_MEM_OBJECT since pipe cannot be a valid
pipe object.

OpenCL C compilers supporting pipes will define the feature macro __opencl_c_pipes. OpenCL C
compilers that define the feature macro __opencl_c_pipes must also define the feature macro
__opencl_c_generic_address_space because some OpenCL C functions for pipes accept pointers to the
generic address space.

Program Scope Global Variables
Program scope global variables are optional for devices supporting OpenCL 3.0. When program
scope global variables are not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_MAX_GLOBAL_VARIABLE_SIZE

May return 0, indicating that device does not support
program scope global variables.

clGetDeviceInfo, passing
CL_DEVICE_GLOBAL_VARIABLE_PREFERRED_
TOTAL_SIZE

Returns 0 if device does not support program scope global
variables.

clGetProgramBuildInfo, passing
CL_PROGRAM_BUILD_GLOBAL_VARIABLE_
TOTAL_SIZE

Returns 0 if device does not support program scope global
variables.

OpenCL C compilers supporting program scope global variables will define the feature macro
__opencl_c_program_scope_global_variables.

462



Non-Uniform Work-groups
Support for non-uniform work-groups is optional for devices supporting OpenCL 3.0. When non-
uniform work-groups are not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_NON_UNIFORM_WORK_GROUP_
SUPPORT

May return CL_FALSE, indicating that device does not
support non-uniform work-groups.

clEnqueueNDRangeKernel Behaves as though non-uniform work-groups were not
enabled for kernel, if the device associated with
command_queue does not support non-uniform work-
groups.

Read-Write Images
Read-write images, that may be read from and written to in the same kernel, are optional for
devices supporting OpenCL 3.0. When read-write images are not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_MAX_READ_WRITE_IMAGE_ARGS

May return 0, indicating that device does not support read-
write images.

clGetSupportedImageFormats,
passing
CL_MEM_KERNEL_READ_AND_WRITE

Returns an empty set (such as num_image_formats equal to
0), indicating that no image formats are supported for
reading and writing in the same kernel, if no devices in
context support read-write images.

OpenCL C compilers supporting read-write images will define the feature macro __opencl_c_read_
write_images.

Creating 2D Images From Buffers
Creating a 2D image from a buffer is optional for devices supporting OpenCL 3.0. When creating a
2D image from a buffer is not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_IMAGE_PITCH_ALIGNMENT or
CL_DEVICE_IMAGE_BASE_ADDRESS_
ALIGNMENT

May return 0, indicating that device does not support
creating a 2D image from a Buffer.

clGetDeviceInfo, passing
CL_DEVICE_EXTENSIONS

Will not describe support for the cl_khr_image2d_from_
buffer extension if device does not support creating a 2D
image from a buffer.

463



API Behavior

clCreateImage or
clCreateImageWithProperties,
passing
image_type equal to CL_MEM_OBJECT_
IMAGE2D and
mem_object not equal to NULL

Returns CL_INVALID_OPERATION if no devices in context
support creating a 2D image from a buffer.

sRGB Images
All of the sRGB image channel orders (such as CL_sRGBA) are optional for devices supporting OpenCL
3.0. When sRGB images are not supported:

API Behavior

clGetSupportedImageFormats Will not return return any image formats with
image_channel_order equal to an sRGB image channel order
if no devices in context support sRGB images.

Depth Images
The CL_DEPTH image channel order is optional for devices supporting OpenCL 3.0. When depth
images are not supported:

API Behavior

clGetSupportedImageFormats Will not return any image formats with
image_channel_order equal to CL_DEPTH if no devices in
context support depth images.

Device and Host Timer Synchronization
Synchronizing the device and host timers is optional for platforms supporting OpenCL 3.0. When
device and host timer synchronization is not supported:

API Behavior

clGetPlatformInfo, passing
CL_PLATFORM_HOST_TIMER_RESOLUTION

May return 0, indicating that platform does not support
device and host timer synchronization.

clGetDeviceAndHostTimer,
clGetHostTimer

Returns CL_INVALID_OPERATION if the platform associated
with device does not support device and host timer
synchronization.

Intermediate Language Programs
Creating programs from an intermediate language (such as SPIR-V) is optional for devices
supporting OpenCL 3.0. When intermediate language programs are not supported:

464



API Behavior

clGetDeviceInfo, passing
CL_DEVICE_IL_VERSION or
CL_DEVICE_ILS_WITH_VERSION

May return an empty string and empty array, indicating
that device does not support intermediate language
programs.

clGetProgramInfo, passing
CL_PROGRAM_IL

Returns an empty buffer (such as param_value_size_ret
equal to 0) if no devices in the context associated with
program support intermediate language programs.

clCreateProgramWithIL Returns CL_INVALID_OPERATION if no devices in context
support intermediate language programs.

clSetProgramSpecializationConstant Returns CL_INVALID_OPERATION if no devices associated with
program support intermediate language programs.

clGetKernelSubGroupInfo, passing
CL_KERNEL_COMPILE_NUM_SUB_GROUPS

Returns 0 if device does not support intermediate language
programs, since there is currently no way to require a
number of sub-groups per work-group for programs
created from source.

Sub-groups
Sub-groups are optional for devices supporting OpenCL 3.0. When sub-groups are not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_MAX_NUM_SUB_GROUPS

May return 0, indicating that device does not support sub-
groups.

clGetDeviceInfo, passing
CL_DEVICE_SUB_GROUP_INDEPENDENT_
FORWARD_PROGRESS

Returns CL_FALSE if device does not support sub-groups.

clGetDeviceInfo, passing
CL_DEVICE_EXTENSIONS

Will not describe support for the cl_khr_subgroups
extension if device does not support sub-groups.

clGetKernelSubGroupInfo Returns CL_INVALID_OPERATION if device does not support
sub-groups.

OpenCL C compilers supporting sub-groups will define the feature macro __opencl_c_subgroups.

Program Initialization and Clean-Up Kernels
Program initialization and clean-up kernels are not supported in OpenCL 3.0, and the APIs and
queries for program initialization and clean-up kernels are deprecated in OpenCL 3.0. When
program initialization and clean-up kernels are not supported:

465



API Behavior

clGetProgramInfo, passing
CL_PROGRAM_SCOPE_GLOBAL_CTORS_PRESENT
or
CL_PROGRAM_SCOPE_GLOBAL_DTORS_PRESENT

Returns CL_FALSE if no devices in the context associated
with program support program initialization and clean-up
kernels.

clSetProgramReleaseCallback Returns CL_INVALID_OPERATION if no devices in the context
associated with program support program initialization
and clean-up kernels.

3D Image Writes
Kernel built-in functions for writing to 3D image objects are optional for devices supporting
OpenCL 3.0. When writing to 3D image objects is not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_EXTENSIONS

Will not describe support for the cl_khr_3d_image_writes
extension if device does not support writing to 3D image
objects.

clGetSupportedImageFormats,
passing
CL_MEM_OBJECT_IMAGE3D and one of
CL_MEM_WRITE_ONLY,
CL_MEM_READ_WRITE, or
CL_MEM_KERNEL_READ_AND_WRITE

Returns an empty set (such as num_image_formats equal to
0), indicating that no image formats are supported for
writing to 3D image objects, if no devices in context
support writing to 3D image objects.

OpenCL C compilers supporting writing to 3D image objects will define the feature macro
__opencl_c_3d_image_writes.

Work-group Collective Functions
Work-group collective functions for broadcasts, scans, and reductions are optional for devices
supporting OpenCL 3.0. When work-group collective functions are not supported:

API Behavior

clGetDeviceInfo, passing
CL_DEVICE_WORK_GROUP_COLLECTIVE_
FUNCTIONS_SUPPORT

May return CL_FALSE, indicating that device does not
support work-group collective functions.

OpenCL C compilers supporting work-group collective functions will define the feature macro
__opencl_c_work_group_collective_functions.

Generic Address Space
Support for the generic address space is optional for devices supporting OpenCL 3.0. When the
generic address space is not supported:

466



API Behavior

clGetDeviceInfo, passing
CL_DEVICE_GENERIC_ADDRESS_SPACE_
SUPPORT

May return CL_FALSE, indicating that device does not
support the generic address space.

OpenCL C compilers supporting the generic address space will define the feature macro __opencl_c_
generic_address_space.

Language Features That Were Already Optional
Some OpenCL C language features were already optional before OpenCL 3.0, the API mechanisms
for querying these have not changed.

New feature macros for these optional features have been added to OpenCL C to provide a
consistent mechanism for using optional features in OpenCL C 3.0. OpenCL C compilers supporting
images will define the feature macro __opencl_c_images. OpenCL C compilers supporting the double
type will define the feature macro __opencl_c_fp64. OpenCL C compilers supporting the long,
unsigned long and ulong types will define the feature macro __opencl_c_int64, note that compilers
for FULL_PROFILE devices must support these types and define the macro unconditionally.

467



Appendix I: OpenCL Extensions
(Informative)
Extensions to the OpenCL API can be defined by authors, groups of authors, and the Khronos
OpenCL Working Group. The online Registry of extensions is available at URL

https://registry.khronos.org/OpenCL

It is possible to generate versions of the API Specification incorporating different extensions. At
present only a subset of defined extensions can be incorporated in this fashion.

The remainder of this appendix documents a set of extensions chosen when this document was
built.

Extensions are grouped as Khronos khr, multivendor ext, and then alphabetically by author ID.
Within each group, extensions are listed in alphabetical order by their names.

Provisional Extensions
Provisional OpenCL extensions described in this appendix have been Ratified under the Khronos
Intellectual Property Framework. They are being made publicly available as provisional extensions
to enable review and feedback from the community. While an extension is provisional, features
may be added, removed, or changed in non-backward compatible ways.

If you have feedback on a provisional extension, please create an issue on the OpenCL-Docs
repository.

Extension Dependencies
Extensions which have dependencies on specific core versions or on other extensions will list such
dependencies.

All extensions implicitly require support for OpenCL 1.0.

List of Current Extensions
• cl_khr_3d_image_writes

• cl_khr_async_work_group_copy_fence

• cl_khr_byte_addressable_store

• cl_khr_create_command_queue

• cl_khr_d3d10_sharing

• cl_khr_d3d11_sharing

• cl_khr_depth_images

• cl_khr_device_enqueue_local_arg_types

468

https://registry.khronos.org/OpenCL
https://github.com/KhronosGroup/OpenCL-Docs/
https://github.com/KhronosGroup/OpenCL-Docs/


• cl_khr_device_uuid

• cl_khr_dx9_media_sharing

• cl_khr_egl_event

• cl_khr_egl_image

• cl_khr_expect_assume

• cl_khr_extended_async_copies

• cl_khr_extended_bit_ops

• cl_khr_extended_versioning

• cl_khr_external_memory

• cl_khr_external_memory_dma_buf

• cl_khr_external_memory_opaque_fd

• cl_khr_external_memory_win32

• cl_khr_external_semaphore

• cl_khr_external_semaphore_opaque_fd

• cl_khr_external_semaphore_sync_fd

• cl_khr_fp16

• cl_khr_fp64

• cl_khr_gl_depth_images

• cl_khr_gl_event

• cl_khr_gl_msaa_sharing

• cl_khr_gl_sharing

• cl_khr_global_int32_base_atomics

• cl_khr_global_int32_extended_atomics

• cl_khr_icd

• cl_khr_il_program

• cl_khr_image2d_from_buffer

• cl_khr_initialize_memory

• cl_khr_int64_base_atomics

• cl_khr_int64_extended_atomics

• cl_khr_integer_dot_product

• cl_khr_local_int32_base_atomics

• cl_khr_local_int32_extended_atomics

• cl_khr_mipmap_image

• cl_khr_mipmap_image_writes

• cl_khr_pci_bus_info

469



• cl_khr_priority_hints

• cl_khr_select_fprounding_mode

• cl_khr_semaphore

• cl_khr_spirv_extended_debug_info

• cl_khr_spirv_linkonce_odr

• cl_khr_spirv_no_integer_wrap_decoration

• cl_khr_srgb_image_writes

• cl_khr_subgroup_ballot

• cl_khr_subgroup_clustered_reduce

• cl_khr_subgroup_extended_types

• cl_khr_subgroup_named_barrier

• cl_khr_subgroup_non_uniform_arithmetic

• cl_khr_subgroup_non_uniform_vote

• cl_khr_subgroup_rotate

• cl_khr_subgroup_shuffle

• cl_khr_subgroup_shuffle_relative

• cl_khr_subgroups

• cl_khr_suggested_local_work_size

• cl_khr_terminate_context

• cl_khr_throttle_hints

• cl_khr_work_group_uniform_arithmetic

470



cl_khr_3d_image_writes

Name String

cl_khr_3d_image_writes

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 2.0

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_3d_image_writes adds built-in OpenCL C functions that allow a kernel to write to 3D image
objects in addition to 2D image objects.

See the 3D Image Writes section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_async_work_group_copy_fence

Name String

cl_khr_async_work_group_copy_fence

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2021-11-10

471

OpenCL_C.html#cl_khr_3d_image_writes


IP Status

No known IP claims.

Description

cl_khr_async_work_group_copy_fence adds a new built-in OpenCL C function to establish a memory
synchronization ordering of asynchronous copies.

See the Async Work-group Copy Fence section of the OpenCL C specification for more information.

Version History

• Revision 0.9.0, 2020-04-21

◦ First assigned version (provisional).

• Revision 1.0.0, 2021-11-10

◦ First non-provisional version.

cl_khr_byte_addressable_store

Name String

cl_khr_byte_addressable_store

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 1.1

Other Extension Metadata

Last Modified Date

2020-04-21

Interactions and External Dependencies

• Promoted to OpenCL 1.1 core

IP Status

No known IP claims.

Description

cl_khr_byte_addressable_store relaxes restrictions on pointers to char, uchar, char2, uchar2, short,
ushort and half that were present in Section 6.8m: Restrictions of the OpenCL 1.0 specification. With
this extension, applications are able to read from and write to pointers to these types.

472

OpenCL_C.html#cl_khr_async_work_group_copy_fence


This extension became a core feature in OpenCL 1.1.

See the Byte-Addressable Storage section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_create_command_queue

Name String

cl_khr_create_command_queue

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 2.0

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_create_command_queue allows OpenCL 1.x devices to support an equivalent of the
clCreateCommandQueueWithProperties API that was added in OpenCL 2.0. This allows OpenCL
1.x devices to support other optional extensions or features that use the
clCreateCommandQueueWithProperties API to specify additional command-queue properties
that cannot be specified using the OpenCL 1.x clCreateCommandQueue API.

No new command-queue properties are required by this extension. Applications may use the
existing CL_DEVICE_QUEUE_PROPERTIES query to determine command-queue properties that are
supported by the device.

Newer OpenCL devices may support this extension for compatibility. In this scenario, the function
added by this extension will have the same capabilities as the core
clCreateCommandQueueWithProperties API. Applications that only target newer OpenCL
devices should use the core clCreateCommandQueueWithProperties API instead of this extension
API.

473

OpenCL_C.html#cl_khr_byte_addressable_store


New Commands

• clCreateCommandQueueWithPropertiesKHR

New Types

• cl_queue_properties_khr

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_d3d10_sharing

Name String

cl_khr_d3d10_sharing

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_d3d10_sharing provides interoperability between OpenCL and Direct3D 10.

New Commands

• clGetDeviceIDsFromD3D10KHR

• clCreateFromD3D10BufferKHR

• clCreateFromD3D10Texture2DKHR

• clCreateFromD3D10Texture3DKHR

• clEnqueueAcquireD3D10ObjectsKHR

• clEnqueueReleaseD3D10ObjectsKHR

474



New Types

• cl_d3d10_device_source_khr

• cl_d3d10_device_set_khr

New Enums

• cl_d3d10_device_source_khr

◦ CL_D3D10_DEVICE_KHR

◦ CL_D3D10_DXGI_ADAPTER_KHR

• cl_d3d10_device_set_khr

◦ CL_PREFERRED_DEVICES_FOR_D3D10_KHR

◦ CL_ALL_DEVICES_FOR_D3D10_KHR

• cl_context_properties

◦ CL_CONTEXT_D3D10_DEVICE_KHR

• cl_context_info

◦ CL_CONTEXT_D3D10_PREFER_SHARED_RESOURCES_KHR

• cl_mem_info

◦ CL_MEM_D3D10_RESOURCE_KHR

• cl_image_info

◦ CL_IMAGE_D3D10_SUBRESOURCE_KHR

• cl_command_type

◦ CL_COMMAND_ACQUIRE_D3D10_OBJECTS_KHR

◦ CL_COMMAND_RELEASE_D3D10_OBJECTS_KHR

• New Error Codes

◦ CL_INVALID_D3D10_DEVICE_KHR

◦ CL_INVALID_D3D10_RESOURCE_KHR

◦ CL_D3D10_RESOURCE_ALREADY_ACQUIRED_KHR

◦ CL_D3D10_RESOURCE_NOT_ACQUIRED_KHR

Issues

1. Should this extension be KHR or EXT?

PROPOSED: KHR. If this extension is to be approved by Khronos then it should be KHR,
otherwise EXT. Not all platforms can support this extension, but that is also true of OpenGL
interop.

RESOLVED: KHR.

2. Requiring SharedHandle on ID3D10Resource

475



Requiring this can largely simplify things at the DDI level and make some implementations
faster. However, the DirectX spec only defines the shared handle for a subset of the resources
we would like to support:

◦ D3D10_RESOURCE_MISC_SHARED - Enables the sharing of resource data between two or more
Direct3D devices. The only resources that can be shared are 2D non-mipmapped textures.

PROPOSED: A: Add wording to the spec about some implementations needing the resource
setup as shared:

Some implementations may require the resource to be shared on the D3D10 side of the API.

If we do that, do we need another enum to describe this failure case?

PROPOSED: B: Require that all implementations support both shared and non-shared
resources. The restrictions prohibiting multisample textures and the flag
D3D10_USAGE_IMMUTABLE guarantee software access to all shareable resources.

RESOLVED: Require that implementations support both D3D10_RESOURCE_MISC_SHARED
being set and not set. Add the query for CL_CONTEXT_D3D10_PREFER_SHARED_RESOURCES_KHR to
determine on a per-context basis which method will be faster.

3. Texture1D support

There is not a matching CL type, so do we want to support this and map to buffer or Texture2D?

RESOLVED: We will not add support for ID3D10Texture1D objects unless a corresponding
OpenCL 1D Image type is created.

4. CL/D3D10 queries

The GL interop has clGetGLObjectInfo and clGetGLTextureInfo. It is unclear if these are
needed on the D3D10 interop side since the D3D10 spec makes these queries trivial on the
D3D10 object itself. Also, not all of the semantics of the GL call map across.

PROPOSED: Add the clGetMemObjectInfo and clGetImageInfo parameter names CL_MEM_
D3D10_RESOURCE_KHR and CL_IMAGE_D3D10_SUBRESOURCE_KHR to query the D3D10 resource from
which a cl_mem was created. From this data, any D3D10 side information may be queried using
the D3D10 API.

RESOLVED: We will use clGetMemObjectInfo and clGetImageInfo to access this information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_d3d11_sharing

Name String

cl_khr_d3d11_sharing

476



Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_d3d11_sharing provides interoperability between OpenCL and Direct3D 11.

New Commands

• clGetDeviceIDsFromD3D11KHR

• clCreateFromD3D11BufferKHR

• clCreateFromD3D11Texture2DKHR

• clCreateFromD3D11Texture3DKHR

• clEnqueueAcquireD3D11ObjectsKHR

• clEnqueueReleaseD3D11ObjectsKHR

New Types

• cl_d3d11_device_source_khr

• cl_d3d11_device_set_khr

New Enums

• cl_d3d11_device_source_khr

◦ CL_D3D11_DEVICE_KHR

◦ CL_D3D11_DXGI_ADAPTER_KHR

• cl_d3d11_device_set_khr

◦ CL_PREFERRED_DEVICES_FOR_D3D11_KHR

◦ CL_ALL_DEVICES_FOR_D3D11_KHR

• cl_context_properties

◦ CL_CONTEXT_D3D11_DEVICE_KHR

• cl_context_info

477



◦ CL_CONTEXT_D3D11_PREFER_SHARED_RESOURCES_KHR

• cl_mem_info

◦ CL_MEM_D3D11_RESOURCE_KHR

• cl_image_info

◦ CL_IMAGE_D3D11_SUBRESOURCE_KHR

• cl_command_type

◦ CL_COMMAND_ACQUIRE_D3D11_OBJECTS_KHR

◦ CL_COMMAND_RELEASE_D3D11_OBJECTS_KHR

• New Error Codes

◦ CL_INVALID_D3D11_DEVICE_KHR

◦ CL_INVALID_D3D11_RESOURCE_KHR

◦ CL_D3D11_RESOURCE_ALREADY_ACQUIRED_KHR

◦ CL_D3D11_RESOURCE_NOT_ACQUIRED_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_depth_images

Name String

cl_khr_depth_images

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 2.0

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

478



Description

cl_khr_depth_images adds OpenCL C support for depth images.

See the Depth Images section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_device_enqueue_local_arg_types

Name String

cl_khr_device_enqueue_local_arg_types

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_device_enqueue_local_arg_types allows arguments to blocks that are passed to the
enqueue_kernel built-in OpenCL C function to be pointers to any type (built-in or user-defined) in
local memory, instead of requiring arguments to blocks to be pointers to void in local memory.

See the Device Enqueue Local Argument Types section of the OpenCL C specification for more
information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_device_uuid

Name String

cl_khr_device_uuid

479

OpenCL_C.html#cl_khr_depth_images
OpenCL_C.html#cl_khr_device_enqueue_local_arg_types


Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-08-27

IP Status

No known IP claims.

Description

cl_khr_device_uuid adds the ability to query a universally unique identifier (UUID) for an OpenCL
driver and OpenCL device. The UUIDs returned by the query may be used to identify drivers and
devices across processes or APIs.

New Enums

Accepted value for the param_name parameter to clGetDeviceInfo:

• cl_device_info

◦ CL_DEVICE_UUID_KHR

◦ CL_DRIVER_UUID_KHR

◦ CL_DEVICE_LUID_VALID_KHR

◦ CL_DEVICE_LUID_KHR

◦ CL_DEVICE_NODE_MASK_KHR

• Constants describing the size of the driver and device UUIDs, and the device LUID:

◦ CL_UUID_SIZE_KHR

◦ CL_LUID_SIZE_KHR

Version History

• Revision 1.0.0, 2020-08-27

◦ First assigned version.

cl_khr_dx9_media_sharing

Name String

cl_khr_dx9_media_sharing

480



Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_dx9_media_sharing allows applications to use media surfaces as OpenCL memory objects.
This allows efficient sharing of data between OpenCL and selected adapter APIs (only DX9 for now).
If this extension is supported, an OpenCL image object can be created from a media surface and the
OpenCL API can be used to execute kernels that read and/or write memory objects that are media
surfaces. Note that OpenCL memory objects may be created from the adapter media surface if and
only if the OpenCL context has been created from that adapter.

New Commands

• clGetDeviceIDsFromDX9MediaAdapterKHR

• clCreateFromDX9MediaSurfaceKHR

• clEnqueueAcquireDX9MediaSurfacesKHR

• clEnqueueReleaseDX9MediaSurfacesKHR

New Types

• cl_dx9_media_adapter_type_khr

• cl_dx9_media_adapter_set_khr

New Enums

• cl_dx9_media_adapter_type_khr

◦ CL_ADAPTER_D3D9_KHR

◦ CL_ADAPTER_D3D9EX_KHR

◦ CL_ADAPTER_DXVA_KHR

• cl_dx9_media_adapter_set_khr

◦ CL_PREFERRED_DEVICES_FOR_DX9_MEDIA_ADAPTER_KHR

◦ CL_ALL_DEVICES_FOR_DX9_MEDIA_ADAPTER_KHR

• cl_context_info

481



◦ CL_CONTEXT_ADAPTER_D3D9_KHR

◦ CL_CONTEXT_ADAPTER_D3D9EX_KHR

◦ CL_CONTEXT_ADAPTER_DXVA_KHR

• cl_mem_info

◦ CL_MEM_DX9_MEDIA_ADAPTER_TYPE_KHR

◦ CL_MEM_DX9_MEDIA_SURFACE_INFO_KHR

• cl_image_info

◦ CL_IMAGE_DX9_MEDIA_PLANE_KHR

• cl_command_type

◦ CL_COMMAND_ACQUIRE_DX9_MEDIA_SURFACES_KHR

◦ CL_COMMAND_RELEASE_DX9_MEDIA_SURFACES_KHR

• New Error Codes

◦ CL_INVALID_DX9_MEDIA_ADAPTER_KHR

◦ CL_INVALID_DX9_MEDIA_SURFACE_KHR

◦ CL_DX9_MEDIA_SURFACE_ALREADY_ACQUIRED_KHR

◦ CL_DX9_MEDIA_SURFACE_NOT_ACQUIRED_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_egl_event

Name String

cl_khr_egl_event

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

482



Description

cl_khr_egl_event allows creating OpenCL event objects linked to EGL fence sync objects, potentially
improving efficiency of sharing images and buffers between the two APIs. The companion
EGL_KHR_cl_event extension provides the complementary functionality of creating an EGL sync
object from an OpenCL event object.

New Commands

• clCreateEventFromEGLSyncKHR

New Enums

• cl_command_type

◦ CL_COMMAND_EGL_FENCE_SYNC_OBJECT_KHR

Issues

Most issues are shared with cl_khr_gl_event and are resolved as described in that extension.

1. Should we support implicit synchronization?

RESOLVED: No, as this may be very difficult since the synchronization would not be with EGL,
it would be with currently bound EGL client APIs. It would be necessary to know which client
APIs might be bound, to validate that they’re associated with the EGLDisplay associated with the
OpenCL context, and to reach into each such context.

2. Do we need to have typedefs to use EGL handles in OpenCL?

RESOLVED Using typedefs for EGL handles.

3. Should we restrict which CL APIs can be used with this cl_event?

RESOLVED Use is limited to calls to acquire and release memory objects only.

4. What is the desired behavior for this extension when EGLSyncKHR is of a type other than
EGL_SYNC_FENCE_KHR?

RESOLVED This extension only requires support for EGL_SYNC_FENCE_KHR. Support of other types
is an implementation choice, and will result in CL_INVALID_EGL_OBJECT_KHR if unsupported.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_egl_image

Name String

cl_khr_egl_image

483



Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_egl_image provides a mechanism to creating OpenCL memory objects from from EGLImages.

New Commands

• clCreateFromEGLImageKHR

• clEnqueueAcquireEGLObjectsKHR

• clEnqueueReleaseEGLObjectsKHR

New Enums

• cl_command_type

◦ CL_COMMAND_ACQUIRE_EGL_OBJECTS_KHR

◦ CL_COMMAND_RELEASE_EGL_OBJECTS_KHR

• New Error Codes

◦ CL_EGL_RESOURCE_NOT_ACQUIRED_KHR

◦ CL_INVALID_EGL_OBJECT_KHR

Issues

1. This extension does not support reference counting of the images, so the onus is on the
application to behave sensibly and not release the underlying cl_mem object while the EGLImage is
still being used.

2. In order to ensure data integrity, the application is responsible for synchronizing access to
shared CL/EGL image objects by their respective APIs. Failure to provide such synchronization
may result in race conditions and other undefined behavior. This may be accomplished by
calling clWaitForEvents with the event objects returned by any OpenCL commands which use
the shared image object or by calling clFinish.

3. Currently CL_MEM_READ_ONLY is the only supported flag for flags.

RESOLVED: Implementation will now return an error if writing to a shared object that is not

484



supported rather than disallowing it entirely.

4. Currently restricted to 2D image objects.

5. What should happen for YUV color-space conversion, multi plane images, and chroma-siting,
and channel mapping?

RESOLVED: YUV is no longer explicitly described in this extension. Before this removal the
behavior was dependent on the platform. This extension explicitly leaves the YUV layout to the
platform and EGLImage source extension (i.e. is implementation specific). Colorspace conversion
must be applied by the application using a color conversion matrix.

The expected extension path if YUV color-space conversion is to be supported is to introduce a
YUV image type and provide overloaded versions of the read_image built-in functions.

Getting image information for a YUV image should return the original image size (non
quantized size) when all of Y U and V are present in the image. If the planes have been
separated then the actual dimensionality of the separated plane should be reported. For
example with YUV 4:2:0 (NV12) with a YUV image of 256x256, the Y only image would return
256x256 whereas the UV only image would return 128x128.

6. Should an attribute list be used instead?

RESOLVED: function has been changed to use an attribute list.

7. What should happen for EGLImage extensions which introduce formats without a mapping to an
OpenCL image channel data type or channel order?

RESOLVED: This extension does not define those formats. It is expected that as additional EGL
extensions are added to create EGL images from other sources, an extension to CL will be
introduced where needed to represent those image types.

8. What are the guarantees to synchronization behavior provided by the implementation?

The basic portable form of synchronization is to use a clFinish, as is the case for GL interop. In
addition implementations which support the synchronization extensions cl_khr_egl_event and
EGL_KHR_cl_event can interoperate more efficiently as described in those extensions.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_expect_assume

Name String

cl_khr_expect_assume

Ratification Status

Ratified

485



Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2021-11-10

Interactions and External Dependencies

The initial version of this extension extends the OpenCL SPIR-V environment to support new
instructions. Please refer to the OpenCL SPIR-V Environment Specification that describes how
this extension modifies the OpenCL SPIR-V environment.

IP Status

No known IP claims.

Description

cl_khr_expect_assume adds mechanisms to provide information to the compiler that may improve
the performance of some kernels. Specifically, this extension adds the ability to:

• Tell the compiler the expected value of a variable.

• Allow the compiler to assume a condition is true.

These functions are not required for functional correctness.

The initial version of this extension extends the OpenCL SPIR-V environment to support new
instructions for offline compilation tool chains. Similar functionality may be provided by some
OpenCL C online compilation tool chains, but formal support in OpenCL C is not required by the
initial version of the extension.

Sample Code

Although this extension does not formally extend OpenCL C, the ability to provide expect and
assume information is supported by many OpenCL C compiler tool chains. The sample code below
describes how to test for and provide expect and assume information to compilers based on Clang:

// __has_builtin is an optional compiler feature that is supported by Clang.
// If this feature is not supported, we will assume the builtin is not present.
#ifndef __has_builtin
#define __has_builtin(x)    0
#endif

kernel void test(global int* dst, global int* src)
{
    int value = src[get_global_id(0)];

    // Tell the compiler that the most likely source value is zero.
#if __has_builtin(__builtin_expect)

486



    value = __builtin_expect(value, 0);
#endif

    // Tell the compiler that the source value is non-negative.
    // Behavior is undefined if the source value is actually negative.
#if __has_builtin(__builtin_assume)
    __builtin_assume(value >= 0);
#endif

    dst[get_global_id(0)] = value % 4;
}

Version History

• Revision 1.0.0, 2021-11-10

◦ First assigned version.

cl_khr_extended_async_copies

Name String

cl_khr_extended_async_copies

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2021-11-10

IP Status

No known IP claims.

Description

cl_khr_extended_async_copies augments built-in OpenCL C asynchronous copy functions to support
more patterns:

1. For async copy between 2D source and 2D destination.

2. For async copy between 3D source and 3D destination.

See the Extended Async Copy Functions section of the OpenCL C specification for more information.

487

OpenCL_C.html#cl_khr_extended_async_copies


Version History

• Revision 0.9.0, 2020-04-21

◦ First assigned version (provisional).

• Revision 0.9.1, 2021-09-06

◦ Elements-based proposal update.

• Revision 1.0.0, 2021-11-10

◦ First non-provisional version.

cl_khr_extended_bit_ops

Name String

cl_khr_extended_bit_ops

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2021-04-22

IP Status

No known IP claims.

Description

cl_khr_extended_bit_ops adds built-in OpenCL C functions for performing extended bit operations.
Specifically, the following functions are added:

• bitfield insert: insert bits from one source operand into another source operand.

• bitfield extract: extract bits from a source operand, with sign- or zero-extension.

• bit reverse: reverse the bits of a source operand.

See the Extended Bit Operations section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2021-04-22

◦ Initial version.

488

OpenCL_C.html#cl_khr_extended_bit_ops


cl_khr_extended_versioning

Name String

cl_khr_extended_versioning

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 3.0

Other Extension Metadata

Last Modified Date

2020-02-12

IP Status

No known IP claims.

Contributors

• Kévin Petit, Arm Ltd.

• Ben Ashbaugh, Intel

• Alastair Murray, Codeplay Software Ltd.

• Einar Hov, Arm Ltd.

Description

The cl_khr_extended_versioning extension introduces new platform and device queries that return
detailed version information to applications. It makes it possible to return the exact revision of the
specification or intermediate languages supported by an implementation. It also enables
implementations to communicate a version number for each of the extensions they support and
remove the requirement for applications to process strings to test for the presence of an extension
or intermediate language or built-in kernel.

Extended versioning was promoted to a core feature in OpenCL 3.0. However, the query for
CL_DEVICE_OPENCL_C_NUMERIC_VERSION_KHR was replaced by the query for CL_DEVICE_OPENCL_C_ALL_
VERSIONS. With the exception of this query, all types, structures, enums, and macro names defined
by this extension are equivalent to the corresponding core name (with the _KHR or _khr suffix
removed).

The version number encoding scheme is described in the Versioning section.

New Types

• cl_version_khr

489



New Structures

• cl_name_version_khr

• CL_NAME_VERSION_MAX_NAME_SIZE_KHR

New Macro Names

• CL_VERSION_MAJOR_BITS_KHR

• CL_VERSION_MINOR_BITS_KHR

• CL_VERSION_PATCH_BITS_KHR

• CL_VERSION_MAJOR_MASK_KHR

• CL_VERSION_MINOR_MASK_KHR

• CL_VERSION_PATCH_MASK_KHR

• CL_VERSION_MAJOR_KHR

• CL_VERSION_MINOR_KHR

• CL_VERSION_PATCH_KHR

• CL_MAKE_VERSION_KHR

New Enums

• cl_device_info

◦ CL_DEVICE_NUMERIC_VERSION_KHR

◦ CL_DEVICE_OPENCL_C_NUMERIC_VERSION_KHR

◦ CL_DEVICE_EXTENSIONS_WITH_VERSION_KHR

◦ CL_DEVICE_ILS_WITH_VERSION_KHR

◦ CL_DEVICE_BUILT_IN_KERNELS_WITH_VERSION_KHR

• cl_platform_info

◦ CL_PLATFORM_NUMERIC_VERSION_KHR

◦ CL_PLATFORM_EXTENSIONS_WITH_VERSION_KHR

Conformance Tests

1. Each of the new queries described in this extension must be attempted and succeed.

2. It must be verified that the information returned by all queries that extend existing queries is
consistent with the information returned by existing queries.

3. Some of the queries introduced by this extension impose uniqueness constraints on the list of
returned values. It must be verified that these constraints are satisfied.

Issues

1. What compatibility policy should we define? e.g. a revision has to be backwards-compatible
with previous ones

490



RESOLVED: No general rules as that wouldn’t be testable. Here’s a recommended policy:

◦ Patch version bump: only clarifications and small/obvious bugfixes.

◦ Minor version bump: backwards-compatible changes only.

◦ Major version bump: backwards compatibility may break.

2. Do we want versioning for built-in kernels as returned by CL_DEVICE_BUILT_IN_KERNELS?

RESOLVED: No immediate use-case for versioning but being able to get a list of individual
kernels without parsing a string is desirable. Adding CL_DEVICE_BUILT_IN_KERNELS_WITH_VERSION_
KHR.

3. What is the behaviour of the queries that return an array of structures when there are no
elements to return?

RESOLVED: The query succeeds and the size returned is zero.

4. What value should be returned when version information is not available?

RESOLVED: If a patch version is not available, it should be reported as 0. If no version
information is available, 0.0.0 should be reported. These values have been chosen as they are
guaranteed to be lower than or equal to any other version.

5. Should we add a query to report SPIR-V extended instruction sets?

RESOLVED: It is unlikely that we will introduce many SPIR-V extended instruction sets without
an accompanying API extension. Decided not to do this.

6. Should the queries for which the old-style query doesn’t exist in a given OpenCL version be
present (e.g. CL_DEVICE_BUILT_IN_KERNELS_WITH_VERSION_KHR prior to OpenCL 2.1 or without
support for cl_khr_il_program or CL_DEVICE_OPENCL_C_NUMERIC_VERSION_KHR on OpenCL 1.0)?

RESOLVED: All the queries are always present. CL_DEVICE_BUILT_IN_KERNELS_WITH_VERSION_KHR
returns an empty set when Intermediate Languages are not supported. CL_DEVICE_OPENCL_C_
NUMERIC_VERSION_KHR always returns 1.0 on an OpenCL 1.0 platform.

7. Is reporting multiple Intermediate Languages with the same name and major/minor versions
but differing patch versions allowed?

RESOLVED: No. This isn’t aligned with the intended use for patch versions and makes it harder
for implementations to guarantee consistency with the existing IL queries.

Version History

• Revision 1.0.0, 2020-02-12

◦ Initial version.

cl_khr_external_memory

491



Name String

cl_khr_external_memory

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 3.0

Other Extension Metadata

Last Modified Date

2024-03-15

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_memory defines a generic mechanism to share buffer and image objects between
OpenCL and many other APIs, including:

• Optional properties to import external memory exported by other APIs into OpenCL for a set of

492



devices.

• Routines to explicitly hand off memory ownership between OpenCL and other APIs.

Other related extensions define specific external memory types that may be imported into OpenCL.

New Commands

• clEnqueueAcquireExternalMemObjectsKHR

• clEnqueueReleaseExternalMemObjectsKHR

New Types

• cl_external_memory_handle_type_khr

New Enums

• cl_platform_info

◦ CL_PLATFORM_EXTERNAL_MEMORY_IMPORT_HANDLE_TYPES_KHR

• cl_device_info

◦ CL_DEVICE_EXTERNAL_MEMORY_IMPORT_HANDLE_TYPES_KHR

◦ CL_DEVICE_EXTERNAL_MEMORY_IMPORT_ASSUME_LINEAR_IMAGES_HANDLE_TYPES_KHR

• cl_mem_properties

◦ CL_MEM_DEVICE_HANDLE_LIST_KHR

◦ CL_MEM_DEVICE_HANDLE_LIST_END_KHR

• Return values from from clGetEventInfo when param_name is cl_command_type:

◦ CL_COMMAND_ACQUIRE_EXTERNAL_MEM_OBJECTS_KHR

◦ CL_COMMAND_RELEASE_EXTERNAL_MEM_OBJECTS_KHR

Sample Code

Example for Creating a CL Buffer From an Exported External Buffer in a Single Device Context

This example also requires use of the cl_khr_external_memory_opaque_fd extension.

// Get cl_devices of the platform.
clGetDeviceIDs(..., &devices, &deviceCount);

// Create cl_context with just first device
clCreateContext(..., 1, devices, ...);

// Obtain fd/win32 or similar handle for external memory to be imported
// from other API.
int fd = getFdForExternalMemory();

// Create extMemBuffer of type cl_mem from fd.

493



cl_mem_properties_khr extMemProperties[] =
{
    (cl_mem_properties_khr)CL_EXTERNAL_MEMORY_HANDLE_OPAQUE_FD_KHR,
    (cl_mem_properties_khr)fd,
    0
};

cl_mem extMemBuffer = clCreateBufferWithProperties(/*context*/          clContext,
                                                   /*properties*/
extMemProperties,
                                                   /*flags*/            0,
                                                   /*size*/             size,
                                                   /*host_ptr*/         NULL,
                                                   /*errcode_ret*/      &errcode_ret);

Example for Creating a CL Image From an Exported External Image for Single Device Usage in a Multi-Device
Context

This example also requires use of the cl_khr_external_memory_opaque_fd extension.

// Get cl_devices of the platform.
clGetDeviceIDs(..., &devices, &deviceCount);

// Create cl_context with first two devices
clCreateContext(..., 2, devices, ...);

// Create img of type cl_mem usable only on devices[0]

// Create img of type cl_mem.
// Obtain fd/win32 or similar handle for external memory to be imported
// from other API.
int fd = getFdForExternalMemory();

// Set cl_image_format based on external image info
cl_image_format clImgFormat = { };
clImageFormat.image_channel_order = CL_RGBA;
clImageFormat.image_channel_data_type = CL_UNORM_INT8;

// Set cl_image_desc based on external image info
size_t clImageFormatSize;
cl_image_desc image_desc = { };
image_desc.image_type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
image_desc.image_width = width;
image_desc.image_height = height;
image_desc.image_depth = depth;
image_desc.image_array_size = num_slices;
image_desc.image_row_pitch = width * 8 * 4; // May need alignment
image_desc.image_slice_pitch = image_desc.image_row_pitch * height;
image_desc.num_mip_levels = 1;
image_desc.num_samples = 0;

494



image_desc.buffer = NULL;

cl_mem_properties_khr extMemProperties[] = {
    (cl_mem_properties_khr)CL_EXTERNAL_MEMORY_HANDLE_OPAQUE_FD_KHR,
    (cl_mem_properties_khr)fd,
    (cl_mem_properties_khr)CL_MEM_DEVICE_HANDLE_LIST_KHR,
    (cl_mem_properties_khr)devices[0],
    CL_MEM_DEVICE_HANDLE_LIST_END_KHR,
    0
};

cl_mem img = clCreateImageWithProperties(/*context*/        clContext,
                                         /*properties*/     extMemProperties,
                                         /*flags*/          0,
                                         /*image_format*/   &clImgFormat,
                                         /*image_desc*/     &image_desc,
                                         /*errcode_ret*/    &errcode_ret);

// Use clGetImageInfo to get cl_image_format details.
size_t clImageFormatSize;
clGetImageInfo(img,
               CL_IMAGE_FORMAT,
               sizeof(cl_image_format),
               &clImageFormat,
               &clImageFormatSize);

Example for Synchronization Using Wait and Signal

// Start the main rendering loop

// Create extSem of type cl_semaphore_khr using clCreateSemaphoreWithPropertiesKHR

// Create extMem of type cl_mem using clCreateBufferWithProperties or
clCreateImageWithProperties

while (true) {
    // (not shown) Signal the semaphore from the other API

    // Wait for the semaphore in OpenCL, by calling clEnqueueWaitSemaphoresKHR on
'extSem'
    clEnqueueWaitSemaphoresKHR(/*command_queue*/            command_queue,
                               /*num_sema_objects*/         1,
                               /*sema_objects*/             &extSem,
                               /*sema_payload_list*/        NULL,
                               /*num_events_in_wait_list*/  0,
                               /*event_wait_list*/          NULL,
                               /*event*/                    NULL);

    // Launch kernel that accesses extMem
    clEnqueueNDRangeKernel(command_queue, ...);

495



    // Signal the semaphore in OpenCL
    clEnqueueSignalSemaphoresKHR(/*command_queue*/           command_queue,
                                 /*num_sema_objects*/        1,
                                 /*sema_objects*/            &extSem,
                                 /*sema_payload_list*/       NULL,
                                 /*num_events_in_wait_list*/ 0,
                                 /*event_wait_list*/         NULL,
                                 /*event*/                   NULL);

    // (not shown) Launch work in other API that waits on 'extSem'
}

Example With Memory Sharing Using Acquire/Release

// Create extSem of type cl_semaphore_khr using
// clCreateSemaphoreWithPropertiesKHR with CL_SEMAPHORE_HANDLE_*_KHR.

// Create extMem1 and extMem2 of type cl_mem using clCreateBufferWithProperties
// or clCreateImageWithProperties

while (true) {
    // (not shown) Signal the semaphore from the other API. Wait for the
    // semaphore in OpenCL, by calling clEnqueueWaitForSemaphore on extSem
    clEnqueueWaitSemaphoresKHR(/*command_queue*/            cq1,
                               /*num_sema_objects*/         1,
                               /*sema_objects*/             &extSem,
                               /*sema_payload_list*/        NULL,
                               /*num_events_in_wait_list*/  0,
                               /*event_wait_list*/          NULL,
                               /*event*/                    NULL);

    // Get explicit ownership of extMem1
    clEnqueueAcquireExternalMemObjectsKHR(/*command_queue*/             cq1,
                                          /*num_mem_objects*/           1,
                                          /*mem_objects*/               extMem1,
                                          /*num_events_in_wait_list*/   0,
                                          /*event_wait_list*/           NULL,
                                          /*event*/                     NULL);

    // Launch kernel that accesses extMem1 on cq1 on cl_device1
    clEnqueueNDRangeKernel(cq1,  ..., &event1);

    // Launch kernel that accesses both extMem1 and extMem2 on cq2 on cl_device2
    // Migration of extMem1 and extMem2 handles through regular CL memory
    // migration.
    clEnqueueNDRangeKernel(cq2, ..., &event1, &event2);

    // Give up ownership of extMem1 before you signal the semaphore. Handle
    // memory migration here.

496



    clEnqueueReleaseExternalMemObjectsKHR(/*command_queue*/           cq2
                                          /*num_mem_objects*/         1,
                                          /*mem_objects*/             &extMem1,
                                          /*num_events_in_wait_list*/ 0,
                                          /*event_wait_list*/         NULL,
                                          /*event*/                   NULL);

    // Signal the semaphore from OpenCL
    clEnqueueSignalSemaphoresKHR(/*command_queue*/           cq2,
                                 /*num_sema_objects*/        1,
                                 /*sema_objects*/            &extSem,
                                 /*sema_payload_list*/       NULL,
                                 /*num_events_in_wait_list*/ 0,
                                 /*event_wait_list*/         NULL,
                                 /*event*/                   NULL);

    // (not shown) Launch work in other API that waits on 'extSem'
    // Other API accesses ext1, but not ext2 on device-1
}

Issues

1. How should the import of images that are created in external APIs with non-linear tiling be
robustly handled?

UNRESOLVED

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

• Revision 0.9.1, 2023-05-04

◦ Clarified device handle list enum cannot be specified without an external memory handle
(provisional).

• Revision 0.9.2, 2023-08-01

◦ Changed device handle list enum to the memory-specific CL_MEM_DEVICE_HANDLE_LIST_KHR
(provisional).

• Revision 0.9.3, 2023-08-29

◦ Added query for CL_DEVICE_EXTERNAL_MEMORY_IMPORT_ASSUME_LINEAR_IMAGES_HANDLE_TYPES_KHR
(provisional).

• Revision 1.0.0, 2024-03-15

◦ First non-provisional version.

cl_khr_external_memory_dma_buf

497



Name String

cl_khr_external_memory_dma_buf

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 3.0
and
cl_khr_external_memory

Other Extension Metadata

Last Modified Date

2024-03-15

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_memory_dma_buf extends cl_external_memory_handle_type_khr to support Linux
dma_buf as an external memory handle type that may be specified when creating a buffer or image

498



memory object.

New Enums

• cl_external_memory_handle_type_khr

◦ CL_EXTERNAL_MEMORY_HANDLE_DMA_BUF_KHR

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

• Revision 0.9.1, 2023-05-04

◦ Clarified device handle list enum cannot be specified without an external memory handle
(provisional).

• Revision 0.9.2, 2023-08-01

◦ Changed device handle list enum to the memory-specific CL_MEM_DEVICE_HANDLE_LIST_KHR
(provisional).

• Revision 0.9.3, 2023-08-29

◦ Added query for CL_DEVICE_EXTERNAL_MEMORY_IMPORT_ASSUME_LINEAR_IMAGES_HANDLE_TYPES_KHR
(provisional).

• Revision 1.0.0, 2024-03-15

◦ First non-provisional version.

cl_khr_external_memory_opaque_fd

Name String

cl_khr_external_memory_opaque_fd

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 3.0
and
cl_khr_external_memory

Other Extension Metadata

Last Modified Date

2024-03-15

IP Status

No known IP claims.

499



Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_memory_opaque_fd extends cl_external_memory_handle_type_khr to support a POSIX
file descriptor handle as an external memory handle type that may be specified when creating a
buffer or image memory object.

New Enums

• cl_external_memory_handle_type_khr

◦ CL_EXTERNAL_MEMORY_HANDLE_OPAQUE_FD_KHR

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

• Revision 0.9.1, 2023-05-04

◦ Clarified device handle list enum cannot be specified without an external memory handle
(provisional).

• Revision 0.9.2, 2023-08-01

◦ Changed device handle list enum to the memory-specific CL_MEM_DEVICE_HANDLE_LIST_KHR
(provisional).

500



• Revision 0.9.3, 2023-08-29

◦ Added query for CL_DEVICE_EXTERNAL_MEMORY_IMPORT_ASSUME_LINEAR_IMAGES_HANDLE_TYPES_KHR
(provisional).

• Revision 1.0.0, 2024-03-15

◦ First non-provisional version.

cl_khr_external_memory_win32

Name String

cl_khr_external_memory_win32

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 3.0
and
cl_khr_external_memory

Other Extension Metadata

Last Modified Date

2024-03-15

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

501



• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_memory_win32 extends cl_external_memory_handle_type_khr to support Windows
handles as external memory handle types that may be specified when creating a buffer or image
memory object.

New Enums

• cl_external_memory_handle_type_khr

◦ CL_EXTERNAL_MEMORY_HANDLE_OPAQUE_WIN32_KHR

◦ CL_EXTERNAL_MEMORY_HANDLE_OPAQUE_WIN32_KMT_KHR

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

• Revision 0.9.1, 2023-05-04

◦ Clarified device handle list enum cannot be specified without an external memory handle
(provisional).

• Revision 0.9.2, 2023-08-01

◦ Changed device handle list enum to the memory-specific CL_MEM_DEVICE_HANDLE_LIST_KHR
(provisional).

• Revision 0.9.3, 2023-08-29

◦ Added query for CL_DEVICE_EXTERNAL_MEMORY_IMPORT_ASSUME_LINEAR_IMAGES_HANDLE_TYPES_KHR
(provisional).

• Revision 1.0.0, 2024-03-15

◦ First non-provisional version.

cl_khr_external_semaphore

Name String

cl_khr_external_semaphore

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 1.2
and
cl_khr_semaphore

502



Other Extension Metadata

Last Modified Date

2024-03-15

Interactions and External Dependencies

• This extension requires OpenCL 1.2.

• The cl_khr_semaphore extension is required as it defines semaphore objects as well as for wait
and signal operations on semaphores.

• For OpenCL to be able to import external semaphores from other APIs using this extension,
the other API is required to provide below mechanisms:

◦ Ability to export semaphore handles

◦ Ability to query semaphore handle in the form of one of the handle type supported by
OpenCL.

• The other APIs that want to use semaphore exported by OpenCL using this extension are
required to provide below mechanism:

◦ Ability to import semaphore handles using handle types exported by OpenCL.

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

503



Description

cl_khr_semaphore introduced semaphores as a new type along with a set of APIs for create, release,
retain, wait and signal operations on it. This extension defines APIs and mechanisms to share
semaphores created in an external API by importing into and exporting from OpenCL.

This extension defines:

• New attributes that can be passed as part of cl_semaphore_properties_khr for specifying
properties of external semaphores to be imported or exported.

• New attributes that can be passed as part of cl_semaphore_info_khr for specifying properties of
external semaphores to be exported.

• An extension to clCreateSemaphoreWithPropertiesKHR to accept external semaphore
properties allowing to import or export an external semaphore into or from OpenCL.

• Semaphore handle types required for importing and exporting semaphores.

• Modifications to Wait and Signal API behavior when dealing with external semaphores created
from different handle types.

• API query exportable semaphores handles using specified handle type.

The layered extensions cl_khr_external_semaphore_dx_fence, cl_khr_external_semaphore_opaque_fd,
cl_khr_external_semaphore_sync_fd, and cl_khr_external_semaphore_win32 define specific external
semaphores that may be imported into or exported from OpenCL.

New Types

• cl_external_semaphore_handle_type_khr

New Enums

• cl_platform_info

◦ CL_PLATFORM_SEMAPHORE_IMPORT_HANDLE_TYPES_KHR

◦ CL_PLATFORM_SEMAPHORE_EXPORT_HANDLE_TYPES_KHR

• cl_device_info

◦ CL_DEVICE_SEMAPHORE_IMPORT_HANDLE_TYPES_KHR

◦ CL_DEVICE_SEMAPHORE_EXPORT_HANDLE_TYPES_KHR

• cl_semaphore_properties_khr and cl_semaphore_info_khr:

◦ CL_SEMAPHORE_EXPORT_HANDLE_TYPES_KHR

◦ CL_SEMAPHORE_EXPORT_HANDLE_TYPES_LIST_END_KHR

• cl_semaphore_info_khr

◦ CL_SEMAPHORE_EXPORTABLE_KHR

Sample Code

The following examples use the cl_khr_external_semaphore_opaque_fd extension to obtain an

504



external semaphore. Similar code can be written using the other layered extensions.

Example for Importing a Semaphore Created by Another API in OpenCL in a Single-Device Context

// Get cl_devices of the platform.
clGetDeviceIDs(..., &devices, &deviceCount);

// Create cl_context with just first device
clCreateContext(..., 1, devices, ...);

// Obtain fd/win32 or similar handle for external semaphore to be imported
// from the other API.
int fd = getFdForExternalSemaphore();

// Create clSema of type cl_semaphore_khr usable on the only available device
// assuming the semaphore was imported from the same device.

cl_semaphore_properties_khr sema_props[] =
        {(cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_KHR,
         (cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_BINARY_KHR,
         (cl_semaphore_properties_khr)CL_SEMAPHORE_HANDLE_OPAQUE_FD_KHR,
         (cl_semaphore_properties_khr)fd,
          0};

int errcode_ret = 0;
cl_semaphore_khr clSema = clCreateSemaphoreWithPropertiesKHR(context,
                                                             sema_props,
                                                             &errcode_ret);

Example for Importing a Semaphore Created by Another API in OpenCL in a Multi-device Context for Single
Device Usage

// Get cl_devices of the platform.
clGetDeviceIDs(..., &devices, &deviceCount);

// Create cl_context with first two devices
clCreateContext(..., 2, devices, ...);

// Obtain fd/win32 or similar handle for external semaphore to be imported
// from the other API.
int fd = getFdForExternalSemaphore();

// Create clSema of type cl_semaphore_khr usable only on device 1
// assuming the semaphore was imported from the same device.
cl_semaphore_properties_khr sema_props[] = {
    (cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_KHR,
    (cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_BINARY_KHR,
    (cl_semaphore_properties_khr)CL_SEMAPHORE_HANDLE_OPAQUE_FD_KHR,
    (cl_semaphore_properties_khr)fd,

505



    (cl_semaphore_properties_khr)CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR,
    (cl_semaphore_properties_khr)devices[1],
    CL_SEMAPHORE_DEVICE_HANDLE_LIST_END_KHR,
    0
};

int errcode_ret = 0;
cl_semaphore_khr clSema = clCreateSemaphoreWithPropertiesKHR(context,
                                                             sema_props,
                                                             &errcode_ret);

Example for Synchronization Using a Semaphore Created by Another API and Imported in OpenCL

// Create clSema using one of the above examples of external semaphore creation.

int errcode_ret = 0;
cl_semaphore_khr clSema = clCreateSemaphoreWithPropertiesKHR(context,
                                                             sema_props,
                                                             &errcode_ret);

// Start the main loop

while (true) {
    // (not shown) Signal the semaphore from the other API

    // Wait for the semaphore in OpenCL
    clEnqueueWaitSemaphoresKHR(/*command_queue*/           command_queue,
                               /*num_sema_objects*/        1,
                               /*sema_objects*/            &clSema,
                               /*num_events_in_wait_list*/ 0,
                               /*event_wait_list*/         NULL,
                               /*event*/                   NULL);

    // Launch kernel
    clEnqueueNDRangeKernel(command_queue, ...);

    // Signal the semaphore in OpenCL
    clEnqueueSignalSemaphoresKHR(/*command_queue*/           command_queue,
                                 /*num_sema_objects*/        1,
                                 /*sema_objects*/            &clSema,
                                 /*num_events_in_wait_list*/ 0,
                                 /*event_wait_list*/         NULL,
                                 /*event*/                   NULL);

    // (not shown) Launch work in the other API that waits on 'clSema'

}

506



Example for Synchronization Using a Semaphore Exported by OpenCL

// Get cl_devices of the platform.
clGetDeviceIDs(..., &devices, &deviceCount);

// Create cl_context with first two devices
clCreateContext(..., 2, devices, ...);

// Create clSema of type cl_semaphore_khr usable only on device 1
cl_semaphore_properties_khr sema_props[] = {
    (cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_KHR,
    (cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_BINARY_KHR,
    (cl_semaphore_properties_khr)CL_SEMAPHORE_EXPORT_HANDLE_TYPES_KHR,
    (cl_semaphore_properties_khr)CL_SEMAPHORE_HANDLE_OPAQUE_FD_KHR,
    CL_SEMAPHORE_EXPORT_HANDLE_TYPES_LIST_END_KHR,
    (cl_semaphore_properties_khr)CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR,
    (cl_semaphore_properties_khr)devices[1],
    CL_SEMAPHORE_DEVICE_HANDLE_LIST_END_KHR,
    0
};

int errcode_ret = 0;
cl_semaphore_khr clSema = clCreateSemaphoreWithPropertiesKHR(context,
                                                             sema_props,
                                                             &errcode_ret);

// Application queries handle-type and the exportable handle associated with the
semaphore.
clGetSemaphoreInfoKHR(clSema,
                      CL_SEMAPHORE_EXPORT_HANDLE_TYPES_KHR,
                      sizeof(cl_external_semaphore_handle_type_khr),
                      &handle_type,
                      &handle_type_size);

// The other API or process can use the exported semaphore handle
// to import
int fd = -1;
if (handle_type == CL_SEMAPHORE_HANDLE_OPAQUE_FD_KHR) {
    clGetSemaphoreHandleForTypeKHR(clSema,
                                   device,
                                   CL_SEMAPHORE_HANDLE_OPAQUE_FD_KHR,
                                   sizeof(int),
                                   &fd,
                                   NULL);
}

// Start the main rendering loop

while (true) {
    // (not shown) Signal the semaphore from the other API

507



    // Wait for the semaphore in OpenCL
    clEnqueueWaitSemaphoresKHR(/*command_queue*/           command_queue,
                               /*num_sema_objects*/        1,
                               /*sema_objects*/            &clSema,
                               /*num_events_in_wait_list*/ 0,
                               /*event_wait_list*/         NULL,
                               /*event*/                   NULL);

    // Launch kernel
    clEnqueueNDRangeKernel(command_queue, ...);

    // Signal the semaphore in OpenCL
    clEnqueueSignalSemaphoresKHR(/*command_queue*/           command_queue,
                                 /*num_sema_objects*/        1,
                                 /*sema_objects*/            &clSema,
                                 /*num_events_in_wait_list*/ 0,
                                 /*event_wait_list*/         NULL,
                                 /*event*/                   NULL);

    // (not shown) Launch work in the other API that waits on 'clSema'
}

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

• Revision 0.9.1, 2023-11-16

◦ Added CL_SEMAPHORE_EXPORTABLE_KHR.

• Revision 0.9.2, 2023-11-21

◦ Added re-import function call to cl_khr_external_semaphore_sync_fd

• Revision 1.0.0, 2024-03-15

◦ First non-provisional version.

cl_khr_external_semaphore_opaque_fd

Name String

cl_khr_external_semaphore_opaque_fd

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 1.2
and
cl_khr_semaphore
and

508



cl_khr_external_semaphore

Other Extension Metadata

Last Modified Date

2024-03-15

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_semaphore_opaque_fd supports importing and exporting a restricted POSIX file
descriptor as an external semaphore using the APIs introduced by cl_khr_external_semaphore.

New Enums

• cl_external_semaphore_handle_type_khr

◦ CL_SEMAPHORE_HANDLE_OPAQUE_FD_KHR

Version History

• Revision 0.9.0, 2021-09-10

509



◦ Initial version (provisional).

• Revision 1.0.0, 2024-03-15

◦ First non-provisional version.

cl_khr_external_semaphore_sync_fd

Name String

cl_khr_external_semaphore_sync_fd

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 1.2
and
cl_khr_semaphore
and
cl_khr_external_semaphore

Other Extension Metadata

Last Modified Date

2024-03-15

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

510



• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_semaphore_sync_fd supports importing and exporting a POSIX file descriptor handle
to a Linux Sync File or Android Fence object as an external semaphore using the APIs introduced by
cl_khr_external_semaphore.

New Commands

• clGetSemaphoreHandleForTypeKHR

New Types

• cl_semaphore_reimport_properties_khr

New Enums

• cl_external_semaphore_handle_type_khr

◦ CL_SEMAPHORE_HANDLE_SYNC_FD_KHR

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

• Revision 0.9.1, 2023-11-16

◦ Added CL_SEMAPHORE_EXPORTABLE_KHR.

• Revision 0.9.2, 2023-11-21

◦ Added re-import function call to cl_khr_external_semaphore_sync_fd

• Revision 1.0.0, 2024-03-15

◦ First non-provisional version.

cl_khr_fp16

Name String

cl_khr_fp16

Ratification Status

Ratified

Extension and Version Dependencies

None

511



Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_fp16 adds support to OpenCL C for half scalar and vector types as built-in types that can be
used for arithmetic operations, conversions, etc.

See the Half-Precision Floating-Point section of the OpenCL C specification for more information.

New Enums

• cl_device_info

◦ CL_DEVICE_HALF_FP_CONFIG

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_fp64

Name String

cl_khr_fp64

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 1.2

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

512

OpenCL_C.html#cl_khr_fp16


Description

cl_khr_fp64 adds support to OpenCL C for double-precision scalar and vector types as built-in types
that can be used for arithmetic operations, conversions, etc.

See the Double-Precision Floating-Point section of the OpenCL C specification for more information.

New Enums

• cl_device_info

◦ CL_DEVICE_DOUBLE_FP_CONFIG

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_gl_depth_images

Name String

cl_khr_gl_depth_images

Ratification Status

Ratified

Extension and Version Dependencies

cl_khr_gl_sharing

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_gl_depth_images extends OpenCL / OpenGL sharing defined by the cl_khr_gl_sharing
extension to allow an OpenCL image to be created from an OpenGL depth or depth-stencil texture.

Depth images with an image channel order of CL_DEPTH_STENCIL can only be created using the
clCreateFromGLTexture API.

New Enums

• cl_channel_order

◦ CL_DEPTH_STENCIL

• cl_channel_type

513

OpenCL_C.html#cl_khr_fp64


◦ CL_UNORM_INT24

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_gl_event

Name String

cl_khr_gl_event

Ratification Status

Ratified

Extension and Version Dependencies

cl_khr_gl_sharing

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_gl_event allows creating OpenCL event objects linked to OpenGL fence sync objects,
potentially improving efficiency of sharing images and buffers between the two APIs. The
companion GL_ARB_cl_event extension provides the complementary functionality of creating an
OpenGL sync object from an OpenCL event object.

In addition, this extension modifies the behavior of clEnqueueAcquireGLObjects and
clEnqueueReleaseGLObjects to implicitly guarantee synchronization with an OpenGL context
bound in the same thread as the OpenCL context.

New Commands

• clCreateEventFromGLsyncKHR

New Enums

• cl_command_type

◦ CL_COMMAND_GL_FENCE_SYNC_OBJECT_KHR

Issues

1. How are references between CL events and GL syncs handled?

514



PROPOSED: The linked CL event places a single reference on the GL sync object. That reference
is removed when the CL event is deleted. A more expensive alternative would be to reflect
changes in the CL event reference count through to the GL sync.

2. How are linkages to synchronization primitives in other APIs handled?

UNRESOLVED. We will at least want to have a way to link events to EGL sync objects. There is
probably no analogous DX concept. There would be an entry point for each type of
synchronization primitive to be linked to, such as clCreateEventFromEGLSyncKHR.

An alternative is a generic clCreateEventFromExternalEvent taking an attribute list. The
attribute list would include information defining the type of the external primitive and
additional information (GL sync object handle, EGL display and sync object handle, etc.) specific
to that type. This allows a single entry point to be reused.

These will probably be separate extensions following the API proposed here.

3. Should the CL_EVENT_COMMAND_TYPE correspond to the type of command (fence) or the type of the
linked sync object?

PROPOSED: To the type of the linked sync object.

4. Should we support both explicit and implicit synchronization?

PROPOSED: Yes. Implicit synchronization is suitable when GL and CL are executing in the same
application thread. Explicit synchronization is suitable when they are executing in different
threads but the expense of glFinish is too high.

5. Should this be a platform or device extension?

PROPOSED: Platform extension. This may result in considerable under-the-hood work to
implement the sync→event semantics using only the public GL API, however, when multiple
drivers and devices with different GL support levels coexist in the same runtime.

6. Where can events generated from GL syncs be usable?

PROPOSED: Only with clEnqueueAcquireGLObjects, and attempting to use such an event
elsewhere will generate an error. There is no apparent use case for using such events
elsewhere, and possibly some cost to supporting it, balanced by the cost of checking the source
of events in all other commands accepting them as parameters.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_gl_msaa_sharing

Name String

cl_khr_gl_msaa_sharing

515



Ratification Status

Ratified

Extension and Version Dependencies

cl_khr_gl_depth_images
and
cl_khr_gl_sharing

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_gl_msaa_sharing extends the cl_khr_gl_sharing extension to allow a shared OpenCL/OpenGL
image object to be created from an OpenGL multi-sampled (“MSAA”) color or depth texture.

This extension adds multi-sample support to clCreateFromGLTexture and clGetGLTextureInfo,
and allows passing multi-sample images to compute kernels.

This extension requires cl_khr_gl_depth_images.

See the cl_khr_gl_msaa_sharing section of the OpenCL C specification for more information.

New Enums

• cl_gl_texture_info

◦ CL_GL_NUM_SAMPLES

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_gl_sharing

Name String

cl_khr_gl_sharing

Ratification Status

Ratified

Extension and Version Dependencies

None

516

OpenCL_C.html#cl_khr_gl_msaa_sharing


Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

The cl_khr_gl_sharing extension allows use of OpenGL buffer, texture, and renderbuffer objects as
OpenCL memory objects, referred to as “Shared OpenCL/OpenGL Memory Objects”.

An OpenCL context may be associated with an OpenGL context or share group object, using
additional attributes described for clCreateContext.

An OpenCL image object may be created from an OpenGL texture or renderbuffer object as
described for clCreateFromGLTexture and clCreateFromGLRenderbuffer, respectively.

An OpenCL buffer object may be created from an OpenGL buffer object using
clCreateFromGLBuffer.

Any supported OpenGL object defined within the associated OpenGL context or share group object
may be shared, with the exception of the default OpenGL objects (i.e. objects named zero), which
may not be shared.

Additional information on the use of shared OpenCL/OpenGL memory objects is found in the
Lifetime of Shared OpenCL/OpenGL Memory Objects, Acquiring, Releasing, and Synchronizing
Access to Shared OpenCL/OpenGL Memory Objects and Querying Devices that Support Sharing with
OpenGL sections.

An OpenGL implementation supporting buffer objects and sharing of texture and buffer object
images with OpenCL is required by this extension.

New Commands

• clGetGLContextInfoKHR

• clCreateFromGLBuffer

• clCreateFromGLTexture

• clCreateFromGLRenderbuffer

• clGetGLObjectInfo

• clGetGLTextureInfo

• clEnqueueAcquireGLObjects

• clEnqueueReleaseGLObjects

517



New Types

• cl_gl_context_info

• cl_gl_object_type

• cl_gl_texture_info

• cl_gl_platform_info

New Enums

• cl_gl_context_info

◦ CL_CURRENT_DEVICE_FOR_GL_CONTEXT_KHR

◦ CL_DEVICES_FOR_GL_CONTEXT_KHR

• cl_context_properties

◦ CL_GL_CONTEXT_KHR

◦ CL_EGL_DISPLAY_KHR

◦ CL_GLX_DISPLAY_KHR

◦ CL_WGL_HDC_KHR

◦ CL_CGL_SHAREGROUP_KHR

• cl_gl_object_type

◦ CL_GL_OBJECT_BUFFER

◦ CL_GL_OBJECT_TEXTURE2D

◦ CL_GL_OBJECT_TEXTURE3D

◦ CL_GL_OBJECT_RENDERBUFFER

◦ CL_GL_OBJECT_TEXTURE2D_ARRAY

◦ CL_GL_OBJECT_TEXTURE1D

◦ CL_GL_OBJECT_TEXTURE1D_ARRAY

◦ CL_GL_OBJECT_TEXTURE_BUFFER

• cl_gl_texture_info

◦ CL_GL_TEXTURE_TARGET

◦ CL_GL_MIPMAP_LEVEL

• New Error Codes

◦ CL_INVALID_GL_SHAREGROUP_REFERENCE_KHR

Issues

1. How should the OpenGL context be identified when creating an associated OpenCL context?

RESOLVED: by using a (display,context handle) attribute pair to identify an arbitrary OpenGL
or OpenGL ES context with respect to one of the window-system binding layers EGL, GLX, or

518



WGL, or a share group handle to identify a CGL share group. If a context is specified, it need not
be current to the thread calling clCreateContext*.

A previously suggested approach would use a single boolean attribute
CL_USE_GL_CONTEXT_KHR to allow creating a context associated with the currently bound
OpenGL context. This may still be implemented as a separate extension, and might allow more
efficient acquire/release behavior in the special case where they are being executed in the same
thread as the bound GL context used to create the CL context.

2. What should the format of an attribute list be?

After considerable discussion, we think we can live with a list of <attribute name,value> pairs
terminated by zero. The list is passed as 'cl_context_properties *properties', where
cl_context_properties is typedefed to be 'intptr_t' in cl.h.

This effectively allows encoding all scalar integer, pointer, and handle values in the host API
into the argument list and is analogous to the structure and type of EGL attribute lists. NULL
attribute lists are also allowed. Again as for EGL, any attributes not explicitly passed in the list
will take on a defined default value that does something reasonable.

Experience with EGL, GLX, and WGL has shown attribute lists to be a sufficiently flexible and
general mechanism to serve the needs of management calls such as context creation. It is not
completely general (encoding floating-point and non-scalar attribute values is not
straightforward), and other approaches were suggested such as opaque attribute lists with
getter/setter methods, or arrays of varadic structures.

3. What’s the behavior of an associated OpenGL or OpenCL context when using resources defined
by the other associated context, and that context is destroyed?

RESOLVED: OpenCL objects place a reference on the data store underlying the corresponding
GL object when they’re created. The GL name corresponding to that data store may be deleted,
but the data store itself remains so long as any CL object has a reference to it. However,
destroying all GL contexts in the share group corresponding to a CL context results in
implementation-dependent behavior when using a corresponding CL object, up to and
including program termination.

4. How about sharing with D3D?

Sharing between D3D and OpenCL should use the same attribute list mechanism, though
obviously with different parameters, and be exposed as a similar parallel OpenCL extension.
There may be an interaction between that extension and this one since it’s not yet clear if it will
be possible to create a CL context simultaneously sharing GL and D3D objects.

5. Under what conditions will context creation fail due to sharing?

RESOLVED: Several cross-platform failure conditions are described (GL context or CGL share
group doesn’t exist, GL context doesn’t support types of GL objects, GL context implementation
doesn’t allow sharing), but additional failures may result due to implementation-dependent
reasons and should be added to this extension as such failures are discovered. Sharing between
OpenCL and OpenGL requires integration at the driver internals level.

519



6. What command-queues can clEnqueueAcquire/ReleaseGLObjects be placed on?

RESOLVED: All command-queues. This restriction is enforced at context creation time. If any
device passed to context creation cannot support shared OpenCL/OpenGL memory objects,
context creation will fail with a CL_INVALID_OPERATION error.

7. How can applications determine which command-queue to place an Acquire/Release on?

RESOLVED: The clGetGLContextInfoKHR returns either the CL device currently
corresponding to a specified GL context (typically the display it’s running on), or a list of all the
CL devices the specified context might run on (potentially useful in multiheaded / “virtual
screen” environments). This command is not placed together with commands to create shared
OpenCL/OpenGL memory objects because it relies on the same property-list method of
specifying a GL context introduced by this extension.

If no devices are returned, it means that the GL context exists on an older GPU not capable of
running OpenCL, but still capable of sharing objects between GL running on that GPU and CL
running elsewhere.

8. What is the meaning of the CL_DEVICES_FOR_GL_CONTEXT_KHR query?

RESOLVED: The list of all CL devices that may ever be associated with a specific GL context. On
platforms such as MacOS X, the “virtual screen” concept allows multiple GPUs to back a single
virtual display. Similar functionality might be implemented on other windowing systems, such
as a transparent heterogenous multiheaded X server. Therefore the exact meaning of this query
is interpreted relative to the binding layer API in use.

9. What happened to the "`extension`"s cl_khr_gl_sharing__context and
cl_khr_gl_sharing__memobjs that were previously published?

RESOLVED: These were not actual extensions, but the result of splitting the cl_khr_gl_sharing
extension language into two separate sections for publication. All extension language has now
been integrated into the unified Specification and this distinction is not useful.

10. Where are the clCreateFromGLTexture2D and clCreateFromGLTexture3D fuctions described?

PROPOSED: These functions are present in cl.xml, listed as OpenCL 1.0 APIs that were
deprecated in OpenCL 1.2, but the current extension language does not described them. Since
OpenCL 1.2 itself is so old, it is not worth the effort to look back and determine the exact details
of these APIs.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_global_int32_base_atomics

Name String

cl_khr_global_int32_base_atomics

520



Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 1.1

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_global_int32_base_atomics allows OpenCL C atomic operations to be performed on 32-bit
signed and unsigned integers in global memory.

This extension became a core feature in OpenCL 1.1, with the built-in atomic function names
changed to use the atomic_ prefix instead of atom_.

See the Global 32-Bit Base Atomics section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_global_int32_extended_atomics

Name String

cl_khr_global_int32_extended_atomics

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 1.1

Other Extension Metadata

521

OpenCL_C.html#cl_khr_global_int32_base_atomics


Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_global_int32_extended_atomics allows OpenCL C extended atomic operations to be
performed on 32-bit signed and unsigned integers in global memory.

This extension became a core feature in OpenCL 1.1, with the built-in atomic function names
changed to use the atomic_ prefix instead of atom_.

See the Global 32-Bit Extended Atomics section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_icd

Name String

cl_khr_icd

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_icd describes a platform extension which defines a simple mechanism through which the
Khronos OpenCL installable client driver loader (ICD Loader) may expose multiple separate vendor
installable client drivers (Vendor ICDs) for OpenCL. An application written against the ICD Loader
will be able to access all cl_platform_ids exposed by all vendor implementations with the ICD
Loader acting as a demultiplexor.

This is a platform extension, so if this extension is supported by an implementation, the string

522

OpenCL_C.html#cl_khr_global_int32_extended_atomics


"cl_khr_icd" will be present in the CL_PLATFORM_EXTENSIONS string.

Source Code

The official source for the ICD Loader is available on github, at:

https://github.com/KhronosGroup/OpenCL-ICD-Loader

The complete _cl_icd_dispatch structure is defined in the header cl_icd.h, which is available as a
part of the OpenCL headers.

Inferring Vendors From Function Call Arguments

At every OpenCL function call, the ICD Loader infers the vendor ICD function to call from the
arguments to the function. An object is said to be ICD compatible if it is of the following structure:

struct _cl_<object>
{
    struct _cl_icd_dispatch *dispatch;
    // ... remainder of internal data
};

<object> is one of platform_id, device_id, context, command_queue, mem, program, kernel, event,
or sampler.

The structure _cl_icd_dispatch is a function pointer dispatch table which is used to direct calls to a
particular vendor implementation. All objects created from ICD compatible objects must be ICD
compatible.

The definition for _cl_icd_dispatch is provided along with the OpenCL headers. Existing members
can never be removed from that structure but new members can be appended.

Functions which do not have an argument from which the vendor implementation may be inferred
have been deprecated and may be ignored.

ICD Data

A Vendor ICD is defined by two pieces of data:

• The Vendor ICD library specifies a library which contains the OpenCL entry points for the
vendor’s OpenCL implementation. The vendor ICD’s library file name should include the vendor
name, or a vendor-specific implementation identifier.

• The Vendor ICD extension suffix is a short string which specifies the default suffix for
extensions implemented only by that vendor. The vendor suffix string is optional.

ICD Loader Vendor Enumeration on Windows

To enumerate Vendor ICDs on Windows, the ICD Loader will first scan for REG_SZ string values in
the "Display Adapter" and "Software Components" HKR registry keys. The exact registry keys to

523

https://github.com/KhronosGroup/OpenCL-ICD-Loader


scan should be obtained via PnP Configuration Manager APIs, but will look like:

For 64-bit ICDs:

HKLM\SYSTEM\CurrentControlSet\Control\Class\
{Display Adapter GUID}\{Instance ID}\OpenCLDriverName, or

HKLM\SYSTEM\CurrentControlSet\Control\Class\
{Software Component GUID}\{Instance ID}\OpenCLDriverName

For 32-bit ICDs:

HKLM\SYSTEM\CurrentControlSet\Control\Class\
{Display Adapter GUID}\{Instance ID}\OpenCLDriverNameWoW, or

HKLM\SYSTEM\CurrentControlSet\Control\Class\
{Software Component GUID}\{Instance ID}\OpenCLDriverNameWoW

These registry values contain the path to the Vendor ICD library. For example, if the registry
contains the value:

[HKLM\SYSTEM\CurrentControlSet\Control\Class\{GUID}\{Instance}]
"OpenCLDriverName"="c:\\vendor a\\vndra_ocl.dll"

Then the ICD Loader will open the Vendor ICD library:

c:\vendor a\vndra_ocl.dll

The ICD Loader will also scan for REG_DWORD values in the registry key:

HKLM\SOFTWARE\Khronos\OpenCL\Vendors

For each registry value in this key which has data set to 0, the ICD Loader will open the Vendor ICD
library specified by the name of the registry value.

For example, if the registry contains the value:

[HKLM\SOFTWARE\Khronos\OpenCL\Vendors]
"c:\\vendor a\\vndra_ocl.dll"=dword:00000000

Then the ICD Loader will open the Vendor ICD library:

c:\vendor a\vndra_ocl.dll

524



ICD Loader Vendor Enumeration on Linux

To enumerate vendor ICDs on Linux, the ICD Loader scans the files in the path /etc/OpenCL/vendors.
For each file in this path, the ICD Loader opens the file as a text file. The expected format for the file
is a single line of text which specifies the Vendor ICD’s library. The ICD Loader will attempt to open
that file as a shared object using dlopen(). Note that the library specified may be an absolute path or
just a file name.

For example, if the following file exists

/etc/OpenCL/vendors/VendorA.icd

and contains the text

libVendorAOpenCL.so

then the ICD Loader will load the library libVendorAOpenCL.so.

ICD Loader Vendor Enumeration on Android

To enumerate vendor ICDs on Android, the ICD Loader scans the files in the path
/system/vendor/Khronos/OpenCL/vendors. For each file in this path, the ICD Loader opens the file as a
text file. The expected format for the file is a single line of text which specifies the Vendor ICD’s
library. The ICD Loader will attempt to open that file as a shared object using dlopen(). Note that the
library specified may be an absolute path or just a file name.

For example, if the following file exists

/system/vendor/Khronos/OpenCL/vendors/VendorA.icd

and contains the text

libVendorAOpenCL.so

then the ICD Loader will load the library libVendorAOpenCL.so.

Adding a Vendor Library

Upon successfully loading a Vendor ICD’s library, the ICD Loader queries the following functions
from the library: clIcdGetPlatformIDsKHR, clGetPlatformInfo, and
clGetExtensionFunctionAddress (note: clGetExtensionFunctionAddress has been deprecated,
but is still required for the ICD Loader). If any of these functions are not present then the ICD
Loader will close and ignore the library.

Next the ICD Loader queries available ICD-enabled platforms in the library using
clIcdGetPlatformIDsKHR. For each of these platforms, the ICD Loader queries the platform’s

525



extension string to verify that cl_khr_icd is supported, then queries the platform’s Vendor ICD
extension suffix using clGetPlatformInfo with the value CL_PLATFORM_ICD_SUFFIX_KHR.

If any of these steps fail, the ICD Loader will ignore the Vendor ICD and continue on to the next.

New Commands

• clIcdGetPlatformIDsKHR

New Enums

Accepted as param_name to the function clGetPlatformInfo:

• CL_PLATFORM_ICD_SUFFIX_KHR

Returned by clGetPlatformIDs when no platforms are found:

• CL_PLATFORM_NOT_FOUND_KHR

Issues

1. Some OpenCL functions do not take an object argument from which their vendor library may
be identified (e.g, clUnloadCompiler), how will they be handled?

RESOLVED: Such functions will be a noop for all calls through the ICD Loader.

2. How are OpenCL extension to be handled?

RESOLVED: Extension APIs must be queried using
clGetExtensionFunctionAddressForPlatform.

3. How will the ICD Loader handle a NULL cl_platform_id?

RESOLVED: The ICD will by default choose the first enumerated platform as the NULL platform.

4. There exists no mechanism to unload the ICD Loader, should there be one?

RESOLVED: As there is no standard mechanism for unloading a vendor implementation, do not
add one for the ICD Loader.

5. How will the ICD Loader handle NULL objects passed to the OpenCL functions?

RESOLVED: The ICD Loader will check for NULL objects passed to the OpenCL functions without
trying to dereference the NULL objects for obtaining the ICD dispatch table. On detecting a NULL
object it will return one of the an invalid object error values (e.g. CL_INVALID_DEVICE
corresponding to the object in question.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

526



cl_khr_il_program

Name String

cl_khr_il_program

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 2.1

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_il_program adds the ability to create programs with intermediate language (IL), usually SPIR-
V. Further information about the format and contents of SPIR-V may be found in the SPIR-V
Specification. Information about how SPIR-V modules behave in the OpenCL environment may be
found in the OpenCL SPIR-V Environment Specification.

This functionality described by this extension is a core feature in OpenCL 2.1.

New Commands

• clCreateProgramWithILKHR

New Enums

• cl_device_info

◦ CL_DEVICE_IL_VERSION_KHR

• cl_platform_info

◦ CL_PROGRAM_IL_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

527



cl_khr_image2d_from_buffer

Name String

cl_khr_image2d_from_buffer

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 2.0

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_image2d_from_buffer allows a 2D image to be created from an existing OpenCL buffer
memory object.

This extension became a core feature in OpenCL 2.0.

Refer to the discussion of 2D images created from buffers in the Image Descriptor section for
additional details.

New Enums

• CL_DEVICE_IMAGE_PITCH_ALIGNMENT_KHR

• CL_DEVICE_IMAGE_BASE_ADDRESS_ALIGNMENT_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_initialize_memory

Name String

cl_khr_initialize_memory

Ratification Status

Ratified

528



Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_initialize_memory adds OpenCL C support for initializing local and private memory before a
kernel begins execution. This is accomplished by specifying a flag at context creation time affecting
all such memory.

Memory is allocated in various forms in OpenCL both explicitly (global memory) or implicitly (local,
private memory). This allocation so far does not provide a straightforward mechanism to initialize
the memory on allocation. In other words what is lacking is the equivalent of calloc for the
currently supported malloc like capability. This functionality is useful for a variety of reasons
including ease of debugging, application controlled limiting of visibility to previous contents of
memory and in some cases, optimization.

See the Initializing Memory section of the OpenCL C specification for more information.

New Enums

• cl_context_properties

◦ CL_CONTEXT_MEMORY_INITIALIZE_KHR

• cl_context_memory_initialize_khr

◦ CL_CONTEXT_MEMORY_INITIALIZE_LOCAL_KHR

◦ CL_CONTEXT_MEMORY_INITIALIZE_PRIVATE_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_int64_base_atomics

Name String

cl_khr_int64_base_atomics

Ratification Status

Ratified

529

OpenCL_C.html#cl_khr_initialize_memory


Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_int64_base_atomics adds built-in OpenCL functions supporting atomic operations to be
performed on 64-bit signed and unsigned integers in global and local memory.

See the 64-Bit Base Atomics section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_int64_extended_atomics

Name String

cl_khr_int64_extended_atomics

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_int64_extended_atomics adds built-in OpenCL functions supporting extended atomic
operations to be performed on 64-bit signed and unsigned integers in global and local memory.

See the 64-Bit Extended Atomics section of the OpenCL C specification for more information.

530

OpenCL_C.html#cl_khr_int64_base_atomics
OpenCL_C.html#cl_khr_int64_extended_atomics


Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_integer_dot_product

Name String

cl_khr_integer_dot_product

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2021-06-23

IP Status

No known IP claims.

Contributors

• Kévin Petit, Arm Ltd.

• Jeremy Kemp, Imagination Technologies

• Ben Ashbaugh, Intel

• Ruihao Zhang, Qualcomm

• Stuart Brady, Arm Ltd

• Balaji Calidas, Qualcomm

• Ayal Zaks, Intel

Description

cl_khr_integer_dot_product adds support for SPIR-V instructions and OpenCL C built-in functions to
compute the dot product of vectors of integers.

OpenCL C compilers supporting this extension will define the extension macro cl_khr_integer_dot_
product, and may define corresponding feature macros __opencl_c_integer_dot_product_input_
4x8bit and __opencl_c_integer_dot_product_input_4x8bit_packed depending on the reported
capabilities.

See the Integer Dot Product section of the OpenCL C specification for more information.

531

OpenCL_C.html#cl_khr_integer_dot_product


New Structures

• cl_device_integer_dot_product_acceleration_properties_khr

New Types

• cl_device_integer_dot_product_capabilities_khr

New Enums

• cl_device_integer_dot_product_capabilities_khr

◦ CL_DEVICE_INTEGER_DOT_PRODUCT_INPUT_4x8BIT_KHR

◦ CL_DEVICE_INTEGER_DOT_PRODUCT_INPUT_4x8BIT_PACKED_KHR

• cl_device_info

◦ CL_DEVICE_INTEGER_DOT_PRODUCT_CAPABILITIES_KHR

◦ CL_DEVICE_INTEGER_DOT_PRODUCT_ACCELERATION_PROPERTIES_8BIT_KHR

◦ CL_DEVICE_INTEGER_DOT_PRODUCT_ACCELERATION_PROPERTIES_4x8BIT_PACKED_KHR

Version History

• Revision 1.0.0, 2021-06-17

◦ Initial version

• Revision 2.0.0, 2021-06-23

◦ 8-bit support is mandatory, added 8-bit acceleration properties.

cl_khr_local_int32_base_atomics

Name String

cl_khr_local_int32_base_atomics

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 1.1

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

532



Description

cl_khr_local_int32_base_atomics allows OpenCL C atomic operations to be performed on 32-bit
signed and unsigned integers in local memory.

This extension became a core feature in OpenCL 1.1, with the built-in atomic function names
changed to use the atomic_ prefix instead of atom_.

See the Local 32-Bit Base Atomics section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_local_int32_extended_atomics

Name String

cl_khr_local_int32_extended_atomics

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 1.1

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_local_int32_extended_atomics allows OpenCL C extended atomic operations to be performed
on 32-bit signed and unsigned integers in local memory.

This extension became a core feature in OpenCL 1.1, with the built-in atomic function names
changed to use the atomic_ prefix instead of atom_.

See the Local 32-Bit Extended Atomics section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

533

OpenCL_C.html#cl_khr_local_int32_base_atomics
OpenCL_C.html#cl_khr_local_int32_extended_atomics


◦ First assigned version.

cl_khr_mipmap_image

Name String

cl_khr_mipmap_image

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

The cl_khr_mipmap_image extension adds the ability to create and access mipmapped images:

• clCreateImage is extended to create mipmapped images.

• clCreateFromGLTexture is extended to create a mipmapped image from a mipmapped GL
texture.

• clEnqueueReadImage, clEnqueueWriteImage, clEnqueueCopyImage, clEnqueueFillImage,
clEnqueueCopyImageToBuffer, clEnqueueCopyBufferToImage, and clEnqueueMapImage
are extended to operate on regions of mipmapped images.

◦ The Specifying Mipmap Levels to Image Operations section describes how mipmap levels
are encoded in existing parameters to these commands.

• OpenCL C built-in functions are added to read from and query a mipmapped image.

See the Mipmapped Image Reads and Queries section of the OpenCL C specification for more
information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_mipmap_image_writes

Name String

cl_khr_mipmap_image_writes

534

OpenCL_C.html#cl_khr_mipmap_image


Ratification Status

Ratified

Extension and Version Dependencies

cl_khr_mipmap_image

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

The cl_khr_mipmap_image_writes extension adds OpenCL C built-in functions to write to a
mipmapped image.

If cl_khr_mipmap_image_writes is supported by the OpenCL device, the cl_khr_mipmap_image extension
must also be supported.

See the Mipmapped Image Writes section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_pci_bus_info

Name String

cl_khr_pci_bus_info

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2021-04-19

IP Status

No known IP claims.

535

OpenCL_C.html#cl_khr_mipmap_image_writes


Description

The cl_khr_pci_bus_info extension adds a new query to obtain PCI bus information about an
OpenCL device.

Not all OpenCL devices have PCI bus information, either due to the device not being connected to
the system through a PCI interface or due to platform specific restrictions and policies. Thus this
extension is only expected to be supported by OpenCL devices which can provide the information.

As a consequence, applications should always check for the presence of the extension string for
each individual OpenCL device for which they intend to issue the new query for and should not
have any assumptions about the availability of the extension on any given platform.

New Types

• cl_device_pci_bus_info_khr

New Enums

• cl_device_info

◦ CL_DEVICE_PCI_BUS_INFO_KHR

Version History

• Revision 1.0.0, 2021-04-19

◦ Initial version.

cl_khr_priority_hints

Name String

cl_khr_priority_hints

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

The cl_khr_priority_hints extension adds priority hints for OpenCL, but does not specify the

536



scheduling behavior or minimum guarantees. It is expected that the the user guides associated with
each implementation which supports this extension will describe the scheduling behavior
guarantees.

Note that the priority hint is orthogonal to functionality defined in the cl_khr_throttle_hints
extension. For example, a task may have high priority (CL_QUEUE_PRIORITY_HIGH_KHR) but should at
the same time be executed at an optimized throttle setting (CL_QUEUE_THROTTLE_LOW_KHR).

New Types

• cl_queue_priority_khr

New Enums

• cl_queue_properties

◦ CL_QUEUE_PRIORITY_KHR

• cl_queue_priority_khr

◦ CL_QUEUE_PRIORITY_HIGH_KHR

◦ CL_QUEUE_PRIORITY_MED_KHR

◦ CL_QUEUE_PRIORITY_LOW_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_select_fprounding_mode

Name String

cl_khr_select_fprounding_mode

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Obsoleted by OpenCL 1.1

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

537



Description

cl_khr_select_fprounding_mode allows an application to specify the rounding mode for an
instruction or group of instructions in the OpenCL C program source.

 This extension was deprecated in OpenCL 1.1, and its use is not recommended.

See the Select Floating-Point Rounding Mode section of the OpenCL C specification for more
information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_semaphore

Name String

cl_khr_semaphore

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 1.2

Other Extension Metadata

Last Modified Date

2024-03-15

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• Gorazd Sumkovski, ARM

• James Jones, NVIDIA

538

OpenCL_C.html#cl_khr_select_fprounding_mode


• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

OpenCL provides cl_event as a primary mechanism of synchronization between host and device as
well as across devices. While events can be waited on or can be passed as dependencies across
work-submissions, they suffer from following limitations:

• They are immutable.

• They are not reusable.

cl_khr_semaphore introduces a new type of synchronization object to represent semaphores that can
be reused, waited on, and signaled multiple times by OpenCL work-submissions.

In particular, this extension defines:

• a new type called cl_semaphore_khr to represent the semaphore objects.

• A new type called cl_semaphore_properties_khr to specify metadata associated with semaphores.

• Functions to create, retain, and release semaphores.

• Functions to wait on and signal semaphore objects.

• Functions to query the properties of semaphore objects.

New Commands

• clCreateSemaphoreWithPropertiesKHR

• clEnqueueWaitSemaphoresKHR

• clEnqueueSignalSemaphoresKHR

• clGetSemaphoreInfoKHR

• clReleaseSemaphoreKHR

• clRetainSemaphoreKHR

New Types

• cl_semaphore_khr

• cl_semaphore_properties_khr

539



• cl_semaphore_info_khr

• cl_semaphore_type_khr

• cl_semaphore_payload_khr

New Enums

• cl_platform_info

◦ CL_PLATFORM_SEMAPHORE_TYPES_KHR

• cl_device_info

◦ CL_DEVICE_SEMAPHORE_TYPES_KHR

• cl_semaphore_type_khr

◦ CL_SEMAPHORE_TYPE_BINARY_KHR

• cl_semaphore_info_khr

◦ CL_SEMAPHORE_CONTEXT_KHR

◦ CL_SEMAPHORE_REFERENCE_COUNT_KHR

◦ CL_SEMAPHORE_PROPERTIES_KHR

◦ CL_SEMAPHORE_PAYLOAD_KHR

• cl_semaphore_info_khr or cl_semaphore_properties_khr

◦ CL_SEMAPHORE_TYPE_KHR

◦ CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR

◦ CL_SEMAPHORE_DEVICE_HANDLE_LIST_END_KHR

• cl_command_type

◦ CL_COMMAND_SEMAPHORE_WAIT_KHR

◦ CL_COMMAND_SEMAPHORE_SIGNAL_KHR

• New Error Codes

◦ CL_INVALID_SEMAPHORE_KHR

Sample Code

Example for Semaphore Creation in a Single Device Context

// Get cl_devices of the platform.
clGetDeviceIDs(..., &devices, &deviceCount);

// Create cl_context with just first device
context = clCreateContext(..., 1, devices, ...);

// Create clSema of type cl_semaphore_khr usable on single device in the context

cl_semaphore_properties_khr sema_props[] =
        {(cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_KHR,

540



         (cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_BINARY_KHR,
          0};

int errcode_ret = 0;

cl_semaphore_khr clSema = clCreateSemaphoreWithPropertiesKHR(context,
                                                             sema_props,
                                                             &errcode_ret);

Example for Semaphore Creation for a Single Device in a Multi-Device Context

// Get cl_devices of the platform.
clGetDeviceIDs(..., &devices, &deviceCount);

// Create cl_context with first two devices
clCreateContext(..., 2, devices, ...);

// Create clSema of type cl_semaphore_khr usable only on device 0
cl_semaphore_properties_khr sema_props[] = {
    (cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_KHR,
    (cl_semaphore_properties_khr)CL_SEMAPHORE_TYPE_BINARY_KHR,
    (cl_semaphore_properties_khr)CL_SEMAPHORE_DEVICE_HANDLE_LIST_KHR,
    (cl_semaphore_properties_khr)devices[0],
    CL_SEMAPHORE_DEVICE_HANDLE_LIST_END_KHR,
    0
};

int errcode_ret = 0;

cl_semaphore_khr clSema = clCreateSemaphoreWithPropertiesKHR(context,
                                                             sema_props,
                                                             &errcode_ret);

Example for Synchronization Using Wait and Signal

// clSema is created using clCreateSemaphoreWithPropertiesKHR
// using one of the examples for semaphore creation.

cl_semaphore_khr clSema = clCreateSemaphoreWithPropertiesKHR(context,
                                                             sema_props,
                                                             &errcode_ret);

// Start the main loop

while (true) {
    // (not shown) Signal the semaphore from other work

    // Wait for the semaphore in OpenCL
    // by calling clEnqueueWaitSemaphoresKHR on 'clSema'

541



    clEnqueueWaitSemaphoresKHR(/*command_queue*/              command_queue,
                               /*num_sema_objects*/           1,
                               /*sema_objects*/               &clSema,
                               /*sema_payload_list*/          NULL,
                               /*num_events_in_wait_list*/    0,
                               /*event_wait_list*/            NULL,
                               /*event*/                      NULL);

    // Launch kernel that accesses extMem
    clEnqueueNDRangeKernel(command_queue, ...);

    // Signal the semaphore in OpenCL
    clEnqueueSignalSemaphoresKHR(/*command_queue*/              command_queue,
                                 /*num_sema_objects*/           1,
                                 /*sema_objects*/               &clSema,
                                 /*sema_payload_list*/          NULL,
                                 /*num_events_in_wait_list*/    0,
                                 /*event_wait_list*/            NULL,
                                 /*event*/                      NULL);

    // (not shown) Launch other work that waits on 'clSema'
}

Example for clGetSemaphoreInfoKHR

// clSema is created using clCreateSemaphoreWithPropertiesKHR
// using one of the examples for semaphore creation.

cl_semaphore_khr clSema = clCreateSemaphoreWithPropertiesKHR(context,
                                                             sema_props,
                                                             &errcode_ret);

// Start the main rendering loop

while (true) {
    // (not shown) Signal the semaphore from other work

    // Wait for the semaphore in OpenCL, by calling clEnqueueWaitSemaphoresKHR on
'clSema'
    clEnqueueWaitSemaphoresKHR(/*command_queue*/              command_queue,
                               /*num_sema_objects*/           1,
                               /*sema_objects*/               &clSema,
                               /*sema_payload_list*/          NULL,
                               /*num_events_in_wait_list*/    0,
                               /*event_wait_list*/            NULL,
                               /*event*/                      NULL);

    // Launch kernel in OpenCL
    clEnqueueNDRangeKernel(command_queue, ...);

542



    // Signal the semaphore in OpenCL
    clEnqueueSignalSemaphoresKHR(/*command_queue*/              command_queue,
                                 /*num_sema_objects*/           1,
                                 /*sema_objects*/               &clSema,
                                 /*sema_payload_list*/          NULL,
                                 /*num_events_in_wait_list*/    0,
                                 /*event_wait_list*/            NULL,
                                 /*event*/                      NULL);

    // Query type of clSema
    clGetSemaphoreInfoKHR(/*sema_object*/           clSema,
                          /*param_name*/            CL_SEMAPHORE_TYPE_KHR,
                          /*param_value_size*/      sizeof(cl_semaphore_type_khr),
                          /*param_value*/           &clSemaType,
                          /*param_value_ret_size*/  &clSemaTypeSize);

    if (clSemaType == CL_SEMAPHORE_TYPE_BINARY_KHR) {
        // Do something
    }
    else {
        // Do something else
    }
    // (not shown) Launch other work that waits on 'clSema'
}

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

• Revision 0.9.1, 2023-08-01

◦ Changed device handle list enum to the semaphore-specific CL_SEMAPHORE_DEVICE_HANDLE_
LIST_KHR (provisional).

• Revision 1.0.0, 2024-03-15

◦ First non-provisional version.

cl_khr_spirv_extended_debug_info

Name String

cl_khr_spirv_extended_debug_info

Ratification Status

Ratified

Extension and Version Dependencies

None

543



Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_spirv_extended_debug_info allows use of the SPIR-V OpenCL.DebugInfo.100 extended
instruction set.

See the cl_khr_spirv_extended_debug_info section of the OpenCL SPIR-V Environment specification
for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_spirv_linkonce_odr

Name String

cl_khr_spirv_linkonce_odr

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_spirv_linkonce_odr allows use of the SPIR-V extension SPV_KHR_linkonce_odr.

See the cl_khr_spirv_linkonce_odr section of the OpenCL SPIR-V Environment specification for
more information.

544

OpenCL_Env.html#_cl_khr_spirv_extended_debug_info
OpenCL_Env.html#_cl_khr_spirv_linkonce_odr


Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_spirv_no_integer_wrap_decoration

Name String

cl_khr_spirv_no_integer_wrap_decoration

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_spirv_no_integer_wrap_decoration allows use of the SPIR-V extension
SPV_KHR_no_integer_wrap_decoration, which adds new decorations to indicate that a given
instruction does not cause integer wrapping to occur.

See the cl_khr_spirv_no_integer_wrap_decoration section of the OpenCL SPIR-V Environment
specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_srgb_image_writes

Name String

cl_khr_srgb_image_writes

Ratification Status

Ratified

Extension and Version Dependencies

None

545

OpenCL_Env.html#_cl_khr_spirv_no_integer_wrap_decoration


Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_srgb_image_writes enables OpenCL C kernels to write to sRGB images using the
write_imagef built-in function. The sRGB image formats that may be written to will be returned by
clGetSupportedImageFormats.

When the image is an sRGB image, the write_imagef built-in function will perform the linear to
sRGB conversion. Only the R, G, and B components are converted from linear to sRGB; the A
component is written as-is.

See the sRGB Image Write Functions section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_subgroup_ballot

Name String

cl_khr_subgroup_ballot

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-12-15

IP Status

No known IP claims.

Description

cl_khr_subgroup_ballot adds built-in OpenCL C functions with the ability to collect and operate on
ballots from work items in a sub-group.

546

OpenCL_C.html#cl_khr_srgb_image_writes


See the Sub-Group Ballots section of the OpenCL C specification for more information.

Summary of New OpenCL C Functions

// These functions are available to devices supporting
// cl_khr_subgroup_ballot:

gentype sub_group_non_uniform_broadcast( gentype value, uint index )
gentype sub_group_broadcast_first( gentype value )

uint4 sub_group_ballot( int predicate )
int   sub_group_inverse_ballot( uint4 value )
int   sub_group_ballot_bit_extract( uint4 value, uint index )
uint  sub_group_ballot_bit_count( uint4 value )
uint  sub_group_ballot_inclusive_scan( uint4 value )
uint  sub_group_ballot_exclusive_scan( uint4 value )
uint  sub_group_ballot_find_lsb( uint4 value )
uint  sub_group_ballot_find_msb( uint4 value )

uint4 get_sub_group_eq_mask()
uint4 get_sub_group_ge_mask()
uint4 get_sub_group_gt_mask()
uint4 get_sub_group_le_mask()
uint4 get_sub_group_lt_mask()

Version History

• Revision 1.0.0, 2020-12-15

◦ First assigned version.

cl_khr_subgroup_clustered_reduce

Name String

cl_khr_subgroup_clustered_reduce

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-12-15

IP Status

No known IP claims.

547

OpenCL_C.html#cl_khr_subgroup_ballot


Description

cl_khr_subgroup_clustered_reduce adds built-in OpenCL functions for clustered reductions that
operate on a subset of work items in the sub-group.

See the Clustered Reductions section of the OpenCL C specification for more information.

Summary of New OpenCL C Functions

// These functions are available to devices supporting
// cl_khr_subgroup_clustered_reduce:

gentype sub_group_clustered_reduce_add( gentype value, uint clustersize )
gentype sub_group_clustered_reduce_mul( gentype value, uint clustersize )
gentype sub_group_clustered_reduce_min( gentype value, uint clustersize )
gentype sub_group_clustered_reduce_max( gentype value, uint clustersize )
gentype sub_group_clustered_reduce_and( gentype value, uint clustersize )
gentype sub_group_clustered_reduce_or( gentype value, uint clustersize )
gentype sub_group_clustered_reduce_xor( gentype value, uint clustersize )
int     sub_group_clustered_reduce_logical_and( int predicate, uint clustersize )
int     sub_group_clustered_reduce_logical_or( int predicate, uint clustersize )
int     sub_group_clustered_reduce_logical_xor( int predicate, uint clustersize )

Version History

• Revision 1.0.0, 2020-12-15

◦ First assigned version.

cl_khr_subgroup_extended_types

Name String

cl_khr_subgroup_extended_types

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-12-15

IP Status

No known IP claims.

548

OpenCL_C.html#cl_khr_subgroup_clustered_reduce


Description

cl_khr_subgroup_extended_types adds additional supported OpenCL C data types to the existing sub-
group broadcast, scan, and reduction functions.

See the Sub-Group Extended Types section of the OpenCL C specification for more information.

Summary of New OpenCL C Functions

// These functions are available to devices supporting
// cl_khr_subgroup_extended_types:

// Note: Existing functions supporting additional data types.

gentype sub_group_broadcast( gentype value, uint index )

gentype sub_group_reduce_add( gentype value )
gentype sub_group_reduce_min( gentype value )
gentype sub_group_reduce_max( gentype value )

gentype sub_group_scan_inclusive_add( gentype value )
gentype sub_group_scan_inclusive_min( gentype value )
gentype sub_group_scan_inclusive_max( gentype value )

gentype sub_group_scan_exclusive_add( gentype value )
gentype sub_group_scan_exclusive_min( gentype value )
gentype sub_group_scan_exclusive_max( gentype value )

Version History

• Revision 1.0.0, 2020-12-15

◦ First assigned version.

cl_khr_subgroup_named_barrier

Name String

cl_khr_subgroup_named_barrier

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

549

OpenCL_C.html#cl_khr_subgroup_extended_types


IP Status

No known IP claims.

Description

cl_khr_subgroup_named_barrier adds barrier operations that cover subsets of an OpenCL work-
group. Only the OpenCL API changes are described in this section. Please refer to the SPIR-V
specification for information about using sub-group named barriers in the SPIR-V intermediate
representation, and to the OpenCL C++ specification for descriptions of the sub-group named
barrier built-in functions in the OpenCL C++ kernel language.

New Enums

• cl_device_info

◦ CL_DEVICE_MAX_NAMED_BARRIER_COUNT_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_subgroup_non_uniform_arithmetic

Name String

cl_khr_subgroup_non_uniform_arithmetic

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-12-15

IP Status

No known IP claims.

Description

cl_khr_subgroup_non_uniform_arithmetic adds built-in OpenCL C functions providing the ability to
use some sub-group functions within non-uniform flow control, including additional scan and
reduction operators.

See the Built-in Non-Uniform Arithmetic Functions for Sub-Groups section of the OpenCL C
specification for more information.

550

OpenCL_C.html#cl_khr_subgroup_non_uniform_arithmetic


Summary of New OpenCL C Functions

// These functions are available to devices supporting
// cl_khr_subgroup_non_uniform_arithmetic:

gentype sub_group_non_uniform_reduce_add( gentype value )
gentype sub_group_non_uniform_reduce_mul( gentype value )
gentype sub_group_non_uniform_reduce_min( gentype value )
gentype sub_group_non_uniform_reduce_max( gentype value )
gentype sub_group_non_uniform_reduce_and( gentype value )
gentype sub_group_non_uniform_reduce_or( gentype value )
gentype sub_group_non_uniform_reduce_xor( gentype value )
int     sub_group_non_uniform_reduce_logical_and( int predicate )
int     sub_group_non_uniform_reduce_logical_or( int predicate )
int     sub_group_non_uniform_reduce_logical_xor( int predicate )

gentype sub_group_non_uniform_scan_inclusive_add( gentype value )
gentype sub_group_non_uniform_scan_inclusive_mul( gentype value )
gentype sub_group_non_uniform_scan_inclusive_min( gentype value )
gentype sub_group_non_uniform_scan_inclusive_max( gentype value )
gentype sub_group_non_uniform_scan_inclusive_and( gentype value )
gentype sub_group_non_uniform_scan_inclusive_or( gentype value )
gentype sub_group_non_uniform_scan_inclusive_xor( gentype value )
int     sub_group_non_uniform_scan_inclusive_logical_and( int predicate )
int     sub_group_non_uniform_scan_inclusive_logical_or( int predicate )
int     sub_group_non_uniform_scan_inclusive_logical_xor( int predicate )

gentype sub_group_non_uniform_scan_exclusive_add( gentype value )
gentype sub_group_non_uniform_scan_exclusive_mul( gentype value )
gentype sub_group_non_uniform_scan_exclusive_min( gentype value )
gentype sub_group_non_uniform_scan_exclusive_max( gentype value )
gentype sub_group_non_uniform_scan_exclusive_and( gentype value )
gentype sub_group_non_uniform_scan_exclusive_or( gentype value )
gentype sub_group_non_uniform_scan_exclusive_xor( gentype value )
int     sub_group_non_uniform_scan_exclusive_logical_and( int predicate )
int     sub_group_non_uniform_scan_exclusive_logical_or( int predicate )
int     sub_group_non_uniform_scan_exclusive_logical_xor( int predicate )

Version History

• Revision 1.0.0, 2020-12-15

◦ First assigned version.

cl_khr_subgroup_non_uniform_vote

Name String

cl_khr_subgroup_non_uniform_vote

551



Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-12-15

IP Status

No known IP claims.

Description

Description

cl_khr_subgroup_non_uniform_vote adds built-in OpenCL C functions with the ability to elect a single
work item from a sub-group to perform a task and to hold votes among work items in a sub-group.

See the Built-in Non-Uniform Vote and Election Functions for Sub-Groups section of the OpenCL C
specification for more information.

Summary of New OpenCL C Functions

// These functions are available to devices supporting
// cl_khr_subgroup_non_uniform_vote:

int sub_group_elect()

int sub_group_non_uniform_all( int predicate )
int sub_group_non_uniform_any( int predicate )
int sub_group_non_uniform_all_equal( gentype value )

Version History

• Revision 1.0.0, 2020-12-15

◦ First assigned version.

cl_khr_subgroup_rotate

Name String

cl_khr_subgroup_rotate

Ratification Status

Ratified

552

OpenCL_C.html#cl_khr_subgroup_non_uniform_vote


Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2022-04-22

IP Status

No known IP claims.

Contributors

• Kévin Petit, Arm Ltd.

• Ben Ashbaugh, Intel

• Ruihao Zhang, Qualcomm

• Sven van Haastregt, Arm Ltd.

• Anastasia Stulova, Arm Ltd.

• Stuart Brady, Arm Ltd.

Description

cl_khr_subgroup_rotate adds built-in OpenCL C functions with support for a new sub-group data
exchange operation that makes it possible to rotate values through the work items in a sub-group.

See the Sub-Group Rotation section of the OpenCL C specification for more information.

Version History

• Revision 1.0.0, 2022-04-22

◦ Initial version.

cl_khr_subgroup_shuffle

Name String

cl_khr_subgroup_shuffle

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-12-15

553

OpenCL_C.html#cl_khr_subgroup_rotate


IP Status

No known IP claims.

Description

cl_khr_subgroup_shuffle adds built-in OpenCL C functions providing additional ways to exchange
data among work items in a sub-group.

See the General Purpose Shuffles section of the OpenCL C specification for more information.

Summary of New OpenCL C Functions

// These functions are available to devices supporting
// cl_khr_subgroup_shuffle:

gentype sub_group_shuffle( gentype value, uint index )
gentype sub_group_shuffle_xor( gentype value, uint mask )

Version History

• Revision 1.0.0, 2020-12-15

◦ First assigned version.

cl_khr_subgroup_shuffle_relative

Name String

cl_khr_subgroup_shuffle_relative

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-12-15

IP Status

No known IP claims.

Description

cl_khr_subgroup_shuffle_relative adds built-in OpenCL C functions providing specialized ways to
exchange data among work items in a sub-group that may perform better on some
implementations.

554

OpenCL_C.html#cl_khr_subgroup_shuffle


See the Relative Shuffles section of the OpenCL C specification for more information.

Summary of New OpenCL C Functions

// These functions are available to devices supporting
// cl_khr_subgroup_shuffle_relative:

gentype sub_group_shuffle_up( gentype value, uint delta )
gentype sub_group_shuffle_down( gentype value, uint delta )

Version History

• Revision 1.0.0, 2020-12-15

◦ First assigned version.

cl_khr_subgroups

Name String

cl_khr_subgroups

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Promoted to OpenCL 2.1

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_subgroups adds support for implementation-controlled groups of work items, known as sub-
groups. Sub-groups behave similarly to work-groups and have their own sets of built-ins and
synchronization primitives. Sub-groups within a work-group are independent, may make forward
progress with respect to each other, and may map to optimized hardware structures where that
makes sense.

Sub-groups were promoted to a core feature in OpenCL 2.1. However, note that:

• The sub-group OpenCL C built-in functions described by this extension must still be accessed as

555

OpenCL_C.html#cl_khr_subgroup_shuffle_relative


an OpenCL C extension in OpenCL 2.1.

• Sub-group independent forward progress is an optional device property in OpenCL 2.1, see
CL_DEVICE_SUB_GROUP_INDEPENDENT_FORWARD_PROGRESS.

See the Sub-Groups section of the OpenCL C specification for more information.

New Commands

• clGetKernelSubGroupInfoKHR

New Types

• cl_kernel_sub_group_info

New Enums

• cl_kernel_sub_group_info

◦ CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE_KHR

◦ CL_KERNEL_SUB_GROUP_COUNT_FOR_NDRANGE_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_suggested_local_work_size

Name String

cl_khr_suggested_local_work_size

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2021-04-22

IP Status

No known IP claims.

Description

cl_khr_suggested_local_work_size adds the ability to query a suggested local work-group size for a
kernel running on a device for a specified global work size and global work offset. The suggested

556

OpenCL_C.html#cl_khr_subgroups


local work-group size will match the work-group size that would be chosen if the kernel were
enqueued with the specified global work size and global work offset and a NULL local work size.

By using the suggested local work-group size query an application has greater insight into the local
work-group size chosen by the OpenCL implementation, and the OpenCL implementation need not
re-compute the local work-group size if the same kernel is enqueued multiple times with the same
parameters.

New Commands

• clGetKernelSuggestedLocalWorkSizeKHR

Version History

• Revision 1.0.0, 2021-04-22

◦ Initial version.

cl_khr_terminate_context

Name String

cl_khr_terminate_context

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

The cl_khr_terminate_context extension provides a new query to check whether a device can
terminate an OpenCL context, and adds an API to terminate a context.

Today, OpenCL provides an API to release a context. This operation is done only after all queues,
memory object, programs and kernels are released, which in turn might wait for all ongoing
operations to complete. However, there are cases in which a fast release is required, or release
operation cannot be done, as commands are stuck in mid execution. An example of the first case
can be program termination due to exception, or quick shutdown due to low power. Examples of
the second case are when a kernel is running too long, or gets stuck, or it may result from user
action which makes the results of the computation unnecessary.

557



In many cases, the driver or the device is capable of speeding up the closure of ongoing operations
when the results are no longer required in a much more expedient manner than waiting for all
previously enqueued operations to finish.

New Commands

• clTerminateContextKHR

New Types

• cl_device_terminate_capability_khr

New Enums

• cl_device_info

◦ CL_DEVICE_TERMINATE_CAPABILITY_KHR

• cl_context_properties

◦ CL_CONTEXT_TERMINATE_KHR

• cl_device_terminate_capability_khr

◦ CL_DEVICE_TERMINATE_CAPABILITY_CONTEXT_KHR

• New Error codes

◦ CL_CONTEXT_TERMINATED_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_throttle_hints

Name String

cl_khr_throttle_hints

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

558



Description

The cl_khr_throttle_hints extension adds throttle hints for OpenCL, but does not specify the
throttling behavior or minimum guarantees. It is expected that the user guide associated with each
implementation which supports this extension will describe the throttling behavior guarantees.

Note that the throttle hint is orthogonal to functionality defined in cl_khr_priority_hints extension.
For example, a task may have high priority (CL_QUEUE_PRIORITY_HIGH_KHR) but should at the same
time be executed at an optimized throttle setting (CL_QUEUE_THROTTLE_LOW_KHR).

New Types

• cl_queue_throttle_khr

New Enums

• cl_queue_properties

◦ CL_QUEUE_THROTTLE_KHR

• cl_queue_throttle_khr

◦ CL_QUEUE_THROTTLE_HIGH_KHR

◦ CL_QUEUE_THROTTLE_MED_KHR

◦ CL_QUEUE_THROTTLE_LOW_KHR

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

cl_khr_work_group_uniform_arithmetic

Name String

cl_khr_work_group_uniform_arithmetic

Ratification Status

Ratified

Extension and Version Dependencies

None

Other Extension Metadata

Last Modified Date

2022-04-29

IP Status

No known IP claims.

559



Contributors

• Kevin Petit, Arm Ltd.

• Ben Ashbaugh, Intel

Description

cl_khr_work_group_uniform_arithmetic adds additional built-in work-group collective functions to
OpenCL C. Specifically, this extension adds support for work-group scans and reductions for the
following operators:

• Logical operations (and, or, and xor).

• Bitwise operations (and, or, and xor).

• Integer multiplication (mul).

• Floating-point multiplication (mul).

See the Work-group Collective Uniform Arithmetic Functions section of the OpenCL C specification
for more information.

Issues

1. For these built-in functions, do we only want to support the types supported by the existing
work-group collective functions, or do we want to support the types supported by the sub-group
collective functions?

RESOLVED: The extension will require the same types as the existing work-group collective
functions.

The difference are the 8-bit and 16-bit types: char, uchar, short, and ushort. Note that half is
already supported, if half-precision is supported.

Version History

• Revision 1.0.0, 2022-04-29

◦ Initial version.

List of Provisional Extensions
• cl_khr_command_buffer

• cl_khr_command_buffer_multi_device

• cl_khr_command_buffer_mutable_dispatch

• cl_khr_external_memory_dx

• cl_khr_external_semaphore_dx_fence

• cl_khr_external_semaphore_win32

• cl_khr_kernel_clock

560

OpenCL_C.html#cl_khr_work_group_uniform_arithmetic


cl_khr_command_buffer

Name String

cl_khr_command_buffer

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 1.2

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

API Interactions

• Interacts with CL_VERSION_2_0

Other Extension Metadata

Last Modified Date

2023-03-31

IP Status

No known IP claims.

Contributors

• Ewan Crawford, Codeplay Software Ltd.

• Gordon Brown, Codeplay Software Ltd.

• Kenneth Benzie, Codeplay Software Ltd.

• Alastair Murray, Codeplay Software Ltd.

• Jack Frankland, Codeplay Software Ltd.

• Balaji Calidas, Qualcomm Technologies Inc.

• Joshua Kelly, Qualcomm Technologies, Inc.

• Kevin Petit, Arm Ltd.

• Aharon Abramson, Intel.

• Ben Ashbaugh, Intel.

• Boaz Ouriel, Intel.

• Chris Gearing, Intel.

• Pekka Jääskeläinen, Tampere University and Intel

• Jan Solanti, Tampere University

• Nikhil Joshi, NVIDIA

• James Price, Google

• Brice Videau, Argonne National Laboratory

561



Description

cl_khr_command_buffer adds the ability to record and replay buffers of OpenCL commands.

Command-buffers enable a reduction in overhead when enqueuing the same workload multiple
times. By separating the command-queue setup from dispatch, the ability to replay a set of
previously created commands is introduced.

Device-side cl_sync_point_khr synchronization-points can be used within command-buffers to
define command dependencies. This allows the commands of a command-buffer to execute out-of-
order on a single compatible command-queue. The command-buffer itself has no inherent in-
order/out-of-order property, this ordering is inferred from the command-queue used on command
recording. Out-of-order enqueues without event dependencies of both regular commands, such as
clEnqueueFillBuffer, and command-buffers are allowed to execute concurrently, and it is up to the
user to express any dependencies using events.

The command-queues a command-buffer will be executed on can be set on replay via parameters
to clEnqueueCommandBufferKHR, provided they are compatible with the command-queues used
on command-buffer recording.

Background

On embedded devices where building a command stream accounts for a significant expenditure of
resources and where workloads are often required to be pipelined, a solution that minimizes driver
overhead can significantly improve the utilization of accelerators by removing a bottleneck in
repeated command stream generation.

An additional motivator is lowering task execution latency, as devices can be kept occupied with
work by repeated submissions, without having to wait on the host to construct commands again for
a similar workload.

Rationale

The command-buffer abstraction over the generation of command streams is a proven approach
which facilitates a significant reduction in driver overhead in existing real-world applications with
repetitive pipelined workloads which are built on top of Vulkan, DirectX 12, and Metal.

A primary goal is for a command-buffer to avoid any interaction with application code after being
enqueued until all recorded commands have completed. As such, any command which maps or
migrates memory objects; reads or writes memory objects; or enqueues a native kernel, is not
available for command-buffer recording. Finally commands recorded into a command buffer do
not wait for or return event objects, these are instead replaced with device-side synchronization-
point identifiers which enable out-of-order execution when enqueued on compatible command-
queues.

Adding new entry-points for individual commands, rather than recording existing command-queue
APIs with begin/end markers was a design decision made for the following reasons:

• Individually specified entry points makes it clearer to the user what’s supported, as opposed to
adding a large number of error conditions throughout the specification with all the restrictions.

562



• Prevents code forking in existing entry points for the implementer, as otherwise separate paths
in each entry point need to be maintained for both the recording and normal cases.

• Allows the definition of a new device-side synchronization primitive rather than overloading
cl_event. As use of cl_event in individual commands allows host interaction from callback and
user-events, as well as introducing complexities when a command-buffer is enqueued multiple
times regarding profiling and execution status.

• New entry points facilitate returning handles to individual commands, allowing those
commands to be modified between enqueues of the command buffer. Not all command handles
are used in this extension, but providing them facilitates other extensions layered on top to take
advantage of them to provide additional mutable functionality.

Simultaneous Use

The optional simultaneous use capability was added to the extension so that vendors can support
pipelined workflows, where command-buffers are repeatedly enqueued without blocking in user
code. However, simultaneous use may result in command-buffers being more expensive to
enqueue than in a sequential model, so the capability is optional to enable optimizations on
command-buffer recording.

Interactions With Other Extensions

The introduction of the command-buffer abstraction enables functionality beyond what the cl_khr_
command_buffer extension currently provides, i.e. the recording of immutable commands to a single
queue which can then be executed without commands synchronizing outside the command-buffer.
Extra functionality expanding on this is provided as layered extensions on top of cl_khr_command_
buffer. The layered extensions that currently exist are:

• cl_khr_command_buffer_multi_device

• cl_khr_command_buffer_mutable_dispatch

Having cl_khr_command_buffer as a minimal base specification means that the API defines
mechanisms for functionality that is not enabled by this extension, these are described in the
following sub-sections. cl_khr_command_buffer will retain its provisional extension status until other
layered extensions are released, as these may reveal modifications needed to the base specification
to support their intended use cases.

ND-range Kernel Command Properties

The clCommandNDRangeKernelKHR entry-point defines a properties parameter of new type
cl_ndrange_kernel_command_properties_khr. No properties are defined in cl_khr_command_buffer, but
the parameter enables layered extensions like cl_khr_command_buffer_mutable_dispatch to define
properties that inform the characteristics of the kernel command.

Command Handles

All command recording entry-points define a cl_mutable_command_khr output parameter which
provides a handle to the specific command being recorded. Use of these output handles is not
enabled by the cl_khr_command_buffer extension, but the handles allow individual commands in a
command-buffer to be referenced by the user.

563



Use of these handles is enabled in cl_khr_command_buffer_mutable_dispatch to give the capability for
an application to use the handles to modify commands between enqueues of a command-buffer.

List of Queues

Only a single command-queue can be associated with a command-buffer in the cl_khr_command_
buffer extension, but the API is designed so that the layered cl_khr_command_buffer_multi_device
extension can relax this constraint to allow commands to be recorded across multiple queues in the
same command-buffer, providing replay of heterogeneous task graphs.

Using multiple queue functionality will result in an error without cl_khr_command_buffer_multi_
device to relax usage of the following API features:

• When a command-buffer is created the API enables passing a list of queues that the command-
buffer will record commands to. Only a single queue is permitted in cl_khr_command_buffer.

• Individual command recording entry-points define a cl_command_queue parameter for which of
the queues set on command-buffer creation that command should be record to. This must be
passed as NULL in cl_khr_command_buffer.

• clEnqueueCommandBufferKHR takes a list of queues for command-buffer execution,
correspond to those set on creation. Only a single queue is permitted in cl_khr_command_buffer.

New Commands

• clCreateCommandBufferKHR

• clRetainCommandBufferKHR

• clReleaseCommandBufferKHR

• clFinalizeCommandBufferKHR

• clEnqueueCommandBufferKHR

• clCommandBarrierWithWaitListKHR

• clCommandCopyBufferKHR

• clCommandCopyBufferRectKHR

• clCommandCopyBufferToImageKHR

• clCommandCopyImageKHR

• clCommandCopyImageToBufferKHR

• clCommandFillBufferKHR

• clCommandFillImageKHR

• clCommandNDRangeKernelKHR

• clGetCommandBufferInfoKHR

• The following SVM entry points are supported only with at least OpenCL 2.0, and starting from
version 0.9.4 of this extension

◦ clCommandSVMMemcpyKHR

◦ clCommandSVMMemFillKHR

564



New Types

• cl_device_command_buffer_capabilities_khr

• cl_command_buffer_khr

• cl_sync_point_khr

• cl_command_buffer_info_khr

• cl_command_buffer_state_khr

• cl_command_buffer_properties_khr

• cl_command_buffer_flags_khr

• cl_ndrange_kernel_command_properties_khr

• cl_mutable_command_khr

New Enums

• cl_device_info

◦ CL_DEVICE_COMMAND_BUFFER_CAPABILITIES_KHR

◦ CL_DEVICE_COMMAND_BUFFER_REQUIRED_QUEUE_PROPERTIES_KHR

• cl_device_command_buffer_capabilities_khr

◦ CL_COMMAND_BUFFER_CAPABILITY_KERNEL_PRINTF_KHR

◦ CL_COMMAND_BUFFER_CAPABILITY_DEVICE_SIDE_ENQUEUE_KHR

◦ CL_COMMAND_BUFFER_CAPABILITY_SIMULTANEOUS_USE_KHR

◦ CL_COMMAND_BUFFER_CAPABILITY_OUT_OF_ORDER_KHR

• cl_command_buffer_properties_khr

◦ CL_COMMAND_BUFFER_FLAGS_KHR

• cl_command_buffer_flags_khr

◦ CL_COMMAND_BUFFER_SIMULTANEOUS_USE_KHR

• cl_command_buffer_info_khr

◦ CL_COMMAND_BUFFER_QUEUES_KHR

◦ CL_COMMAND_BUFFER_NUM_QUEUES_KHR

◦ CL_COMMAND_BUFFER_REFERENCE_COUNT_KHR

◦ CL_COMMAND_BUFFER_STATE_KHR

◦ CL_COMMAND_BUFFER_PROPERTIES_ARRAY_KHR

◦ CL_COMMAND_BUFFER_CONTEXT_KHR

• cl_command_buffer_state_khr

◦ CL_COMMAND_BUFFER_STATE_RECORDING_KHR

◦ CL_COMMAND_BUFFER_STATE_EXECUTABLE_KHR

◦ CL_COMMAND_BUFFER_STATE_PENDING_KHR

565



• cl_command_type

◦ CL_COMMAND_COMMAND_BUFFER_KHR

• New Error Codes

◦ CL_INVALID_COMMAND_BUFFER_KHR

◦ CL_INVALID_SYNC_POINT_WAIT_LIST_KHR

◦ CL_INCOMPATIBLE_COMMAND_QUEUE_KHR

Sample Code

  #define CL_CHECK(ERROR)                             \
    if (ERROR) {                                      \
      std::cerr << "OpenCL error: " << ERROR << "\n"; \
      return ERROR;                                   \
    }

  int main() {
    cl_platform_id platform;
    CL_CHECK(clGetPlatformIDs(1, &platform, nullptr));
    cl_device_id device;
    CL_CHECK(clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, nullptr));

    cl_int error;
    cl_context context =
        clCreateContext(nullptr, 1, &device, nullptr, nullptr, &error);
    CL_CHECK(error);

    const char* code = R"OpenCLC(
  kernel void vector_addition(global int* tile1, global int* tile2,
                              global int* res) {
    size_t index = get_global_id(0);
    res[index] = tile1[index] + tile2[index];
  }
  )OpenCLC";
    const size_t length = std::strlen(code);

    cl_program program =
        clCreateProgramWithSource(context, 1, &code, &length, &error);
    CL_CHECK(error);

    CL_CHECK(clBuildProgram(program, 1, &device, nullptr, nullptr, nullptr));

    cl_kernel kernel = clCreateKernel(program, "vector_addition", &error);
    CL_CHECK(error);

    constexpr size_t frame_count = 60;
    constexpr size_t frame_elements = 1024;
    constexpr size_t frame_size = frame_elements * sizeof(cl_int);

566



    constexpr size_t tile_count = 16;
    constexpr size_t tile_elements = frame_elements / tile_count;
    constexpr size_t tile_size = tile_elements * sizeof(cl_int);

    cl_mem buffer_tile1 =
        clCreateBuffer(context, CL_MEM_READ_ONLY, tile_size, nullptr, &error);
    CL_CHECK(error);
    cl_mem buffer_tile2 =
        clCreateBuffer(context, CL_MEM_READ_ONLY, tile_size, nullptr, &error);
    CL_CHECK(error);
    cl_mem buffer_res =
        clCreateBuffer(context, CL_MEM_WRITE_ONLY, tile_size, nullptr, &error);
    CL_CHECK(error);

    CL_CHECK(clSetKernelArg(kernel, 0, sizeof(buffer_tile1), &buffer_tile1));
    CL_CHECK(clSetKernelArg(kernel, 1, sizeof(buffer_tile2), &buffer_tile2));
    CL_CHECK(clSetKernelArg(kernel, 2, sizeof(buffer_res), &buffer_res));

    cl_command_queue command_queue =
      clCreateCommandQueue(context, device,
                           CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &error);
    CL_CHECK(error);

    cl_command_buffer_khr command_buffer =
        clCreateCommandBufferKHR(1, &command_queue, nullptr, &error);
    CL_CHECK(error);

    cl_mem buffer_src1 =
        clCreateBuffer(context, CL_MEM_READ_ONLY, frame_size, nullptr, &error);
    CL_CHECK(error);
    cl_mem buffer_src2 =
        clCreateBuffer(context, CL_MEM_READ_ONLY, frame_size, nullptr, &error);
    CL_CHECK(error);
    cl_mem buffer_dst =
        clCreateBuffer(context, CL_MEM_WRITE_ONLY, frame_size, nullptr, &error);
    CL_CHECK(error);

    cl_sync_point_khr tile_sync_point = 0;
    for (size_t tile_index = 0; tile_index < tile_count; tile_index++) {
      std::array<cl_sync_point_khr, 2> copy_sync_points;
      CL_CHECK(clCommandCopyBufferKHR(command_buffer,
          command_queue, buffer_src1, buffer_tile1, tile_index * tile_size, 0,
          tile_size, tile_sync_point ? 1 : 0,
          tile_sync_point ? &tile_sync_point : nullptr, &copy_sync_points[0]),
          nullptr);
      CL_CHECK(clCommandCopyBufferKHR(command_buffer,
          command_queue, buffer_src2, buffer_tile2, tile_index * tile_size, 0,
          tile_size, tile_sync_point ? 1 : 0,
          tile_sync_point ? &tile_sync_point : nullptr, &copy_sync_points[1]),
          nullptr);

567



      cl_sync_point_khr nd_sync_point;
      CL_CHECK(clCommandNDRangeKernelKHR(command_buffer,
          command_queue, nullptr, kernel, 1, nullptr, &tile_elements, nullptr,
          copy_sync_points.size(), copy_sync_points.data(), &nd_sync_point,
          nullptr));

      CL_CHECK(clCommandCopyBufferKHR(command_buffer,
          command_queue, buffer_res, buffer_dst, 0, tile_index * tile_size,
          tile_size, 1, &nd_sync_point, &tile_sync_point, nullptr));
    }

    CL_CHECK(clFinalizeCommandBufferKHR(command_buffer));

    std::random_device random_device;
    std::mt19937 random_engine{random_device()};
    std::uniform_int_distribution<cl_int> random_distribution{
        0, std::numeric_limits<cl_int>::max() / 2};
    auto random_generator = [&]() { return random_distribution(random_engine); };

    for (size_t frame_index = 0; frame_index < frame_count; frame_index++) {
      std::array<cl_event, 2> write_src_events;
      std::vector<cl_int> src1(frame_elements);
      std::generate(src1.begin(), src1.end(), random_generator);
      CL_CHECK(clEnqueueWriteBuffer(command_queue, buffer_src1, CL_FALSE, 0,
                                    frame_size, src1.data(), 0, nullptr,
                                    &write_src_events[0]));
      std::vector<cl_int> src2(frame_elements);
      std::generate(src2.begin(), src2.end(), random_generator);
      CL_CHECK(clEnqueueWriteBuffer(command_queue, buffer_src2, CL_FALSE, 0,
                                    frame_size, src2.data(), 0, nullptr,
                                    &write_src_events[1]));

      CL_CHECK(clEnqueueCommandBufferKHR(0, NULL, command_buffer, 2,
                                         write_src_events.data(), nullptr));

      CL_CHECK(clFinish(command_queue));

      CL_CHECK(clReleaseEvent(write_src_event[0]));
      CL_CHECK(clReleaseEvent(write_src_event[1]));
    }

    CL_CHECK(clReleaseCommandBufferKHR(command_buffer));
    CL_CHECK(clReleaseCommandQueue(command_queue));

    CL_CHECK(clReleaseMemObject(buffer_src1));
    CL_CHECK(clReleaseMemObject(buffer_src2));
    CL_CHECK(clReleaseMemObject(buffer_dst));

    CL_CHECK(clReleaseMemObject(buffer_tile1));
    CL_CHECK(clReleaseMemObject(buffer_tile2));
    CL_CHECK(clReleaseMemObject(buffer_res));

568



    CL_CHECK(clReleaseKernel(kernel));
    CL_CHECK(clReleaseProgram(program));
    CL_CHECK(clReleaseContext(context));

    return 0;
  }

Issues

1. Introduce a clCloneCommandBufferKHR entry-point for cloning a command-buffer.

UNRESOLVED

2. Enable detached command-buffer execution, where command-buffers are executed on their
own internal queue to prevent locking user created queues for the duration of their execution.

UNRESOLVED

Version History

• Revision 0.9.0, 2021-11-10

◦ First assigned version (provisional).

• 0.9.1, 2022-08-24

◦ Specify an error if a command-buffer is finalized multiple times (provisional).

• 0.9.2, 2023-03-31

◦ Introduce context query CL_COMMAND_BUFFER_CONTEXT_KHR (provisional).

• 0.9.3, 2023-04-04

◦ Remove Invalid command-buffer state (provisional).

• 0.9.4, 2023-05-11

◦ Add clCommandSVMMemcpyKHR and clCommandSVMMemFillKHR command entries
(provisional).

cl_khr_command_buffer_multi_device

Name String

cl_khr_command_buffer_multi_device

Ratification Status

Ratified

Extension and Version Dependencies

cl_khr_command_buffer

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

569



Other Extension Metadata

Last Modified Date

2023-04-30

IP Status

No known IP claims.

Contributors

• Ewan Crawford, Codeplay Software Ltd.

• Gordon Brown, Codeplay Software Ltd.

• Kenneth Benzie, Codeplay Software Ltd.

• Alastair Murray, Codeplay Software Ltd.

• Jack Frankland, Codeplay Software Ltd.

• Balaji Calidas, Qualcomm Technologies Inc.

• Joshua Kelly, Qualcomm Technologies, Inc.

• Kevin Petit, Arm Ltd.

• Aharon Abramson, Intel.

• Ben Ashbaugh, Intel.

• Boaz Ouriel, Intel.

• Pekka Jääskeläinen, Tampere University and Intel.

• Jan Solanti, Tampere University

• Nikhil Joshi, NVIDIA

• James Price, Google

Description

The cl_khr_command_buffer extension separates command construction from enqueue by providing
a mechanism to record a set of commands which can then be repeatedly enqueued. However, the
commands in a command-buffer can only be recorded to a single command-queue specified on
command-buffer creation.

cl_khr_command_buffer_multi_device extends the scope of a command-buffer to allow commands to
be recorded across multiple queues in the same command-buffer, providing execution of
heterogeneous task graphs from command-queues associated with different devices.

The ability for a user to deep copy an existing command-buffer so that the commands target a
different device is also made possible by cl_khr_command_buffer_multi_device. Depending on
platform support the mapping of commands to the new target device can be done either explicitly
by the user, or automatically by the OpenCL runtime.

New Commands

• clRemapCommandBufferKHR

570



New Types

Bitfield for querying command-buffer capabilities of an OpenCL Platform with clGetPlatformInfo,
see the platform queries table:

• cl_platform_command_buffer_capabilities_khr

New Enums

Enums for querying device command-buffer capabilities with clGetDeviceInfo, see the device
queries table:

• cl_device_info

◦ CL_DEVICE_COMMAND_BUFFER_NUM_SYNC_DEVICES_KHR

◦ CL_DEVICE_COMMAND_BUFFER_SYNC_DEVICES_KHR

• cl_device_command_buffer_capabilities_khr

◦ CL_COMMAND_BUFFER_CAPABILITY_MULTIPLE_QUEUE_KHR

• cl_command_buffer_flags_khr

◦ CL_COMMAND_BUFFER_DEVICE_SIDE_SYNC_KHR

• cl_platform_info

◦ CL_PLATFORM_COMMAND_BUFFER_CAPABILITIES_KHR

• cl_platform_command_buffer_capabilities_khr

◦ CL_COMMAND_BUFFER_PLATFORM_UNIVERSAL_SYNC_KHR

◦ CL_COMMAND_BUFFER_PLATFORM_REMAP_QUEUES_KHR

◦ CL_COMMAND_BUFFER_PLATFORM_AUTOMATIC_REMAP_KHR

Sample Code

#define CL_CHECK(ERROR)                                                        \
  if (ERROR) {                                                                 \
    std::cerr << "OpenCL error: " << ERROR << "\n";                            \
    return ERROR;                                                              \
  }

int main() {
  cl_platform_id platform;
  CL_CHECK(clGetPlatformIDs(1, &platform, nullptr));
  cl_platform_command_buffer_capabilities_khr platform_caps;
  CL_CHECK(clGetPlatformInfo(platform,
                             CL_PLATFORM_COMMAND_BUFFER_CAPABILITIES_KHR,
                             sizeof(platform_caps), &platform_caps, NULL));
  if (!(platform_caps & CL_COMMAND_BUFFER_PLATFORM_AUTOMATIC_REMAP_KHR)) {
    std::cerr << "Command-buffer remapping not supported but used in example, "
                 "skipping\n";
    return 0;

571



  }

  cl_uint num_devices = 0;
  CL_CHECK(clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &num_devices));
  std::vector<cl_device_id> devices(num_devices);
  CL_CHECK(
      clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, devices.data(), nullptr));

  // Checks omitted for brevity that either a) the platform supports
  // CL_COMMAND_BUFFER_PLATFORM_UNIVERSAL_SYNC_KHR or b) each device is listed
  // in the others CL_DEVICE_COMMAND_BUFFER_SYNC_DEVICES_KHR

  cl_int error;
  cl_context context =
      clCreateContext(NULL, num_devices, devices.data(), NULL, NULL, &error);
  CL_CHECK(error);

  std::vector<cl_command_queue> queues(num_devices);
  for (cl_uint i = 0; i < num_devices; i++) {
    queues[i] = clCreateCommandQueue(context, devices[i], 0, &error);
    CL_CHECK(error);
  }

  const char *code = R"OpenCLC(
  kernel void vector_addition(global int* tile1, global int* tile2,
                              global int* res) {
    size_t index = get_global_id(0);
    res[index] = tile1[index] + tile2[index];
  }
  )OpenCLC";
  const size_t length = std::strlen(code);

  cl_program program =
      clCreateProgramWithSource(context, 1, &code, &length, &error);
  CL_CHECK(error);

  CL_CHECK(
      clBuildProgram(program, num_devices, devices.data(), NULL, NULL, NULL));

  cl_kernel kernel = clCreateKernel(program, "vector_addition", &error);
  CL_CHECK(error);

  constexpr size_t frame_count = 60;
  constexpr size_t frame_elements = 1024;
  constexpr size_t frame_size = frame_elements * sizeof(cl_int);

  constexpr size_t tile_count = 16;
  constexpr size_t tile_elements = frame_elements / tile_count;
  constexpr size_t tile_size = tile_elements * sizeof(cl_int);

  cl_mem buffer_tile1 =

572



      clCreateBuffer(context, CL_MEM_READ_ONLY, tile_size, NULL, &error);
  CL_CHECK(error);

  cl_mem buffer_tile2 =
      clCreateBuffer(context, CL_MEM_READ_ONLY, tile_size, NULL, &error);
  CL_CHECK(error);

  cl_mem buffer_res =
      clCreateBuffer(context, CL_MEM_WRITE_ONLY, tile_size, NULL, &error);
  CL_CHECK(error);

  CL_CHECK(clSetKernelArg(kernel, 0, sizeof(buffer_tile1), &buffer_tile1));
  CL_CHECK(clSetKernelArg(kernel, 1, sizeof(buffer_tile2), &buffer_tile2));
  CL_CHECK(clSetKernelArg(kernel, 2, sizeof(buffer_res), &buffer_res));

  cl_command_buffer_khr original_cmdbuf =
      clCreateCommandBufferKHR(num_devices, queues.data(), nullptr, &error);
  CL_CHECK(error);

  cl_mem buffer_src1 =
      clCreateBuffer(context, CL_MEM_READ_ONLY, frame_size, NULL, &error);
  CL_CHECK(error);

  cl_mem buffer_src2 =
      clCreateBuffer(context, CL_MEM_READ_ONLY, frame_size, NULL, &error);
  CL_CHECK(error);

  cl_mem buffer_dst =
      clCreateBuffer(context, CL_MEM_READ_WRITE, frame_size, NULL, &error);
  CL_CHECK(error);

  cl_sync_point_khr tile_sync_point = 0;
  for (size_t tile_index = 0; tile_index < tile_count; tile_index++) {
    cl_sync_point_khr copy_sync_points[2];
    CL_CHECK(clCommandCopyBufferKHR(
        original_cmdbuf, queues[tile_index % num_devices], buffer_src1,
        buffer_tile1, tile_index * tile_size, 0, tile_size,
        tile_sync_point ? 1 : 0, tile_sync_point ? &tile_sync_point : NULL,
        &copy_sync_points[0], NULL));

    CL_CHECK(clCommandCopyBufferKHR(
                 original_cmdbuf, queues[tile_index % num_devices], buffer_src2,
                 buffer_tile2, tile_index * tile_size, 0, tile_size,
                 tile_sync_point ? 1 : 0,
                 tile_sync_point ? &tile_sync_point : nullptr,
                 &copy_sync_points[1], NULL));

    cl_sync_point_khr nd_sync_point;
    CL_CHECK(clCommandNDRangeKernelKHR(
        original_cmdbuf, queues[tile_index % num_devices], NULL, kernel, 1,
        NULL, &tile_elements, NULL, 2, copy_sync_points, &nd_sync_point, NULL));

573



    CL_CHECK(clCommandCopyBufferKHR(
        original_cmdbuf, queues[tile_index % num_devices], buffer_res,
        buffer_dst, 0, tile_index * tile_size, tile_size, 1, &nd_sync_point,
        &tile_sync_point, NULL));
  }

  CL_CHECK(clFinalizeCommandBufferKHR(original_cmdbuf));

  std::random_device random_device;
  std::mt19937 random_engine{random_device()};
  std::uniform_int_distribution<cl_int> random_distribution{
      0, std::numeric_limits<cl_int>::max() / 2};
  auto random_generator = [&]() { return random_distribution(random_engine); };

  auto enqueue_frame = [&](cl_command_buffer_khr command_buffer) {
    for (size_t frame_index = 0; frame_index < frame_count; frame_index++) {
      std::array<cl_event, 3> enqueue_events;
      std::vector<cl_int> src1(frame_elements);
      std::generate(src1.begin(), src1.end(), random_generator);
      CL_CHECK(clEnqueueWriteBuffer(queues[0], buffer_src1, CL_FALSE, 0,
                                    frame_size, src1.data(), 0, nullptr,
                                    &enqueue_events[0]));
      std::vector<cl_int> src2(frame_elements);
      std::generate(src2.begin(), src2.end(), random_generator);
      CL_CHECK(clEnqueueWriteBuffer(queues[0], buffer_src2, CL_FALSE, 0,
                                    frame_size, src2.data(), 0, nullptr,
                                    &enqueue_events[1]));

      CL_CHECK(clEnqueueCommandBufferKHR(0, NULL, command_buffer, 2,
                                         enqueue_events.data(),
                                         &enqueue_events[2]));

      CL_CHECK(clWaitForEvents(1, enqueue_events[2]));

      for (auto e : enqueue_events) {
        CL_CHECK(clReleaseEvent(e));
      }
    }
    return 0;
  };

  error = enqueue_frame(original_cmdbuf);
  CL_CHECK(error);

  // Remap from N queues to 1 queue and run again
  cl_command_buffer_khr remapped_cmdbuf = clRemapCommandBufferKHR(
      original_cmdbuf, CL_TRUE, 1, queues.data(), 0, NULL, NULL, &error);
  CL_CHECK(error);

  error = enqueue_frame(remapped_cmdbuf);

574



  CL_CHECK(error);

  for (unsigned i = 0; i < num_devices; ++i) {
    CL_CHECK(clReleaseCommandQueue(queues[i]));
  }
  CL_CHECK(clReleaseMemObject(buffer_src1));
  CL_CHECK(clReleaseMemObject(buffer_src2));
  CL_CHECK(clReleaseMemObject(buffer_dst));

  CL_CHECK(clReleaseMemObject(buffer_tile1));
  CL_CHECK(clReleaseMemObject(buffer_tile2));
  CL_CHECK(clReleaseMemObject(buffer_res));

  CL_CHECK(clReleaseCommandBufferKHR(original_cmdbuf));
  CL_CHECK(clReleaseCommandBufferKHR(remapped_cmdbuf));

  CL_CHECK(clReleaseKernel(kernel));
  CL_CHECK(clReleaseProgram(program));
  CL_CHECK(clReleaseContext(context));

  return 0;
}

Issues

1. In cl_event profiling info for a command-buffer running across the queues for several devices,
how do we know what the first & last commands executed are if there is concurrent execution
across devices.

RESOLVED: Allowed an implementation to fallback to CL_PROFILING_COMMAND_SUBMIT and
CL_PROFILING_COMMAND_COMPLETE when reporting CL_PROFILING_COMMAND_START & CL_PROFILING_
COMMAND_END.

2. Is an atomic constraint required? This would forbid regular clEnqueue* commands, from
interleaving execution on a queue which a command-buffer is being executed on.

RESOLVED: This behavior can block parallelism, and constraint is expressible by the user
through existing synchronization mechanisms if they require it.

3. It is currently an error if a set of command-queues passed to clEnqueueCommandBufferKHR
aren’t compatible with those set on recording. Should we relax this as an optional capability
that allows an implementation to do a more expensive command-buffer enqueue for this case?

RESOLVED: Added as an optional feature.

Version History

• Revision 0.9.0, 2023-04-14

◦ First assigned version (provisional).

575



• Revision 0.9.1, 2023-04-30

◦ Added clCommandSVMMemcpyKHR and clCommandSVMMemFillKHR as affected functions
(provisional).

cl_khr_command_buffer_mutable_dispatch

Name String

cl_khr_command_buffer_mutable_dispatch

Ratification Status

Ratified

Extension and Version Dependencies

cl_khr_command_buffer

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

Other Extension Metadata

Last Modified Date

2022-08-31

IP Status

No known IP claims.

Contributors

• Ewan Crawford, Codeplay Software Ltd.

• Gordon Brown, Codeplay Software Ltd.

• Kenneth Benzie, Codeplay Software Ltd.

• Alastair Murray, Codeplay Software Ltd.

• Jack Frankland, Codeplay Software Ltd.

• Balaji Calidas, Qualcomm Technologies Inc.

• Joshua Kelly, Qualcomm Technologies, Inc.

• Kevin Petit, Arm Ltd.

• Aharon Abramson, Intel.

• Ben Ashbaugh, Intel.

• Boaz Ouriel, Intel.

• Pekka Jääskeläinen, Tampere University

• Jan Solanti, Tampere University

• Nikhil Joshi, NVIDIA

• James Price, Google

576



Description

The cl_khr_command_buffer extension separates command construction from enqueue by providing
a mechanism to record a set of commands which can then be repeatedly enqueued. However, the
commands recorded to the command-buffer are immutable between enqueues.

cl_khr_command_buffer_mutable_dispatch removes this restriction. In particular, this extension
allows the configuration of a kernel execution command in a command-buffer, called a mutable-
dispatch, to be modified. This allows inputs and outputs to the kernel, as well as work-item sizes
and offsets, to change without having to re-record the entire command sequence in a new
command-buffer.

Interactions With Other Extensions

The cl_command_buffer_structure_type_khr type has been added to this extension for the purpose of
allowing expansion of mutable functionality in future extensions layered on top of cl_khr_command_
buffer_mutable_dispatch. Any parameter that is a structure containing a void* next member must
have a value of next that is either NULL, or is a pointer to a valid structure defined by cl_khr_
command_buffer_mutable_dispatch or an extension layered on top. To be a valid structure in the
pointer chain the first member of the structure must be a cl_command_buffer_structure_type_khr
identifier for the structure being iterated through, and the second member a void* next pointer to
the next structure in the chain.


This approach is based on structure pointer chains in Vulkan, for more details see
the “Valid Usage for Structure Pointer Chains” section of the Vulkan specification.

This is designed so that another extension layered on cl_khr_command_buffer_mutable_dispatch could
allow modification of commands recorded to a command-buffer other than kernel execution
commands. As all command recording entry-points return a cl_mutable_command_khr handle, and
aspects like which cl_mem object a command uses could also be updated between enqueues of the
command-buffer.

New Commands

• clUpdateMutableCommandsKHR

• clGetMutableCommandInfoKHR

New Types

• cl_mutable_dispatch_fields_khr

• cl_mutable_command_info_khr

• cl_command_buffer_structure_type_khr

• cl_mutable_base_config_khr

• cl_mutable_dispatch_asserts_khr

• cl_mutable_dispatch_config_khr

• cl_mutable_dispatch_exec_info_khr

577



• cl_mutable_dispatch_arg_khr

New Enums

• cl_device_info

◦ CL_DEVICE_MUTABLE_DISPATCH_CAPABILITIES_KHR

• cl_ndrange_kernel_command_properties_khr

◦ CL_MUTABLE_DISPATCH_ASSERTS_KHR

◦ CL_MUTABLE_DISPATCH_UPDATABLE_FIELDS_KHR

• cl_mutable_dispatch_asserts_khr

◦ CL_MUTABLE_DISPATCH_ASSERT_NO_ADDITIONAL_WORK_GROUPS_KHR

• cl_mutable_dispatch_fields_khr

◦ CL_MUTABLE_DISPATCH_GLOBAL_OFFSET_KHR

◦ CL_MUTABLE_DISPATCH_GLOBAL_SIZE_KHR

◦ CL_MUTABLE_DISPATCH_LOCAL_SIZE_KHR

◦ CL_MUTABLE_DISPATCH_ARGUMENTS_KHR

◦ CL_MUTABLE_DISPATCH_EXEC_INFO_KHR

• cl_mutable_command_info_khr

◦ CL_MUTABLE_COMMAND_COMMAND_QUEUE_KHR

◦ CL_MUTABLE_COMMAND_COMMAND_BUFFER_KHR

◦ CL_MUTABLE_DISPATCH_PROPERTIES_ARRAY_KHR

◦ CL_MUTABLE_DISPATCH_KERNEL_KHR

◦ CL_MUTABLE_DISPATCH_DIMENSIONS_KHR

◦ CL_MUTABLE_DISPATCH_GLOBAL_WORK_OFFSET_KHR

◦ CL_MUTABLE_DISPATCH_GLOBAL_WORK_SIZE_KHR

◦ CL_MUTABLE_DISPATCH_LOCAL_WORK_SIZE_KHR

◦ CL_MUTABLE_COMMAND_COMMAND_TYPE_KHR

• cl_command_buffer_flags_khr

◦ CL_COMMAND_BUFFER_MUTABLE_KHR

• cl_command_buffer_properties_khr

◦ CL_COMMAND_BUFFER_MUTABLE_DISPATCH_ASSERTS_KHR

• cl_command_buffer_structure_type_khr

◦ CL_STRUCTURE_TYPE_MUTABLE_BASE_CONFIG_KHR

◦ CL_STRUCTURE_TYPE_MUTABLE_DISPATCH_CONFIG_KHR

• New Error Codes

◦ CL_INVALID_MUTABLE_COMMAND_KHR

578



Sample Code

Sample Application Updating the Arguments to a Mutable-dispatch Between Command-buffer Submissions

#define CL_CHECK(ERROR)                             \
  if (ERROR) {                                      \
    std::cerr << "OpenCL error: " << ERROR << "\n"; \
    return ERROR;                                   \
  }

int main() {
  cl_platform_id platform;
  CL_CHECK(clGetPlatformIDs(1, &platform, nullptr));
  cl_device_id device;
  CL_CHECK(clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, nullptr));

  cl_mutable_dispatch_fields_khr mutable_capabilities;
  CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MUTABLE_DISPATCH_CAPABILITIES_KHR,
                           sizeof(mutable_capabilities), &mutable_capabilities,
                           nullptr));
  if (!(mutable_capabilities & CL_MUTABLE_DISPATCH_ARGUMENTS_KHR)) {
    std::cerr
        << "Device does not support update arguments to a mutable-dispatch, "
           "skipping example.\n";
    return 0;
  }

  cl_int error;
  cl_context context =
      clCreateContext(nullptr, 1, &device, nullptr, nullptr, &error);
  CL_CHECK(error);

  const char* code = R"OpenCLC(
kernel void vector_addition(global int* tile1, global int* tile2,
                            global int* res) {
  size_t index = get_global_id(0);
  res[index] = tile1[index] + tile2[index];
}
)OpenCLC";
  const size_t length = std::strlen(code);

  cl_program program =
      clCreateProgramWithSource(context, 1, &code, &length, &error);
  CL_CHECK(error);

  CL_CHECK(clBuildProgram(program, 1, &device, nullptr, nullptr, nullptr));

  cl_kernel kernel = clCreateKernel(program, "vector_addition", &error);
  CL_CHECK(error);

  // Set the parameters of the frames

579



  constexpr size_t iterations = 60;
  constexpr size_t elem_size = sizeof(cl_int);
  constexpr size_t frame_width = 32;
  constexpr size_t frame_count = frame_width * frame_width;
  constexpr size_t frame_size = frame_count * elem_size;

  cl_mem input_A_buffers[2] = {nullptr, nullptr};
  cl_mem input_B_buffers[2] = {nullptr, nullptr};
  cl_mem output_buffers[2] = {nullptr, nullptr};

  // Create the buffer to swap between even and odd kernel iterations
  for (size_t i = 0; i < 2; i++) {
    input_A_buffers[i] =
        clCreateBuffer(context, CL_MEM_READ_ONLY, frame_size, nullptr, &error);
    CL_CHECK(error);

    input_B_buffers[i] =
        clCreateBuffer(context, CL_MEM_READ_ONLY, frame_size, nullptr, &error);
    CL_CHECK(error);

    output_buffers[i] =
        clCreateBuffer(context, CL_MEM_WRITE_ONLY, frame_size, nullptr, &error);
    CL_CHECK(error);
  }

  cl_command_queue command_queue =
      clCreateCommandQueue(context, device, 0, &error);
  CL_CHECK(error);

  // Create command-buffer with mutable flag so we can update it
  cl_command_buffer_properties_khr properties[3] = {
      CL_COMMAND_BUFFER_FLAGS_KHR, CL_COMMAND_BUFFER_MUTABLE_KHR, 0};
  cl_command_buffer_khr command_buffer =
      clCreateCommandBufferKHR(1, &command_queue, properties, &error);
  CL_CHECK(error);

  CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &input_A_buffers[0]));
  CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &input_B_buffers[0]));
  CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &output_buffers[0]));

  // Instruct the nd-range command to allow for mutable kernel arguments
  cl_ndrange_kernel_command_properties_khr mutable_properties[] = {
      CL_MUTABLE_DISPATCH_UPDATABLE_FIELDS_KHR,
      CL_MUTABLE_DISPATCH_ARGUMENTS_KHR, 0};

  // Create command handle for mutating nd-range command
  cl_mutable_command_khr command_handle = nullptr;

  // Add the nd-range kernel command
  error = clCommandNDRangeKernelKHR(
      command_buffer, command_queue, mutable_properties, kernel, 1, nullptr,

580



      &frame_count, nullptr, 0, nullptr, nullptr, &command_handle);
  CL_CHECK(error);

  CL_CHECK(clFinalizeCommandBufferKHR(command_buffer));

  // Prepare for random input generation
  std::random_device random_device;
  std::mt19937 random_engine{random_device()};
  std::uniform_int_distribution<cl_int> random_distribution{
      std::numeric_limits<cl_int>::min() / 2,
      std::numeric_limits<cl_int>::max() / 2};

  // Iterate over each frame
  for (size_t i = 0; i < iterations; i++) {
    // Set the buffers for the current frame
    cl_mem input_A_buffer = input_A_buffers[i % 2];
    cl_mem input_B_buffer = input_B_buffers[i % 2];
    cl_mem output_buffer = output_buffers[i % 2];

    // Generate input A data
    std::vector<cl_int> input_a(frame_count);
    std::generate(std::begin(input_a), std::end(input_a),
                  [&]() { return random_distribution(random_engine); });

    // Write the generated data to the input A buffer
    error =
        clEnqueueWriteBuffer(command_queue, input_A_buffer, CL_FALSE, 0,
                             frame_size, input_a.data(), 0, nullptr, nullptr);
    CL_CHECK(error);

    // Generate input B data
    std::vector<cl_int> input_b(frame_count);
    std::generate(std::begin(input_b), std::end(input_b),
                  [&]() { return random_distribution(random_engine); });

    // Write the generated data to the input B buffer
    error =
        clEnqueueWriteBuffer(command_queue, input_B_buffer, CL_FALSE, 0,
                             frame_size, input_b.data(), 0, nullptr, nullptr);
    CL_CHECK(error);

    // If not executing the first frame
    if (i != 0) {
      // Configure the mutable configuration to update the kernel arguments
      cl_mutable_dispatch_arg_khr arg_0{0, sizeof(cl_mem), &input_A_buffer};
      cl_mutable_dispatch_arg_khr arg_1{1, sizeof(cl_mem), &input_B_buffer};
      cl_mutable_dispatch_arg_khr arg_2{2, sizeof(cl_mem), &output_buffer};
      cl_mutable_dispatch_arg_khr args[] = {arg_0, arg_1, arg_2};
      cl_mutable_dispatch_config_khr dispatch_config{
          CL_STRUCTURE_TYPE_MUTABLE_DISPATCH_CONFIG_KHR,
          nullptr,

581



          command_handle,
          3 /* num_args */,
          0 /* num_svm_arg */,
          0 /* num_exec_infos */,
          0 /* work_dim - 0 means no change to dimensions */,
          args /* arg_list */,
          nullptr /* arg_svm_list - nullptr means no change*/,
          nullptr /* exec_info_list */,
          nullptr /* global_work_offset */,
          nullptr /* global_work_size */,
          nullptr /* local_work_size */};
      cl_mutable_base_config_khr mutable_config{
          CL_STRUCTURE_TYPE_MUTABLE_BASE_CONFIG_KHR, nullptr, 1,
          &dispatch_config};

      // Update the command buffer with the mutable configuration
      error = clUpdateMutableCommandsKHR(command_buffer, &mutable_config);
      CL_CHECK(error);
    }

    // Enqueue the command buffer
    error = clEnqueueCommandBufferKHR(0, nullptr, command_buffer, 0, nullptr,
                                      nullptr);
    CL_CHECK(error);

    // Allocate memory for the output data
    std::vector<cl_int> output(frame_count);

    // Read the output data from the output buffer
    error = clEnqueueReadBuffer(command_queue, output_buffer, CL_TRUE, 0,
                                frame_size, output.data(), 0, nullptr, nullptr);
    CL_CHECK(error);

    // Flush and execute the read buffer
    error = clFinish(command_queue);
    CL_CHECK(error);

    // Verify the results of the frame
    for (size_t i = 0; i < frame_count; ++i) {
      const cl_int result = input_a[i] + input_b[i];
      if (output[i] != result) {
        std::cerr << "Error: Incorrect result at index " << i << " - Expected "
                  << output[i] << " was " << result << std::endl;
        std::exit(1);
      }
    }
  }

  std::cout << "Result verified\n";

  CL_CHECK(clReleaseCommandBufferKHR(command_buffer));

582



  for (size_t i = 0; i < 2; i++) {
    CL_CHECK(clReleaseMemObject(input_A_buffers[i]));
    CL_CHECK(clReleaseMemObject(input_B_buffers[i]));
    CL_CHECK(clReleaseMemObject(output_buffers[i]));
  }
  CL_CHECK(clReleaseCommandQueue(command_queue));
  CL_CHECK(clReleaseKernel(kernel));
  CL_CHECK(clReleaseProgram(program));
  CL_CHECK(clReleaseContext(context));
  CL_CHECK(clReleaseDevice(device));
  return 0;
}

Issues

1. Include simpler, more user friendly, entry-points for updating kernel arguments?

RESOLVED: Can be implemented in the ecosystem as a layer on top, if that layer proves popular
then can be introduced, possibly as another extension on top.

2. Add a command-buffer clone entry-point for deep copying a command-buffer? Arguments
could then be updated and both command-buffers used. Useful for techniques like double
buffering.

RESOLVED: In the use-case we’re targeting a user would only have a handle to the original
command-buffer, but not the clone, which may limit the usefulness of this capability.
Additionally, an implementation could be complicated by non-trivial deep copying of the
underlying objects contained in the command-buffer. As a result of this new entry-point being
an additive change to the specification it is omitted, and if its functionality has demand later, it
may be a introduced as a stand alone extension.

Version History

• Revision 0.9.0, 2022-08-31

◦ First assigned version (provisional).

• Revision 0.9.1, 2023-11-07

◦ Add type cl_mutable_dispatch_asserts_khr and its possible values (provisional).

cl_khr_external_memory_dx

Name String

cl_khr_external_memory_dx

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 3.0

583



and
cl_khr_external_memory

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

Other Extension Metadata

Last Modified Date

2023-08-29

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_memory_dx extends cl_external_memory_handle_type_khr to support Windows
handles referring to Direct 3D resources as external memory handle types that may be specified
when creating a buffer or image memory object.

New Enums

• cl_external_memory_handle_type_khr

584



◦ CL_EXTERNAL_MEMORY_HANDLE_D3D11_TEXTURE_KHR

◦ CL_EXTERNAL_MEMORY_HANDLE_D3D11_TEXTURE_KMT_KHR

◦ CL_EXTERNAL_MEMORY_HANDLE_D3D12_HEAP_KHR

◦ CL_EXTERNAL_MEMORY_HANDLE_D3D12_RESOURCE_KHR

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

• Revision 0.9.1, 2023-05-04

◦ Clarified device handle list enum cannot be specified without an external memory handle
(provisional).

• Revision 0.9.2, 2023-08-01

◦ Changed device handle list enum to the memory-specific CL_MEM_DEVICE_HANDLE_LIST_KHR
(provisional).

• Revision 0.9.3, 2023-08-29

◦ Added query for CL_DEVICE_EXTERNAL_MEMORY_IMPORT_ASSUME_LINEAR_IMAGES_HANDLE_TYPES_KHR
(provisional).

cl_khr_external_semaphore_dx_fence

Name String

cl_khr_external_semaphore_dx_fence

Ratification Status

Ratified

Extension and Version Dependencies

OpenCL 1.2
and
cl_khr_semaphore
and
cl_khr_external_semaphore

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

Other Extension Metadata

Last Modified Date

2021-09-10

IP Status

No known IP claims.

585



Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_semaphore_dx_fence supports importing and exporting a D3D12 fence as an external
semaphore using the APIs introduced by cl_khr_external_semaphore.

New Enums

• cl_external_semaphore_handle_type_khr

◦ CL_SEMAPHORE_HANDLE_D3D12_FENCE_KHR

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

cl_khr_external_semaphore_win32

Name String

cl_khr_external_semaphore_win32

Ratification Status

Ratified

586



Extension and Version Dependencies

OpenCL 1.2
and
cl_khr_semaphore
and
cl_khr_external_semaphore

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

Other Extension Metadata

Last Modified Date

2021-09-10

IP Status

No known IP claims.

Contributors

• Ajit Hakke-Patil, NVIDIA

• Amit Rao, NVIDIA

• Balaji Calidas, QUALCOMM

• Ben Ashbaugh, INTEL

• Carsten Rohde, NVIDIA

• Christoph Kubisch, NVIDIA

• Debalina Bhattacharjee, NVIDIA

• Faith Ekstrand, INTEL

• James Jones, NVIDIA

• Jeremy Kemp, IMAGINATION

• Joshua Kelly, QUALCOMM

• Karthik Raghavan Ravi, NVIDIA

• Kedar Patil, NVIDIA

• Kevin Petit, ARM

• Nikhil Joshi, NVIDIA

• Sharan Ashwathnarayan, NVIDIA

• Vivek Kini, NVIDIA

Description

cl_khr_external_semaphore_win32 supports importing and exporting an NT handle or global share
handle as an external semaphore using the APIs introduced by cl_khr_external_semaphore.

587



New Enums

• cl_external_semaphore_handle_type_khr

◦ CL_SEMAPHORE_HANDLE_OPAQUE_WIN32_KHR

◦ CL_SEMAPHORE_HANDLE_OPAQUE_WIN32_KMT_KHR

Version History

• Revision 0.9.0, 2021-09-10

◦ Initial version (provisional).

cl_khr_kernel_clock

Name String

cl_khr_kernel_clock

Ratification Status

Ratified

Extension and Version Dependencies

None

• This is a provisional extension and must be used with caution. See the description of
provisional header files for enablement and stability details.

Other Extension Metadata

Last Modified Date

2024-03-25

IP Status

No known IP claims.

Contributors

• Kevin Petit, Arm Ltd.

• Paul Fradgley, Imagination Technologies

• Jeremy Kemp, Imagination Technologies

• Ben Ashbaugh, Intel

• Balaji Calidas, Qualcomm Technologies, Inc.

• Ruihao Zhang, Qualcomm Technologies, Inc.

Description

cl_khr_kernel_clock adds the ability for a kernel to sample the value from one of three clocks
provided by compute units.

588



OpenCL C compilers supporting this extension will define the extension macro cl_khr_kernel_clock,
and may define corresponding feature macros __opencl_c_kernel_clock_scope_device, __opencl_c_
kernel_clock_scope_work_group, and __opencl_c_kernel_clock_scope_sub_group depending on the
reported capabilities.

See the Kernel Clock section of the OpenCL C specification for more information.

Interactions With Other Extensions

On devices that implement the EMBEDDED profile, the cles_khr_int64 extension is required for the
clock_read_device, clock_read_work_group and clock_read_sub_group functions to be present.

Support for sub-groups is required for the clock_read_sub_group and clock_read_hilo_sub_group
functions to be present.

New Types

• cl_device_kernel_clock_capabilities_khr

New Enums

• cl_device_info

◦ CL_DEVICE_KERNEL_CLOCK_CAPABILITIES_KHR

• cl_device_kernel_clock_capabilities_khr

◦ CL_DEVICE_KERNEL_CLOCK_SCOPE_DEVICE_KHR

◦ CL_DEVICE_KERNEL_CLOCK_SCOPE_WORK_GROUP_KHR

◦ CL_DEVICE_KERNEL_CLOCK_SCOPE_SUB_GROUP_KHR

Version History

• Revision 0.9.0, 2024-03-25

◦ First assigned version (provisional).

List of Deprecated Extensions
• cl_khr_spir

589

OpenCL_C.html#cl_khr_kernel_clock


cl_khr_spir

Name String

cl_khr_spir

Ratification Status

Ratified

Extension and Version Dependencies

None

Deprecation State

• Obsoleted by cl_khr_il_program extension

◦ Which in turn was promoted to OpenCL 2.1

Other Extension Metadata

Last Modified Date

2020-04-21

IP Status

No known IP claims.

Description

cl_khr_spir adds the ability to create an OpenCL program object from a Standard Portable
Intermediate Representation (SPIR) instance. A SPIR instance is a vendor-neutral non-source
representation for OpenCL C programs.

See the SPIR Compilation Options for information on compiling SPIR binaries.

cl_khr_spir has been superseded by the SPIR-V intermediate representation, which is supported by
the cl_khr_il_program extension, and is a core feature in OpenCL 2.1.

New Enums

• cl_device_info

◦ CL_DEVICE_SPIR_VERSIONS

• cl_program_binary_type

◦ CL_PROGRAM_BINARY_TYPE_INTERMEDIATE

Version History

• Revision 1.0.0, 2020-04-21

◦ First assigned version.

590



Acknowledgements
The OpenCL specification is the result of the contributions of many people, representing a cross
section of the desktop, hand-held, and embedded computer industry. Following is a partial list of
the contributors, including the company that they represented at the time of their contribution:

Chuck Rose, Adobe
Eric Berdahl, Adobe
Shivani Gupta, Adobe
Bill Licea Kane, AMD
Ed Buckingham, AMD
Jan Civlin, AMD
Laurent Morichetti, AMD
Mark Fowler, AMD
Marty Johnson, AMD
Michael Mantor, AMD
Norm Rubin, AMD
Ofer Rosenberg, AMD
Brian Sumner, AMD
Victor Odintsov, AMD
Aaftab Munshi, Apple
Abe Stephens, Apple
Alexandre Namaan, Apple
Anna Tikhonova, Apple
Chendi Zhang, Apple
Eric Bainville, Apple
David Hayward, Apple
Giridhar Murthy, Apple
Ian Ollmann, Apple
Inam Rahman, Apple
James Shearer, Apple
MonPing Wang, Apple
Tanya Lattner, Apple
Mikael Bourges-Sevenier, Aptina
Brice Videau, Argonne National Laboratory
Anton Lokhmotov, ARM
Dave Shreiner, ARM
Einar Hov, ARM
Hedley Francis, ARM
Kevin Petit, ARM
Neil Hickey, ARM
Robert Elliott, ARM
Scott Moyers, ARM
Stuart Brady, ARM
Sven Van Haastregt, Arm
Tom Olson, ARM
Anastasia Stulova, ARM

591



Christopher Thompson-Walsh, Broadcom
Holger Waechtler, Broadcom
Norman Rink, Broadcom
Andrew Richards, Codeplay
Maria Rovatsou, Codeplay
Alistair Donaldson, Codeplay
Alastair Murray, Codeplay
Ewan Crawford, Codeplay
Stephen Frye, Electronic Arts
Eric Schenk, Electronic Arts
Daniel Laroche, Freescale
David Neto, Google
James Price, Google
Robin Grosman, Huawei
Craig Davies, Huawei
Brian Horton, IBM
Brian Watt, IBM
Gordon Fossum, IBM
Greg Bellows, IBM
Joaquin Madruga, IBM
Mark Nutter, IBM
Mike Perks, IBM
Sean Wagner, IBM
Jeremy Kemp, Imagination Technologies
Jon Parr, Imagination Technologies
Paul Fradgley, Imagination Technologies
Robert Quill, Imagination Technologies
James McCarthy, Imagination Technologies
Jon Leech, Independent
Aaron Kunze, Intel
Aaron Lefohn, Intel
Adam Lake, Intel
Alexey Bader, Intel
Allen Hux, Intel
Andrew Brownsword, Intel
Andrew Lauritzen, Intel
Anton Zabaznov, Intel
Bartosz Sochacki, Intel
Ben Ashbaugh, Intel
Boaz Ouriel, Intel
Brian Lewis, Intel
Filip Hazubski, Intel
Geoff Berry, Intel
Grzegorz Wawiorko, Intel
Hong Jiang, Intel
Jayanth Rao, Intel
Josh Fryman, Intel
Kevin Stevens, Intel

592



Larry Seiler, Intel
Michael Kinsner, Intel
Michal Mrozek, Intel
Mike MacPherson, Intel
Murali Sundaresan, Intel
Paul Lalonde, Intel
Stephen Junkins, Intel
Tim Foley, Intel
Timothy Mattson, Intel
Yariv Aridor, Intel
Sébastien Le Duc, Kalray
Benjamin Bergen, Los Alamos National Laboratory
Roy Ju, Mediatek
Bor-Sung Liang, Mediatek
Rahul Agarwal, Mediatek
Michal Witaszek, Mobica
JenqKuen Lee, NTHU
Amit Rao, NVIDIA
Ashish Srivastava, NVIDIA
Bastiaan Aarts, NVIDIA
Chris Cameron, NVIDIA
Christopher Lamb, NVIDIA
Dibyapran Sanyal, NVIDIA
Guatam Chakrabarti, NVIDIA
Ian Buck, NVIDIA
Jaydeep Marathe, NVIDIA
Jian-Zhong Wang, NVIDIA
Karthik Raghavan Ravi, NVIDIA
Kedar Patil, NVIDIA
Manjunath Kudlur, NVIDIA
Mark Harris, NVIDIA
Michael Gold, NVIDIA
Neil Trevett, NVIDIA
Nikhil Joshi, NVIDIA
Richard Johnson, NVIDIA
Sean Lee, NVIDIA
Tushar Kashalikar, NVIDIA
Vinod Grover, NVIDIA
Xiangyun Kong, NVIDIA
Yogesh Kini, NVIDIA
Yuan Lin, NVIDIA
Mayuresh Pise, NVIDIA
Allan Tzeng, QUALCOMM
Alex Bourd, QUALCOMM
Andrew Gruber, QUALCOMM
Andrzej Mamona, QUALCOMM
Anirudh Acharya, QUALCOMM
Balaji Calidas, QUALCOMM

593



Benedict Gaster, QUALCOMM
Bill Torzewski, QUALCOMM
Bob Rychlik, QUALCOMM
Chihong Zhang, QUALCOMM
Chris Mei, QUALCOMM
Colin Sharp, QUALCOMM
David Garcia, QUALCOMM
David Ligon, QUALCOMM
Hongqiang Wang, QUALCOMM
Jay Yun, QUALCOMM
Jian Liu, QUALCOMM
Joshua Kelly, QUALCOMM
Lee Howes, QUALCOMM
Lihan Bin, QUALCOMM
Richard Ruigrok, QUALCOMM
Robert J. Simpson, QUALCOMM
Ruihao Zhang, QUALCOMM
Samuel Pauls, QUALCOMM
Sreelakshmi Haridas, QUALCOMM
Sumesh Udayakumaran, QUALCOMM
Vineet Goel, QUALCOMM
Vlad Shimanskiy, QUALCOMM
Yu-Chi Huang, QUALCOMM
Yuehai Du, QUALCOMM
Raun Krisch, Samsung
Tasneem Brutch, Samsung
Yoonseo Choi, Samsung
Dennis Adams, Sony
Pr-Anders Aronsson, Sony
Jim Rasmusson, Sony
Thierry Lepley, STMicroelectronics
Anton Gorenko, StreamHPC
Jakub Szuppe, StreamHPC
Máté Ferenc Nagy-Egri, StreamHPC
Vincent Hindriksen, StreamHPC
Ajay Jayaraj, Texas Instruments
Alan Ward, Texas Instruments
Yuan Zhao, Texas Instruments
Pete Curry, Texas Instruments
Simon McIntosh-Smith, University of Bristol
Paul Preney, University of Windsor
Shane Peelar, University of Windsor
Wei-Lun Kao, VeriSilicon
Yanjun Zhang, VeriSilicon
Brian Hutsell, Vivante
Mike Cai, Vivante
Sumeet Kumar, Vivante
Xing Wang, Vivante

594



Jeff Fifield, Xilinx
Hem C. Neema, Xilinx
Henry Styles, Xilinx
Ralph Wittig, Xilinx
Ronan Keryell, Xilinx
AJ Guillon, YetiWare Inc

595


	The OpenCL™ Specification
	Table of Contents
	Chapter 1. Introduction
	1.1. Normative References
	1.2. Version Numbers
	1.3. Unified Specification

	Chapter 2. Glossary
	Chapter 3. The OpenCL Architecture
	3.1. Platform Model
	3.2. Execution Model
	3.2.1. Mapping Work-items Onto an Nd-range
	3.2.2. Execution of Kernel-instances
	3.2.3. Device-Side Enqueue
	3.2.4. Synchronization
	3.2.5. Categories of Kernels

	3.3. Memory Model
	3.3.1. Fundamental Memory Regions
	3.3.2. Memory Objects
	3.3.3. Lifetime of Shared Direct3D Memory Objects
	3.3.4. Lifetime of Shared OpenCL/OpenGL Memory Objects
	3.3.5. Shared Virtual Memory
	3.3.6. Memory Consistency Model for OpenCL 1.x
	3.3.7. Memory Consistency Model for OpenCL 2.x
	3.3.8. Overview of Atomic and Fence Operations
	3.3.9. Memory Ordering Rules

	3.4. The OpenCL Framework
	3.4.1. Mixed Version Support
	3.4.2. Backwards Compatibility
	3.4.3. Versioning
	3.4.4. Valid Usage and Undefined Behavior


	Chapter 4. The OpenCL Platform Layer
	4.1. Querying Platform Info
	4.2. Querying Devices
	4.2.1. Sharing DirectX9 Media Surfaces With OpenCL Images
	4.2.2. Sharing Direct3D 10 Resources With OpenCL Memory Objects
	4.2.3. Sharing Direct3D 11 Resources With OpenCL Memory Objects

	4.3. Partitioning a Device
	4.4. Contexts

	Chapter 5. The OpenCL Runtime
	5.1. Command-Queues
	5.2. Buffer Objects
	5.2.1. Creating Buffer Objects
	5.2.2. Reading, Writing and Copying Buffer Objects
	5.2.3. Filling Buffer Objects
	5.2.4. Mapping Buffer Objects
	5.2.5. Creating OpenCL Buffer Objects From Direct3D 10 Buffer Resources
	5.2.6. Creating OpenCL Buffer Objects From Direct3D 11 Buffer Resources
	5.2.7. Creating OpenCL Buffer Objects From OpenGL Buffer Objects

	5.3. Image Objects
	5.3.1. Creating Image Objects
	5.3.2. Querying List of Supported Image Formats
	5.3.3. Mapping to External Image Formats
	5.3.4. Reading, Writing and Copying Image Objects
	5.3.5. Filling Image Objects
	5.3.6. Copying Between Image and Buffer Objects
	5.3.7. Mapping Image Objects
	5.3.8. Specifying Mipmap Levels to Image Operations
	5.3.9. Image Object Queries
	5.3.10. Creating OpenCL Image Objects From DirectX 9 Media Resources
	5.3.11. Creating OpenCL Image Objects From Direct3D 10 Textures and Resources
	5.3.12. Creating OpenCL Image Objects From Direct3D 11 Textures and Resources
	5.3.13. Creating OpenCL Image Objects From EGL Images
	5.3.14. Creating OpenCL Image Objects From OpenGL Textures and Renderbuffers

	5.4. Pipes
	5.4.1. Creating Pipe Objects
	5.4.2. Pipe Object Queries

	5.5. Querying, Unmapping, Migrating, Retaining and Releasing Memory Objects
	5.5.1. Retaining and Releasing Memory Objects
	5.5.2. Descriptions of External Memory Handle Types
	5.5.3. Unmapping Mapped Memory Objects
	5.5.4. Accessing Mapped Regions of a Memory Object
	5.5.5. Migrating Memory Objects
	5.5.6. Memory Object Queries
	5.5.7. Querying Media Surface Properties of Memory Objects Created From DirectX 9 Media Surfaces
	5.5.8. Querying Direct3D Properties of Memory Objects Created From Direct3D 10 Resources
	5.5.9. Querying Direct3D Properties of Memory Objects Created From Direct3D 11 Resources
	5.5.10. Querying OpenGL Object Information From an OpenCL Memory Object
	5.5.11. Sharing Memory Objects Created From Media Surfaces Between a Media Adapter and OpenCL
	5.5.12. Sharing Memory Objects Created From Direct3D 10 Resources Between Direct3D 10 and OpenCL Contexts
	5.5.13. Sharing Memory Objects Created From Direct3D 11 Resources Between Direct3D 11 and OpenCL Contexts
	5.5.14. Sharing Memory Objects Created From EGL Resources Between EGL and OpenCL Contexts
	5.5.15. Acquiring, Releasing, and Synchronizing Access to Shared OpenCL/OpenGL Memory Objects

	5.6. Shared Virtual Memory
	5.6.1. SVM Sharing Granularity: Coarse- and Fine- Grained Sharing
	5.6.2. Memory Consistency for SVM Allocations

	5.7. Sampler Objects
	5.7.1. Creating Sampler Objects
	5.7.2. Sampler Object Queries

	5.8. Program Objects
	5.8.1. Creating Program Objects
	5.8.2. Retaining and Releasing Program Objects
	5.8.3. Setting SPIR-V Specialization Constants
	5.8.4. Building Program Executables
	5.8.5. Separate Compilation and Linking of Programs
	5.8.6. Compiler Options
	5.8.7. Linker Options
	5.8.8. Unloading the OpenCL Compiler
	5.8.9. Program Object Queries

	5.9. Kernel Objects
	5.9.1. Creating Kernel Objects
	5.9.2. Setting Kernel Arguments
	5.9.3. Copying Kernel Objects
	5.9.4. Kernel Object Queries

	5.10. Executing Kernels
	5.11. Event Objects
	5.11.1. Creating, Waiting for, and Releasing Event Objects

	5.12. Markers, Barriers and Waiting for Events
	5.13. Semaphores
	5.13.1. Semaphore Types
	5.13.2. Creating Semaphores
	5.13.3. Exporting Semaphore External Handles
	5.13.4. Importing Semaphore External Handles
	5.13.5. Descriptions of External Semaphore Handle Types
	5.13.6. Waiting On and Signaling Semaphores
	5.13.7. Retaining and Releasing Semaphores
	5.13.8. Semaphore Queries

	5.14. Out-of-Order Execution of Kernels and Memory Object Commands
	5.15. Profiling Operations on Memory Objects and Kernels
	5.16. Flush and Finish
	5.17. Command-Buffers
	5.17.1. Command-Buffers and Multiple Devices
	5.17.2. Command-Buffer Lifecycle
	5.17.3. Creating Command-Buffer Objects
	5.17.4. Enqueuing a Command-Buffer
	5.17.5. Recording Commands to a Command-Buffer
	5.17.6. Remapping Command-Buffers
	5.17.7. Mutable Commands:
	5.17.8. Command-Buffer Queries

	5.18. Querying Devices That Support Sharing With OpenGL

	Chapter 6. Associated OpenCL specification
	6.1. SPIR-V Intermediate Language
	6.2. Extensions to OpenCL
	6.3. The OpenCL C Kernel Language

	Chapter 7. OpenCL Embedded Profile
	Appendix A: Host environment and thread safety
	Shared OpenCL Objects
	Multiple Host Threads
	Global Constructors and Destructors

	Appendix B: Portability
	Appendix C: Application Data Types
	Supported Application Scalar Data Types
	Supported Application Vector Data Types
	Alignment of Application Data Types
	Vector Literals
	Vector Components
	Named Vector Components Notation
	High/Low Vector Component Notation
	Native Vector Type Notation

	Implicit Conversions
	Explicit Casts
	Other Operators and Functions
	Application Constant Definitions

	Appendix D: Checking for Memory Copy Overlap
	Appendix E: Changes to OpenCL
	Summary of Changes from OpenCL 1.0 to OpenCL 1.1
	Summary of Changes from OpenCL 1.1 to OpenCL 1.2
	Summary of Changes from OpenCL 1.2 to OpenCL 2.0
	Summary of Changes from OpenCL 2.0 to OpenCL 2.1
	Summary of Changes from OpenCL 2.1 to OpenCL 2.2
	Summary of Changes from OpenCL 2.2 to OpenCL 3.0
	Summary of Changes from OpenCL 3.0

	Appendix F: Error Codes
	Appendix G: Other Miscellaneous Enums
	Appendix H: OpenCL 3.0 Backwards Compatibility
	Shared Virtual Memory
	Memory Consistency Model
	Device-Side Enqueue
	Pipes
	Program Scope Global Variables
	Non-Uniform Work-groups
	Read-Write Images
	Creating 2D Images From Buffers
	sRGB Images
	Depth Images
	Device and Host Timer Synchronization
	Intermediate Language Programs
	Sub-groups
	Program Initialization and Clean-Up Kernels
	3D Image Writes
	Work-group Collective Functions
	Generic Address Space
	Language Features That Were Already Optional

	Appendix I: OpenCL Extensions (Informative)
	Provisional Extensions
	Extension Dependencies
	List of Current Extensions
	cl_khr_3d_image_writes
	cl_khr_async_work_group_copy_fence
	cl_khr_byte_addressable_store
	cl_khr_create_command_queue
	cl_khr_d3d10_sharing
	cl_khr_d3d11_sharing
	cl_khr_depth_images
	cl_khr_device_enqueue_local_arg_types
	cl_khr_device_uuid
	cl_khr_dx9_media_sharing
	cl_khr_egl_event
	cl_khr_egl_image
	cl_khr_expect_assume
	cl_khr_extended_async_copies
	cl_khr_extended_bit_ops
	cl_khr_extended_versioning
	cl_khr_external_memory
	cl_khr_external_memory_dma_buf
	cl_khr_external_memory_opaque_fd
	cl_khr_external_memory_win32
	cl_khr_external_semaphore
	cl_khr_external_semaphore_opaque_fd
	cl_khr_external_semaphore_sync_fd
	cl_khr_fp16
	cl_khr_fp64
	cl_khr_gl_depth_images
	cl_khr_gl_event
	cl_khr_gl_msaa_sharing
	cl_khr_gl_sharing
	cl_khr_global_int32_base_atomics
	cl_khr_global_int32_extended_atomics
	cl_khr_icd
	cl_khr_il_program
	cl_khr_image2d_from_buffer
	cl_khr_initialize_memory
	cl_khr_int64_base_atomics
	cl_khr_int64_extended_atomics
	cl_khr_integer_dot_product
	cl_khr_local_int32_base_atomics
	cl_khr_local_int32_extended_atomics
	cl_khr_mipmap_image
	cl_khr_mipmap_image_writes
	cl_khr_pci_bus_info
	cl_khr_priority_hints
	cl_khr_select_fprounding_mode
	cl_khr_semaphore
	cl_khr_spirv_extended_debug_info
	cl_khr_spirv_linkonce_odr
	cl_khr_spirv_no_integer_wrap_decoration
	cl_khr_srgb_image_writes
	cl_khr_subgroup_ballot
	cl_khr_subgroup_clustered_reduce
	cl_khr_subgroup_extended_types
	cl_khr_subgroup_named_barrier
	cl_khr_subgroup_non_uniform_arithmetic
	cl_khr_subgroup_non_uniform_vote
	cl_khr_subgroup_rotate
	cl_khr_subgroup_shuffle
	cl_khr_subgroup_shuffle_relative
	cl_khr_subgroups
	cl_khr_suggested_local_work_size
	cl_khr_terminate_context
	cl_khr_throttle_hints
	cl_khr_work_group_uniform_arithmetic

	List of Provisional Extensions
	cl_khr_command_buffer
	cl_khr_command_buffer_multi_device
	cl_khr_command_buffer_mutable_dispatch
	cl_khr_external_memory_dx
	cl_khr_external_semaphore_dx_fence
	cl_khr_external_semaphore_win32
	cl_khr_kernel_clock

	List of Deprecated Extensions
	cl_khr_spir


	Acknowledgements

